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Abstract
Real-time fraud detection is a challenge for most financial and elec-
tronic commercial platforms. To identify fraudulent communities,
Grab, one of the largest technology companies in Southeast Asia,
forms a graph from a set of transactions and detects dense subgraphs
arising from abnormally large numbers of connections among fraud-
sters. Existing dense subgraph detection approaches focus on static
graphs without considering the fact that transaction graphs are highly
dynamic and updated frequently. Moreover, detecting dense subgraphs
from scratch with graph updates is time consuming and cannot meet
the real-time requirement in industry. To address this problem, we
introduce an incremental real-time fraud detection framework called
Spade. Spade is able to detect fraudulent communities in hundreds of
microseconds on million-scale graphs by incrementally maintaining
dense subgraphs. Furthermore, Spade supports batch updates and edge
grouping to reduce response latency. Lastly, Spade provides simple
but expressive APIs for the design of evolving fraud detection seman-
tics. Developers plug their customized suspiciousness functions into
Spade which incrementalizes their semantics without recasting their
algorithms. Extensive experiments show that Spade detects fraudulent
communities in real time on million-scale graphs. Peeling algorithms
incrementalized by Spade are up to a million times faster than their
static version.
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1 Introduction
Graphs have been found in many emerging applications, including
transaction networks, communication networks and social networks.
The dense subgraph problem is first studied in [17] and is effective for
link spam identification [4, 16], community detection [8, 11] and fraud
detection [7, 19, 29]. Standard peeling algorithms [2, 5, 7, 19, 31] it-
eratively peel the vertex that has the smallest connectivity (e.g., vertex
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Figure 1: Grab’s data pipeline for fraud detection
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Figure 2: An example of fraud detection on evolving graphs

degree or sum of the weights of the adjacent edges) to the graph. Peel-
ing algorithms are widely used because of their efficiency, robustness,
and theoretical worst-case guarantee. However, existing peeling algo-
rithms [6, 19, 31] assume a static graph without considering the fact
that social and transaction graphs in online marketplaces are rapidly
evolving in recent years. One possible solution for fraud detection
on evolving graphs is to perform peeling algorithms periodically. We
take Grab’s fraud detection pipeline as an example.
Fraud detection pipeline in Grab (Figure 1). Grab is one of the
largest technology companies in Southeast Asia and offers digital
payments and food delivery services. On the Grab’s e-commerce plat-
form, 1) the transactions form a transaction graph 𝐺 . 2) Grab updates
the transaction graphs periodically 𝐺 = 𝐺 ⊕ ∆𝐺 . Our experiments
show that it takes 28s to carry out Fraudar (FD) [19] on a transaction
graph with 6M vertices and 25M edges. Therefore, we can execute
fraud detection every 30 seconds. 3) The dense subgraph detection
algorithm and its variants are used to detect fraudulent communities.
4) After identifying the fraudsters, the moderators ban or freeze their
accounts to avoid further economic loss. A classic fraud example is
customer-merchant collusion. Assume that Grab provides promotions
to new customers and merchants. However, fraudsters create a set
of fake accounts and do fictitious trading to use the opportunity of
promotion activities to earn the bonus. Such fake accounts (vertices)
and the transactions among them (edges) form a dense subgraph.

EXAMPLE 1.1. Consider the transaction graph in Figure 2, where
a vertex is a user or a store, and an edge represents a transaction.
Suppose a fraudulent community is identified at time 𝑇0 and a normal
user becomes a fraudster and participates in suspicious activities at
𝑇1. Applying peeling algorithms at 𝑇1, the new fraudster is detected
at 𝑇2. However, many new suspicious activities have occurred during
the time period [𝑇1,𝑇2] that could cause huge economic losses.
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Table 1: Comparison of Spade and previous algorithms
DG [6] DW [18] FD [19] Spade

Dense subgraph detection ✓ ✓ ✓ ✓
Accuracy guarantees ✓ ✓ ✓ ✓

Weighted graph ✗ ✓ ✓ ✓
Incremental updates ✗ ✗ ✗ ✓

Edge reordering ✗ ✗ ✗ ✓

As reported in recent studies [1, 35], 21.4% of the traffic to e-
commerce portals are malicious bots in 2018. Fraud detection is
still challenging, since many fraudulent activities often occur in a
very short timespan. Therefore, identifying fraudsters and reducing
response latency to fraudulent transactions are key tasks in real-time
fraud detection.

To address real-time fraud detection on evolving graphs, a better
solution would be to incrementally maintain dense subgraphs. There
are two main challenges of incremental maintenance. First, oper-
ational demands require that fraudsters should be identified in 100
milliseconds in industry. Maintaining the dense subgraph incremen-
tally in such a short timespan is challenging. Second, fraud semantics
continue to evolve and it is not trivial to incrementalize each of them.
Implementing a correct and efficient incremental algorithm is, in
general, a challenge. It is impractical to train all developers with
the knowledge of incremental graph evaluation. To the best of our
knowledge, there are no generic approaches to minimize the cost of in-
cremental peeling algorithms. Motivated by the challenges, we design
a real-time fraud detection framework, named Spade to detect fraudu-
lent communities by incrementally maintaining dense subgraphs. The
comparison between Spade and the previous algorithms (dense sub-
graphs (DG) [6], dense weighted subgraph (DW) [18] and Fraudar
(FD) [19]) is summarized in Table 1.
Contributions. In this paper, we focus on incremental peeling algo-
rithms. In summary, this paper makes the following contributions.

(1) We build three fundamental incremental techniques for peeling
algorithms to avoid detecting fraudulent communities from
scratch. Spade inspects the subgraph that is affected by graph
updates and reorders the peeling sequence incrementally, which
theoretically guarantees the accuracy of the worst case.

(2) Spade enables developers to design their fraud semantics to
detect fraudulent communities by providing the suspiciousness
functions of edges and vertices. We show that a variety of
peeling algorithms can be incrementalized in Spade (Section 3)
including DG, DW and FD.

(3) We conduct extensive experiments on Spade with datasets from
industry. The results show that Spade speeds up fraud detection
up to 6 orders of magnitude since Spade minimizes the cost
of incremental maintenance by inspecting the affected area.
Furthermore, the latency of the response to fraud activities can
be significantly reduced. Lastly, once a user is spotted as a
fraudster, we identify the related transactions as potential fraud
transactions and pass them to system moderators. Up to 88.34%
potential fraud transactions can be prevented.

Organization. The rest of this paper is organized as follows: Section 2
presents the background and the problem statement. We introduce the
framework of Spade in Section 3 and three incremental peeling algo-
rithms in Section 4. Section 5 reports on the experimental evaluation.
After reviewing related work in Section 6, we conclude in Section 7.

Table 2: Frequently used notations
Notation Meaning

𝐺 / ∆𝐺 a transaction graph / updates to graph𝐺
𝐺 ⊕ ∆𝐺 the graph obtained by updating ∆𝐺 to𝐺
𝑁 (𝑢) the neighbors of𝑢
𝑎𝑖 / 𝑐𝑖 𝑗 the weight on vertex𝑢𝑖 / on edge (𝑢𝑖 ,𝑢 𝑗 )
𝑓 (𝑆) the sum of the suspiciousness of induced subgraph𝐺[𝑆]
𝑔(𝑆) the suspiciousness density of vertex set 𝑆
𝑤𝑢 (𝑆) peeling weight, i.e., the decrease in 𝑓 by removing𝑢 from 𝑆

𝑄 a peeling algorithm
𝑂 the peeling sequence order w.r.t. 𝑄
𝑆𝑃 the vertex set returned by a peeling algorithm
𝑆∗ the optimal vertex set, i.e., 𝑔(𝑆∗) is maximized

Algorithm 1: Execution paradigm of peeling algorithms
Input: A graph 𝐺 = (𝑉 , 𝐸) and a density metric 𝑔(𝑆)
Output: The peeling sequence order 𝑂 = 𝑄(𝐺 ) and the fraudulent community

1 𝑆0 = 𝑉

2 for 𝑖 = 1, . . . , |𝑉 | do
3 select the vertex 𝑢 ∈ 𝑆𝑖−1 such that 𝑔(𝑆𝑖−1 \ {𝑢 }) is maximized
4 𝑆𝑖 = 𝑆𝑖−1 \ {𝑢 }
5 𝑂.add(𝑢)
6 return 𝑂 and arg max𝑆𝑖 𝑔(𝑆𝑖 )

2 Background
2.1 Preliminary
We next introduce some basic notations. Some frequently used nota-
tions are summarized in Table 2.
Graph 𝐺 . We consider a directed and weighted graph 𝐺 = (𝑉 , 𝐸),
where 𝑉 is a set of vertices and 𝐸 ⊆ (𝑉 ×𝑉 ) is a set of edges. Each
edge (𝑢𝑖 , 𝑢 𝑗 ) ∈ 𝐸 has a nonnegative weight, denoted by 𝑐𝑖 𝑗 . We use
𝑁 (𝑢) to denote the neighbors of 𝑢.
Induced subgraph. Given a subset 𝑆 of 𝑉 , we denote the induced
subgraph by 𝐺[𝑆] = (𝑆, 𝐸[𝑆]), where 𝐸[𝑆] = {(𝑢, 𝑣)|(𝑢, 𝑣) ∈ 𝐸 ∧ 𝑢, 𝑣 ∈
𝑆}. We denote the size of 𝑆 by |𝑆 |.
Density metrics 𝑔. We adopt the class of metrics 𝑔 in previous stud-
ies [6, 18, 19], 𝑔(𝑆) = 𝑓 (𝑆)

|𝑆 | , where 𝑓 is the total weight of 𝐺[𝑆], i.e.,
the sum of the weight of 𝑆 and 𝐸[𝑆]:

𝑓 (𝑆) =
∑︁
𝑢𝑖 ∈𝑆

𝑎𝑖 +
∑︁

𝑢𝑖 ,𝑢 𝑗 ∈𝑆
∧(𝑢𝑖 ,𝑢 𝑗 )∈𝐸

𝑐𝑖 𝑗 (1)

The weight of a vertex 𝑢𝑖 measures the suspiciousness of user 𝑢𝑖 ,
denoted by 𝑎𝑖 (𝑎𝑖 ≥ 0). The weight of the edge (𝑢𝑖 , 𝑢 𝑗 ) measures the
suspiciousness of transaction (𝑢𝑖 , 𝑢 𝑗 ), denoted by 𝑐𝑖 𝑗 > 0. Intuitively,
𝑔(𝑆) is the density of the induced subgraph 𝐺[𝑆]. The larger 𝑔(𝑆) is,
the denser 𝐺[𝑆] is.
Graph updates ∆𝐺 . We denote the set of updates to 𝐺 by ∆𝐺 =
(∆𝑉 ,∆𝐸). We denote the graph obtained by updating ∆𝐺 to 𝐺 as
𝐺 ⊕ ∆𝐺 . Since transaction graphs continue to evolve, we consider
edge insertion rather than edge deletion. Therefore, 𝐺 ⊕ ∆𝐺 = (𝑉 ∪
∆𝑉 , 𝐸 ∪ ∆𝐸). Specifically, we consider two types of updates, edge
insertion (i.e., |∆𝐸 |= 1) and edge insertion in batch (i.e., |∆𝐸 |> 1).

2.2 Peeling algorithms
Peeling algorithms 𝑄 . Peeling algorithms are widely used in dense
subgraph mining [6, 19, 31]. They follow the execution paradigm in
Algorithm 1 and differ mainly in density metrics. They are categorized
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Figure 3: Example of peeling algorithms

to three categories: unweighted [6], edge-weighted [18] and hybrid-
weighted [19].
Peeling weight. Specifically, we use𝑤𝑢𝑖 (𝑆) to indicate the decrease in
the value of 𝑓 when the vertex 𝑢𝑖 is removed from a vertex set 𝑆 , i.e.,
the peeling weight. Previous work [19] formalizes𝑤𝑢𝑖 (𝑆) as follows:

𝑤𝑢𝑖 (𝑆) = 𝑎𝑖 +
∑︁

(𝑢 𝑗 ∈𝑆)∧((𝑢𝑖 ,𝑢 𝑗 )∈𝐸)
𝑐𝑖 𝑗 +

∑︁
(𝑢 𝑗 ∈𝑆)∧((𝑢 𝑗 ,𝑢𝑖 )∈𝐸)

𝑐 𝑗𝑖 (2)

Peeling sequence. We use 𝑆𝑖 to denote the vertex set after 𝑖-th peel-
ing step. Initially, the peeling algorithms set 𝑆0 = 𝑉 (Line 1). They
iteratively remove a vertex 𝑢𝑖 from 𝑆𝑖−1, such that 𝑔(𝑆𝑖−1 \ {𝑢𝑖 }) is
maximized (Line 3∼4). The process repeats recursively until there
are no vertices left. This leads to a series of sets over 𝑉 , denoted
by 𝑆0, . . . , 𝑆 |𝑉 | of sizes |𝑉 |, . . . , 0. Then 𝑆𝑖 (𝑖 ∈ [0, |𝑉 |]), which max-
imizes the density metric 𝑔(𝑆𝑖 ), is returned, denoted by 𝑆𝑃 . For sim-
plicity, we denote ∆𝑖 = 𝑤𝑢𝑖 (𝑆𝑖 ). Instead of maintaining the series
𝑆0, . . . , 𝑆 |𝑉 | , we record the peeling sequence 𝑂 = [𝑢1, . . . 𝑢 |𝑉 |] such
that {𝑢𝑖 } = 𝑆𝑖−1 \ 𝑆𝑖 .

EXAMPLE 2.1. Consider the graph 𝐺 in Figure 3. 𝑢1 is peeled
since its peeling weight is the smallest among all vertices. Similarly,
𝑢3, 𝑢2, 𝑢4, 𝑢5 will be peeled accordingly. Therefore, the peeling se-
quence is 𝑂 = [𝑢1, 𝑢3, 𝑢2, 𝑢4, 𝑢5].

Complexity and accuracy guarantee. In Algorithm 1, Min-Heap is
used to maintain the peeling weights, the insertion cost is 𝑂(log|𝑉 |).
There are at most |𝐸 | insertions. Therefore, the complexity of Algo-
rithm 1 is 𝑂(|𝐸 |log|𝑉 |). We denote the vertex set that maximizes 𝑔 by
𝑆∗. Previous studies [6, 19, 23] conclude that:

LEMMA 2.1. Let 𝑆𝑃 be the vertex set returned by the peeling
algorithms and 𝑆∗ be the optimal vertex set, 𝑔(𝑆𝑃 ) ≥ 1

2𝑔(𝑆∗).

Although peeling algorithms are scalable and robust, we remark
that these algorithms are proposed for static graphs, which takes sev-
eral minutes on million-scale graphs. For evolving graphs, computing
from scratch is still time-consuming, which cannot meet the real-
time requirement. Moreover, it is not trivial to design incremental
algorithms for peeling algorithms. In this paper, we investigate an
auto-incrementalization framework for peeling algorithms.
Problem definition. Given a graph 𝐺 = (𝑉 , 𝐸), a peeling algorithm
𝑄 , and the peeling result of 𝑄 on 𝐺 , 𝑆𝑃 = 𝑄(𝐺), our problem is to
efficiently identify the result of𝑄 on𝐺 ⊕∆𝐺 , 𝑆𝑃

′
= 𝑄(𝐺 ⊕∆𝐺), where

∆𝐺 is the graph updates.
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Figure 4: Architecture of Spade and workflow of an edge insertion

3 The Spade Framework
In this section, we present an overview of our proposed framework
Spade and sample APIs. Subsequently, we demonstrate some exam-
ples on how to implement different peeling algorithms with Spade.

3.1 Overview of Spade and APIs
We follow two design goals to satisfy operational demands.

• Programmability. We provide a set of user-defined APIs for
developers to develop their dense subgraph-based semantics
to detect fraudsters. Moreover, Spade can auto-incrementalize
their semantics without recasting the algorithms.

• Efficiency. Spade allow efficient and scalable fraud detection
on evolving graphs in real-time.

Architecture of Spade. Figure 4 shows the architecture of Spade and
the workflow of an edge insertion. Spade automatically incremental-
izes peeling algorithms with the user-defined suspiciousness functions.
To avoid computing from scratch on evolving graphs, the engine of
Spade maintains the fraudulent community incrementally with an
edge update (Section 4.1). Batch execution is developed to improve
the efficiency of handling edge updates in batch (Section 4.2). The
updated fraudulent community is identified in real time and returned
to the moderators for further analysis. Given an edge insertion, the
workflow of Spade contains the following components:

• VSusp and ESusp. Given a new vertex/edge, these components
are responsible for deciding the suspiciousness of the endpoint
of the edge or the edge with a user-defined strategy.

• IsBenign. This component is responsible for deciding whether
a new edge is benign (Section 4.3). If the edge is benign, it
is inserted into an edge vector pending reordering; otherwise,
peeling sequence reordering is triggered immediately for the
edge buffer with this new edge.

• ReorderSeq. This component is responsible for incrementally
maintaining the peeling sequence and deciding the new fraudu-
lent community with the graph updates detailed in Section 4.

APIs and data structure (Listing 1). We provide APIs for developers
to customize and deploy their peeling algorithms for different appli-
cation requirements. Developers can customize VSusp and ESusp to
develop their fraud detection semantics. We design two APIs for edge
insertion, namely InsertEdge and InsertBatchEdges. The Detect func-
tion spots the fraudulent community on the current graph. IsBenign
and ReorderSeq are two built-in APIs which are transparent to devel-
opers. They are activated when new edges are inserted. Spade uses
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the adjacency list to store the graph. Two vectors _seq and _weight
are used to store the peeling sequence and the peeling weights.

Listing 1: Overview of Spade
1 class Spade {
2 public:
3 Graph LoadGraph(string path){} //Load graph from disk
4 //Plug in vertex suspiciousness function
5 void VSusp(function<double(Vertex u, Graph g)> susp) {}
6 //Plug in edge suspiciousness function
7 void ESusp(function<double(Edge e, Graph g)> susp) {}
8 //Detect the fraudsters on graph _g
9 set<Vertex> Detect() {}

10 //Insert an edge and detect the new fraudsters
11 set<Vertex> InsertEdge(Edge e) {}
12 //Insert a batch of edges and detect the new fraudsters
13 set<Vertex> InsertBatchEdges(Edge* e_arr) {}
14 private:
15 Graph _g; //Graph
16 vector<Vertex> _seq; //Peeling sequence
17 vector<double> _weight; //Peeling weights
18 vector<Edge> _benign_edges; //Store the benign edges
19 bool IsBenign(Edge e) {} //Judge if an edge is benign
20 void ReorderSeq(){} //Reorder the peeling sequence
21 }

Characteristic of density metrics. We next formalize the sufficient
condition of the density metrics that can be supported by Spade.

PROPERTY 3.1. If 1) 𝑔(𝑆) is an arithmetic density, i.e., 𝑔 = |𝑓 (𝑆) |
|𝑆 | ,

2) 𝑎𝑖 ≥ 0, and 3) 𝑐𝑖 𝑗 > 0, then 𝑔(𝑆) is supported by Spade.

The correctness is satisfied since Spade correctly returns the peel-
ing sequence order (detailed in Section 4). We also characterize the
properties of these popular density metrics in Appendix E of [20].
Instances. We show that popular peeling algorithms are easily imple-
mented and supported by Spade, e.g., DG [6], DW [18] and FD [19].
We take FD as an example and leave the discussion of the other
instances in the Appendix F of [20]. To resist the camouflage of fraud-
sters, Hooi et al. [19] proposed FD to weight edges and set the prior
suspiciousness of each vertex with side information. Let 𝑆 ⊆ 𝑉 . The
density metric of FD is defined as follows:

𝑔(𝑆) =
𝑓 (𝑆)
|𝑆 | =

∑
𝑢𝑖 ∈𝑆 𝑎𝑖 + ∑

𝑢𝑖 ,𝑢 𝑗 ∈𝑆
∧(𝑢𝑖 ,𝑢 𝑗 )∈𝐸 𝑐𝑖, 𝑗

|𝑆 | (3)

To implement FD on Spade, users only need to plug in the sus-
piciousness function vsusp for the vertices by calling VSusp and
the suspiciousness function esusp for the edges by calling ESusp.
Specifically, 1) vsusp is a constant function, i.e., given a vertex 𝑢,
vsusp(𝑢) = 𝑎𝑖 and 2) esusp is a logarithmic function such that given
an edge (𝑢𝑖 , 𝑢 𝑗 ), esusp(𝑢𝑖 , 𝑢 𝑗 ) = 1

log(𝑥+𝑐) , where 𝑥 is the degree of the
object vertex between𝑢𝑖 and𝑢 𝑗 , and 𝑐 is a small positive constant [19].

Developers can easily implement customized peeling algorithms
with Spade, which significantly reduces the engineering effort. For
example, users write only about 20 lines of code (compared to about
100 lines in the original FD [19]) to implement FD.

4 Incremental peeling algorithms
In this section, we propose several techniques to incrementally identify
fraudsters by reordering the peeling sequence 𝑂 with graph updates,
i.e., the peeling sequence on 𝐺 ⊕ ∆𝐺 , denoted by 𝑂 ′.

4.1 Peeling sequence reordering with edge insertion
Given a graph 𝐺 = (𝑉 , 𝐸), the peeling sequence 𝑂 on 𝐺 and the graph
updates ∆𝐺 = (∆𝑉 ,∆𝐸), where |∆𝐸 |= 1, Spade returns the peeling
sequence 𝑂 ′ on 𝐺 ⊕ ∆𝐺 .

Vertex insertion. Given a new vertex 𝑢, we insert it into the head of
the peeling sequence and initialize its peeling weight by ∆0 = 0.
Insertion of an edge (𝑢𝑖 , 𝑢 𝑗 ). Without loss of generality, we assume
𝑖 < 𝑗 and denote the weight of (𝑢𝑖 , 𝑢 𝑗 ) by ∆ = 𝑐𝑖 𝑗 . Given an edge
insertion (𝑢𝑖 , 𝑢 𝑗 ), we observe that a part of the peeling sequence will
not be changed. We formalize the finding as follows.

LEMMA 4.1. 𝑂 ′[1 : 𝑖 − 1] = 𝑂[1 : 𝑖 − 1].

Due to space limitations, all the proofs in this section are presented
in Appendix A of [20].
Affected area (𝐺T ) and pending queue (𝑇 ). Given updates ∆𝐺 to
graph𝐺 and an incremental algorithm T , we denote by𝐺T= (𝑉T , 𝐸T )
the subgraph inspected by T in 𝐺 that indicates the necessary cost of
incrementalization. Moreover, we construct a priority queue 𝑇 for the
vertices pending reordering in ascending order of the peeling weights.
Incremental algorithm (T ). T initializes an empty vector for the
updated peeling sequence 𝑂 ′ and append 𝑂[1 : 𝑖 − 1] to 𝑂 ′ due to
the Lemma 4.1. We iteratively compare 1) the head of 𝑇 , denoted by
𝑢min and 2) the vertex 𝑢𝑘 in the peeling sequence 𝑂 , where 𝑘 > 𝑖.
The corresponding peeling weights are denoted by ∆min and ∆𝑘 . We
consider the following three cases:
Case 1. If ∆min < ∆𝑘 , we pop the 𝑢min from 𝑇 and insert it to 𝑂 ′.
Then we update the priorities in 𝑇 for the neighbors of 𝑢min, 𝑁 (𝑢min).
Case 2. If ∆min ≥ ∆𝑘 and ∃𝑢𝑇 ∈ 𝑇, (𝑢𝑇 , 𝑢𝑘 ) ∈ 𝐸 or (𝑢𝑘 , 𝑢𝑇 ) ∈
𝐸, we insert 𝑢𝑘 into 𝑇 . The peeling weight is 𝑤𝑢𝑘 (𝑇 ∪ 𝑆𝑘 ) = ∆𝑘 +∑

(𝑢𝑇 ∈𝑇 )∧((𝑢𝑇 ,𝑢𝑘 )∈𝐸) 𝑐𝑇𝑘+ ∑
(𝑢𝑇 ∈𝑇 )∧((𝑢𝑘 ,𝑢𝑇 )∈𝐸) 𝑐𝑘𝑇 , 𝑘 = 𝑘 + 1.

Case 3. If ∆min ≥ ∆𝑘 and ∀𝑢𝑇 ∈ 𝑇, (𝑢𝑇 , 𝑢𝑘 ) ̸∈ 𝐸 and (𝑢𝑘 , 𝑢𝑇 ) ̸∈ 𝐸, we
insert 𝑢𝑘 to 𝑂 ′, 𝑘 = 𝑘 + 1.

We repeat the above iteration until 𝑇 is empty.

EXAMPLE 4.1. Consider the graph 𝐺 in Figure 3 and its peeling
sequence 𝑂 = [𝑢1, 𝑢3, 𝑢2, 𝑢4, 𝑢5]. Suppose that a new edge (𝑢1, 𝑢5) is
inserted into 𝐺 and its weight is 4 as shown in the LHS of Figure 5.
The reordering procedure is presented in the RHS of Figure 5. 𝑢1 is
pushed to the pending queue 𝑇 . Since the peeling weight of the next
vertex in 𝑂 , 𝑢3, is the smallest, it will be inserted directly into 𝑂 ′.
Since 𝑢2 ∈ 𝑁 (𝑢1), we recover its peeling weight and push it into 𝑇 .
Since the peeling weights of 𝑢2 and 𝑢1 are smaller than those of 𝑢4,
they will pop out of 𝑇 and insert into 𝑂 ′. Once 𝑇 is empty, the rest of
the vertices, 𝑢4 and 𝑢5, in 𝑂 are appended to 𝑂 ′ directly. Therefore,
the reordered peeling sequence is 𝑂 ′ = [𝑢3, 𝑢2, 𝑢1, 𝑢4, 𝑢5].

Remarks. If the peeling weight of 𝑢𝑘 is greater than that of the head
of 𝑇 (i.e., 𝑢min), then 𝑢min has the smallest peeling weight among
𝑇 ∪ 𝑆𝑘 . We formalize this remark as follows.

LEMMA 4.2. If ∆𝑘 > ∆min, 𝑢min = arg min
𝑢∈𝑇∪𝑆𝑘

𝑤𝑢 (𝑇 ∪ 𝑆𝑘 ).

Correctness and accuracy guarantee. In Case 1 of T , if ∆𝑘 > ∆min,
𝑢min is chosen to insert to 𝑂 ′ since it has the smallest peeling weight
due to Lemma 4.2. In Case 3 of T , ∆𝑘 is the smallest peeling weight
and 𝑢𝑘 is chosen to insert to 𝑂 ′. The peeling sequence is identical to
that of 𝐺 ⊕ ∆𝐺 , since in each iteration the vertex with the smallest
peeling weight is chosen. The accuracy of the worst-case is preserved
due to Lemma 2.1.
Time complexity. The complexity of the incremental maintenance
is 𝑂(|𝐸T |+|𝐸T |log|𝑉T |). The complexity is bounded by 𝑂(|𝐸 |log|𝑉 |)
and is small in practice.
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Figure 5: Peeling sequence reordering with edge insertion (A running example)

O′

umin

ui

O[k : n]

. . .

Case 1: if ∆min < ∆k

uk un
insert umin to O′

. . . unuk

Or O′

umin

ui

O[k : n]

. . .

Case 2: if ∆min ≥ ∆k

uk un

. . . unukcjk

ckj

Case 2(a): uk is black or gray

Case 2(b): uk is white

color N(uk) gray
uk

insert uk to O′

T T

insert uk to T

T : Pending queue N(u): the neighbors of u O: the peeling sequence order

umin

Figure 6: Peeling sequence reordering in batch

1 2 3 4 : four new transaction edges

ui

uj

1

2

4

3

fraudulent community SP
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4.2 Peeling sequence reordering in batch
Since the peeling sequence reordering by early edge insertions could
be reversed by later ones, some reorderings are stale and duplicate.
Suppose that the insertion is a subgraph ∆𝐺 = (∆𝑉 ,∆𝐸). A direct
way to reorder the peeling sequence is to insert the edges one by one.
The complexity is 𝑂(|∆𝐸 |(|𝐸T |log|𝑉T |)) which is time consuming.
To reduce the amount of stale computation, we propose a peeling
sequence reordering algorithm in batch.

EXAMPLE 4.2. Consider a fraudulent community, 𝑆𝑃 , identified
by the peeling algorithm in Figure 7. 𝑢𝑖 and 𝑢 𝑗 are two normal users.
Suppose that they have the same peeling weight and that 𝑢𝑖 is peeled
before 𝑢 𝑗 . When a new transaction 1○ is generated, we should reorder
𝑢𝑖 and 𝑢 𝑗 by exchanging their positions. When 2○ and 3○ are inserted,
positions of 𝑢𝑖 and 𝑢 𝑗 will be re-exchanged. However, if we reorder
the sequence in batch with the last transaction 4○, we are not required
to change the positions of 𝑢𝑖 and 𝑢 𝑗 .

Peeling weight recovery. Given a vertex 𝑢 𝑗 = 𝑂[ 𝑗] and a set of vertex
𝑆𝑖 (𝑖 < 𝑗 , i.e., 𝑆 𝑗 ⊆ 𝑆𝑖 ), the peeling weight𝑤𝑢 𝑗

(𝑆𝑖 ) can be calculated
by𝑤𝑢 𝑗

(𝑆𝑖 ) = ∆𝑗 +∑(𝑖≤𝑘< 𝑗 )∧((𝑢 𝑗 ,𝑢𝑘 )∈𝐸) 𝑐 𝑗𝑘 +∑(𝑖≤𝑘< 𝑗 )∧((𝑢𝑘 ,𝑢 𝑗 )∈𝐸) 𝑐𝑘 𝑗 .
Vertex sorting. Intuitively, the increase in peeling weight of 𝑢𝑖 does
not change the subsequence of 𝑂[1 : 𝑖 − 1] due to Lemma 4.1. We
sort the vertices in ∆𝑉 by the indices in the peeling sequence. Then
we reorder the vertices in ascending order of the indices in 𝑂 . For
simplicity, we color the vertices in ∆𝑉 black, affected vertices (i.e.,
vertices pending reordering) gray and unaffected vertices white.

Algorithm 2: Peeling sequence reordering in batch
Input: Graph 𝐺 = (𝑉 , 𝐸), 𝑂 , density metric 𝑔(𝑆), ∆𝐺 = (∆𝑉 ,∆𝐸)
Output: Peeling sequence order 𝑂′ = 𝑄(𝐺 ⊕ ∆𝐺 ) and fraudulent community

1 sort ∆𝑉 in the ascending order of indices in 𝑂 and color ∆𝑉 black
2 init a priority pending queue𝑇 in the ascending order of peeling weights
3 init an empty vector 𝑂′

4 for 𝑢𝑖 = 𝑂[𝑖] ∈ ∆𝑉 do
5 add 𝑢𝑖 into𝑇
6 color its neighbors 𝑂[𝑗] (𝑗 > 𝑖) gray
7 𝑘 = 𝑖 + 1
8 while𝑇 is not empty do
9 if ∆min < ∆𝑘 then // Case 1

10 pop 𝑢min from𝑇 and insert it to 𝑂′

11 update the priorities of 𝑁 (𝑢min) in𝑇
12 else
13 if 𝑢𝑘 is black or gray then // Case 2(a)
14 add 𝑢𝑘 into𝑇 and recover its peeling weight
15 color its neighbors 𝑁 (𝑢𝑘 ) gray
16 else // Case 2(b): 𝑢𝑘 is white
17 insert 𝑢𝑘 to 𝑂′

18 𝑘 = 𝑘 + 1
19 append 𝑂[𝑘 : 𝑖′ − 1] to 𝑂′, where 𝑢𝑖′ = 𝑂[𝑖′] is the next black vertex
20 return 𝑂′ and arg max𝑆𝑖 𝑔(𝑆𝑖 )

Incremental maintenance in batch (Algorithm 2 and Figure 6).
We initialize a pending queue 𝑇 to maintain the vertices pending
reordering (Line 2). Iteratively, we add the vertex 𝑂[𝑖] ∈ ∆𝑉 to 𝑇
and color its neighbors 𝑂[ 𝑗] gray (Line 5-6). If 𝑇 is not empty, we
compare the peeling weight ∆𝑘 of the vertex 𝑢𝑘 = 𝑂[𝑘] (𝑘 > 𝑖) with
the peeling weight ∆min of the head of 𝑇 , 𝑢min. We consider the
following two cases as shown in Figure 6. Case 1: If ∆min < ∆𝑘 ,
we pop 𝑢min from 𝑇 , insert it to 𝑂 ′ and update the priorities of its
neighbors in 𝑇 (Line 9-11); Case 2(a): if ∆min ≥ ∆𝑘 and 𝑢𝑘 is gray
or black, we recover its peeling weight in 𝑆𝑘 ∪ 𝑇 and insert it to 𝑇 .
Then we color the vertices in 𝑁 (𝑢𝑘 ) gray (Line 12-15); otherwise
Case 2(b): if ∆min ≥ ∆𝑘 and 𝑢𝑘 is white, we insert 𝑢𝑘 to 𝑂 ′ directly
(Line 16-18). We repeat the above procedure until the pending queue
𝑇 is empty. Then we append 𝑂[𝑘 : 𝑖 ′ − 1] to 𝑂 ′, where 𝑢𝑖′ is the next
vertex in ∆𝑉 . We insert 𝑢𝑖′ into𝑇 and repeat the reordering until there
is no black vertex. The correctness and accuracy guarantee are similar
to those of peeling sequence reordering with edge insertion. Due to
space limitations, we present them in Appendix D of [20].
Complexity. The time complexity of Algorithm 2 is 𝑂(|𝐸T |+|𝐸T |
log|𝑉T |) which is bounded by 𝑂(|𝐸 |log|𝑉 |).

4.3 Peeling sequence reordering with edge grouping
Update steam ∆𝐺𝜏 . In a transaction system, the edge updates are

coming in a stream manner (i.e., a timestamp on each edge) which is
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denoted by ∆𝐺𝜏 . Formally, we denote it by ∆𝐺𝜏 = [(𝑒0, 𝜏0), . . . (𝑒𝑛, 𝜏𝑛)]
where 𝜏𝑖 is the timestamp on the edge 𝑒𝑖 = (𝑢𝑖 , 𝑣𝑖 ).
Latency of activities L(∆𝐺𝜏 ). Suppose that 𝑒𝑖 = (𝑢𝑖 , 𝑣𝑖 ) is a labeled
fraudulent activity which is generated at 𝜏𝑖 and is responded/inserted
at 𝜏𝑟

𝑖
. The latency of 𝑒𝑖 is 𝜏𝑟

𝑖
− 𝜏𝑖 . Given an update stream ∆𝐺𝜏 , the

latency of fraudulent activities is defined as follows.

L(∆𝐺𝜏 ) =
∑︁

(𝑒𝑖 ,𝜏𝑖 )∈∆𝐺𝜏

𝜏𝑟𝑖 − 𝜏𝑖 (4)

Prevention ratio R. Once a fraudster is identified, we ban the related
following transactions to prevent economic loss. We denote the ratio of
suspicious transactions that are prevented to all suspicious transactions
by R.

EXAMPLE 4.3. Consider an update steam in Figure 8. 𝑒𝑖 (𝑖 ∈
[1, 6]) are a set of labeled fraudulent transactions and 𝜏𝑖 (𝑖 ∈ [1, 6])
are their timestamps. Regarding the reordering in batch, the new
transactions are queueing until the size of the queue is equal to
the batch size. The reordering is triggered at 𝜏𝑠 and finished at 𝜏𝑓 .
Therefore, they are inserted at 𝜏𝑟

𝑖
= 𝜏𝑓 The queueing time for each

edge is 𝜏𝑠 − 𝜏𝑖 while the latency is 𝜏𝑓 − 𝜏𝑖 . Suppose the fraudster is

identified at 𝜏𝑓 , the prevention ratio is R = | {𝑒𝑖 |𝜏𝑖>𝜏𝑓 } |
| {𝑒𝑖 } | .

Spade aims to reduce L and increase R as much as possible. In
Figure 8, if the reordering is triggered at 𝜏𝑠 = 𝜏2 and responded at
𝜏𝑓 = 𝜏3, the following fraudulent activities can be prevented.

Intuitively, some transactions are generated by normal users (be-
nign edges), while others are generated by potential fraudsters (urgent
edges). Spade groups the benign edges and reorders the peeling se-
quence in batch. It can both improve the performance of reordering
and reduce the latency of the response to potential fraudulent transac-
tions. We define the benign and urgent edges as follows.

DEFINITION 4.1. Given an edge 𝑒 = (𝑢𝑖 , 𝑢 𝑗 ) and its weight 𝑐𝑖 𝑗 , if
𝑤𝑢𝑖 (𝑆0) + 𝑐𝑖 𝑗 ≥ 𝑔(𝑆𝑃 ) or 𝑤𝑢 𝑗

(𝑆0) + 𝑐𝑖 𝑗 ≥ 𝑔(𝑆𝑃 ), 𝑒 is an urgent edge;
otherwise 𝑒 is a benign edge.

Given a benign edge insertion (𝑢𝑖 , 𝑢 𝑗 ), neither 𝑢𝑖 nor 𝑢 𝑗 belongs to the
densest subgraph (Lemma 4.3). And the insertion cannot produce a
denser fraudulent community by peeling algorithms (Lemma 4.4).

LEMMA 4.3. Given an edge 𝑒 = (𝑢𝑖 , 𝑢 𝑗 ), if 𝑒 is a benign edge, after
the insertion of 𝑒, 𝑢𝑖 ̸∈ 𝑆∗ and 𝑢 𝑗 ̸∈ 𝑆∗.

We denote the vertex subset returned after reordering by 𝑆𝑃
′
.

LEMMA 4.4. Given a benign edge 𝑒 = (𝑢𝑖 , 𝑢 𝑗 ) insertion, at least
one of the following two conditions is established: 1) 𝑢𝑖 ̸∈ 𝑆𝑃

′
and

𝑢 𝑗 ̸∈ 𝑆𝑃
′
; and 2) 𝑔(𝑆𝑃

′
) < 𝑔(𝑆𝑃 ).

Therefore, we postpone the incremental maintenance of the peeling
sequence for benign edges which provide two benefits. First, we
can perform a batch update that avoids stale computation. Second,
an urgent edge insertion, which is caused by a potential fraudster,
triggers incremental maintenance immediately. These fraudsters are
identified and reported to the moderators in real time.
Edge grouping. We next present the paradigm of peeling sequence
reordering by edge grouping. We first initialize an empty buffer ∆𝐺
for the updates (Line 1). When an edge 𝑒𝑖 enters, we insert it into
∆𝐺 . If 𝑒𝑖 is an urgent edge, we incrementally maintain the peeling
sequence by Algorithm 2 and clear the buffer (Line 4-6).

Timelineτs

. . . . . .

normal transaction fraudulent transaction

first time to be recognized

τ1τ2τ3τ4τ5τ6
. . .. . .

start reordering
finish reordering

τf

e1e2e3e4e5e6

τfτs

Figure 8: Metrics for a set of fraudulent transactions made by a fraudster
(latency: 𝜏𝑓 −𝜏𝑖 , queueing time: 𝜏𝑠 −𝜏𝑖 , prevention ratio: R =

|{𝑒𝑖 |𝜏𝑖>𝜏𝑓 }|
|{𝑒𝑖 }| )

Algorithm 3: Paradigm of edge grouping
Input: A graph 𝐺 = (𝑉 , 𝐸), 𝑂 , a density metric 𝑔(𝑆), ∆𝐺𝑇

Output: Peeling sequence order 𝑂′ = 𝑄(𝐺 ⊕ ∆𝐺𝑇 ) and fraudulent community
1 init an empty buffer ∆𝐺 for updates
2 for 𝑖 = 1, . . . ,𝑚 do
3 ∆𝐺.add(𝑒𝑖 )
4 if 𝑒𝑖 is an urgent edge then
5 𝑂′ = 𝑄(𝐺 ⊕ ∆𝐺 ) by Algorithm 2
6 clear ∆𝐺
7 return 𝑂′ and arg max𝑆𝑖 𝑔(𝑆𝑖 )

Table 3: Statistics of real-world datasets
Datasets |𝑉 | |𝐸 | avg. degree Increments Type

Grab1 3.991M 10M 5.011 1M Transaction
Grab2 4.805M 15M 6.243 1.5M Transaction
Grab3 5.433M 20M 7.366 2M Transaction
Grab4 6.023M 25M 8.302 2.5M Transaction

Amazon [26] 28K 28K 2 2.8K Review
Wiki-vote [25] 16K 103K 12.88 10.3K Vote
Epinion [25] 264K 841K 6.37 84.1K Who-trust-whom

5 Experimental Evaluation
Evaluations are classified into two groups: the overall improvement
in performance of Spade (Section 5.2) and the effectiveness of Spade
in preventing fraudulent transactions (Section 5.3).

5.1 Experimental Setup
Our experiments are run on a machine that has an X5650 CPU, 16 GB
RAM. The implementation is made memory-resident. We implement
all algorithms in C++. All codes are compiled by GCC-9.3.0 with
optimization -𝑂3.
Datasets. We conduct the experiments on seven datasets (Table 3).
Four industrial datasets are from Grab (Grab1-Grab4). Given a set of
transactions, each transaction is represented as an edge. We replay the
edges in the increasing order of their timestamp. If a user 𝑢𝑖 purchases
from a store𝑢 𝑗 , we add an edge (𝑢𝑖 , 𝑢 𝑗 ) to 𝐸. Specifically, we construct
the graph 𝐺 as initialization (𝑉 and 90% of 𝐸 as the initial graph), and
the remaining 10% of 𝐸 as increments for testing. The increments are
decomposed into a set of graph updates ∆𝐺 in the increasing order
of their timestamp with different batch sizes |∆𝐸 |. We also use three
popular open datasets including Amazon [26], Wiki-vote [25] and
Epinion [25]. Since there are no timestamps on these three datasets,
we randomly select 10% edges from 𝐸 as increments for evaluation.
Competitors. We choose three common peeling algorithms (DG, DW
and FD) as a baseline. Given an edge insertion, these algorithms iden-
tify the fraudulent community on the entire graph from scratch. We
demonstrate the performance improvement of our proposal (IncDG,
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Peeling algorithms (seconds) |∆𝐸 |= 1 (𝑢𝑠) |∆𝐸 |= 10 (𝑢𝑠) |∆𝐸 |= 100 (𝑢𝑠) |∆𝐸 |= 1K (𝑢𝑠) |∆𝐸 |= 100K (𝑢𝑠)

Datasets DG DW FD IncDG IncDW IncFD IncDG IncDW IncFD IncDG IncDW IncFD IncDG IncDW IncFD IncDG IncDW IncFD
Grab1 12 14 12 6517 17469 6 3117 11613 6 519 1983 6 108 281 6 5 10 1
Grab2 17 20 16 6604 18413 8 3484 11280 8 634 1782 8 138 249 8 7 8 2
Grab3 23 27 22 6716 18862 11 3864 10892 11 750 1560 10 186 211 10 8 7 2
Grab4 27 28 28 6562 17469 14 4108 11661 12 878 1970 13 206 267 12 10 9 3

Amazon 0.49 0.53 0.43 350 342 1 186 191 - 29 30 - 7 6 - - - -
Wiki-Vote 0.022 0.021 0.017 184 149 2 98 84 1 29 28 1 5 5 - - - -
Epinion 0.25 0.26 0.23 170 151 5 83 80 3 32 30 2 10 10 2 1 1 -

Table 4: Time taken for incremental maintenance with Spade by varying batch sizes (avg. time for one edge, - means < 1𝑢𝑠)

Peeling algorithms (seconds) |∆𝐸 |= 1K (𝑢𝑠) Edge grouping (𝑢𝑠)

Datast DG DW FD IncDG IncDW IncFD IncDGG IncDWG IncFDG
E L E L E L E L E L E L E L E L E L

Grab1 12 1 14 1 12 1 108 2.93 281 2.51 6 2.93 24 0.024 29 0.029 5 0.0042
Grab2 17 1 20 1 16 1 138 1.37 249 1.21 8 1.43 28 0.028 32 0.032 7 0.0050
Grab3 23 1 27 1 22 1 186 0.98 211 0.87 10 1.03 28 0.028 29 0.019 8 0.0066
Grab4 27 1 28 1 28 1 206 0.76 211 0.74 10 0.76 29 0.029 33 0.024 10 0.0073

Table 5: Elapsed time (E) and latency (L) of static algorithms, incremental algorithms and edge grouping (E: The average elapsed time
for one edge; L is defined by Equation 4. L of IncDG (resp. IncDW and IncFD) is normalized to L of DG (resp. DW and FD))
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Figure 10: Efficiency comparison between peeling algorithms and
corresponding incremental versions on Spade (|∆𝐸 |= 1)

IncDW and IncFD) implemented in Spade. We denote batch updates
by IncDG-𝑥 , IncDW-𝑥 and IncFD-𝑥 , where 𝑥 = |∆𝐸 | is the batch
size. We also denote the reordering of the peeling sequence with edge
grouping by IncDGG, IncDWG and IncFDG.

5.2 Efficiency of Spade
Improvement of incremental peeling algorithms. We first investi-
gate the efficiency of Spade by comparing the performance between
incremental peeling algorithms and peeling algorithms. In Figure 10,
our experiments show that IncDG (resp. IncDW and IncFD) is up to
4.17× 103 (resp. 1.63× 103 and 1.96× 106) times faster than DG (resp.
DW and FD) with an edge insertion. The reason for such a significant
speedup is that only a small part of the peeling sequence is affected for
most edge insertions. This is also consistent with the time complexity
comparison of those algorithms. In fact, our algorithm on average

processes only 3.5 × 10−4, 7.2 × 10−4 and 2.5 × 10−7 of edges com-
pared with DG, DW and FD (on the entire graph), respectively. Spade
identifies and maintains the affected peeling subsequence rather than
recomputes the peeling sequence from scratch. Thus, Spade signifi-
cantly outperforms existing algorithms.
Impact of batch sizes |∆𝐸 |. We evaluate the efficiency of batch
updates by varying batch sizes |∆𝐸 | from 1 to 100K. As shown in
Table 4, IncDG-100K (resp. IncDW-100K and IncFD-100K) is up to
1211 (resp. 3448 and 4.47) times faster than IncDG (resp. IncDW and
IncFD). When the batch size increases, the average elapsed time for
an edge insertion keeps decreasing. As indicated in Section 4.2 and
Example 4.2, the reordering of the peeling sequence by early edge
insertions could be reversed by later ones. Reordering the peeling
sequence in batch avoids such stale incremental maintenance by re-
ducing the reversal.
Impact of edge grouping. As shown in Table 5, IncDGG (resp.
IncDWG and IncFDG) is up to 7.1 (resp. 9.7 and 1.25) times faster
than IncDG-1K (resp. IncDW-1K and IncFD-1K) since the edge
grouping technique generally accumulates more than 1K edges. An-
other evidence is that the graph follows the power law, as shown in
Figure 9b. Most edge insertions are benign and are processed in batch.
Scalability. We next evaluate the scalability of Spade on Grab’ s
datasets (Grab1-Grab4) of different sizes which is controlled by the
number of edges |𝐸 |. We vary |𝐸 | from 10M to 25M as shown in
Table 3 and report the results in Table 4. All peeling algorithms scale
reasonably well with the increase of |𝐸 |. With |𝐸 | increasing by 2.5
times, the running time of Spade increases by up to 2 (resp. 2 and 3)
times for DG (resp. DW and FD).

We also compare the efficiency of DG, DW and FD. As shown
in Columns 2 ∼ 4 of Table 4, the peeling algorithms have a sim-
ilar performance. However, IncFD is much faster than IncDG and
IncDW since the affected peeling subsequence is smaller due to the
suspiciousness function of FD [19].
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Figure 11: Elapsed time and latency by varying batch sizes

5.3 Effectiveness of Spade
Latency. Our experiment reveals that when the batch size increases,
the latency of the batch peeling sequence increases, as shown in
Figure 11. For example, the latency of IncDG (resp. IncDW and
IncFD) is 0.76 (resp. 0.74 and 0.76). We remarked that 99.99% of
the latency of IncDG, IncDW and IncFD is the queueing time, i.e.,
Spade accumulates enough transactions and processes them together.
Furthermore, the latency in Grab1 is higher than that in Grab4. For
example, the latency of IncFD in Grab1 (resp. Grab4) is 2.93 (resp.
0.76). This is mainly because the queueing time on Grab1 is larger
than that on Grab4.
Prevention ratio. As shown in Figure 9a, the prevention ratio con-
tinues to decrease as latency increases on Grab’s datasets. Our re-
sults show that IncDGG (resp. IncDWG and IncFDG) can prevent
88.34% (resp. 86.53% and 92.47%) of fraudulent activities. IncDG-1𝐾
(resp. IncDW-1𝐾 and IncFD-1𝐾) can prevent 28.6% (resp. 41.18% and
92.47%) of fraudulent activities by excluding queueing time.
Case studies. We next present the effectiveness of Spade in discov-
ering meaningful fraud through case studies in the datasets of Grab.
There are three popular fraud patterns as shown in Figure 12. First,
customer-merchant collusion is the customer and the merchant per-
forming fictitious transactions to use the opportunity of promotion
activities to earn the bonus (Figure 12(a). Second, there is a group
of users who take advantage of promotions or merchant bugs, called
deal-hunter (Figure 12(b). Third, some merchants recruit fraudsters
to create false prosperity by performing fictitious transactions, called
click-farming (Figure 12(c). All three cases form a dense subgraph in
a short period of time.

We investigate the details of the customer-mercant collusion in Fig-
ure 12.d. IncDG and DG start both at 𝑇0. Under the semantic of DG,
the user becomes a fraudster at 𝑇1 (one second after 𝑇0). IncDG spots
the fraudster at 𝑇1 with negligible delay. However, DG cannot detect
this fraud at 𝑇1, as it is still evaluating the graph snapshot at 𝑇0. By
DG, this fraudster will be detected after the second round detection of
DG at 𝑇2 (about 60 seconds after 𝑇0). During the time period [𝑇1,𝑇2],
there are 720 potential fraudulent transactions generated. Similar ob-
servations are made in the other two cases. Due to space limitations,
they are presented in Appendix B of [20].

U1

M1

U2

M2

U4U3 U5

M3 M4 M5

. . .

(a) Customer-merchant
collusion

(b) Deal-hunter (c) Click-farming

. . . . . .

. . . . . .

Timeline (T)

# of transaction

T0 T1 = T0 + 1s T2 = T0 + 60s

1 18 738

. . . . . . . . .

IncDG: detect fraud at T1

ban ban

DG: detect fraud at T2

DG: continue

720 transactions

(d) Details of Case(a)

DG: start

IncDG: start

Figure 12: Case study: three fraud patterns

6 Related work
Dense subgraph mining. A series of studies have utilized dense
subgraph mining to detect fraud, spam, or communities on social net-
works and review networks [19, 28, 29]. However, they are proposed
for static graphs. Some variants [2, 13] are designed to detect dense
subgraphs in dynamic graphs. [30] is proposed to spot generally dense
subtensors created in a short period of time. Unlike these studies,
Spade detects the fraudsters on both weighted and unweighted graphs
in real time. Moreover, we propose an edge grouping technique which
distinguishes potential fraudulent transactions from benign transac-
tions and enables incremental maintenance in batch.
Graph clustering. A common practice is to employ graph clustering
that divides a large graph into smaller partitions for fraud detection.
DBSCAN [14, 15] and its variant hdbscan [27] use local search heuris-
tics to detect dense clusters. K-Means [12] is a clustering method of
vector quantization. [34] detects medical insurance fraud by recog-
nizing outliers. Unlike these studies, Spade is robust with worst-case
guarantees in search results. Moreover, Spade provides simple but
expressive APIs for developers, which allows their peeling algorithms
to be incremental in nature on evolving graphs.
Fraud detection using graph techniques. COPYCATCH [4] and
GETTHESCOOP [22] use local search heuristics to detect dense sub-
graphs on bipartite graphs. Label propagation [33] is an efficient and
effective method of detecting community. [9] explores link analysis
to detect fraud. [32] and [10] explore the GNN to detect fraud on
the graph. Unlike these studies, Spade detects fraud in real-time and
supports evolving graphs.

7 Conclusion
In this paper, we propose a real-time fraud detection framework called
Spade. We propose three fundamental peeling sequence reordering
techniques to avoid detecting fraudulent communities from scratch.
Spade enables popular peeling algorithms to be incremental in na-
ture and improves their efficiency. Our experiments show that Spade
speeds up fraud detection up to 6 orders of magnitude and up to
88.34% fraud activities can be prevented.

The results and case studies demonstrate that our algorithm is help-
ful to address the challenges in real-time fraud detection for the real
problems in Grab but also goes beyond for other graph applications
as shown in our datasets.
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A Proofs of lemmas
In this section, we provide all the formal proofs in Section 4 of the
main paper.

LEMMA 4.1. 𝑂 ′[1 : 𝑖 − 1] = 𝑂[1 : 𝑖 − 1].

PROOF. ∀𝑘 ∈ [1, 𝑖 − 1],𝑤𝑢𝑖 (𝑆𝑘 ) and𝑤𝑢 𝑗
(𝑆𝑘 ) increase by ∆. There-

fore,𝑤𝑢𝑘 (𝑆𝑘 ) is still the smallest among 𝑆𝑘 . Hence,𝑢𝑘 will be removed
at 𝑘-th iteration. By induction, 𝑂 ′[1 : 𝑖 − 1] = 𝑂[1 : 𝑖 − 1]. □

LEMMA A.1. If 𝑆𝑖 ⊆ 𝑆 𝑗 and 𝑢𝑘 ∈ 𝑆𝑖 ,𝑤𝑢𝑘 (𝑆 𝑗 ) ≥ 𝑤𝑢𝑘 (𝑆𝑖 ).

PROOF. By definition, we have the following.
𝑤𝑢𝑘

(𝑆 𝑗 ) = 𝑎𝑘 +
∑︁

(𝑢𝑗 ∈𝑆𝑗 )∧((𝑢𝑘 ,𝑢𝑗 )∈𝐸)
𝑐𝑘 𝑗 +

∑︁
(𝑢𝑗 ∈𝑆𝑗 )∧((𝑢𝑗 ,𝑢𝑘 )∈𝐸)

𝑐 𝑗𝑘

= 𝑤𝑢𝑘
(𝑆𝑖 ) +

∑︁
(𝑢𝑗 ∈𝑆𝑗 \𝑆𝑖 )∧((𝑢𝑘 ,𝑢𝑗 )∈𝐸)

𝑐𝑘 𝑗 +
∑︁

(𝑢𝑗 ∈𝑆𝑗 \𝑆𝑖 )∧((𝑢𝑗 ,𝑢𝑘 )∈𝐸)
𝑐 𝑗𝑘

(5)

Since the weights on the edges are nonnegative, 𝑤𝑢𝑘 (𝑆 𝑗 ) > 𝑤𝑢𝑘 (𝑆𝑖 ).
□

LEMMA 4.2. If ∆𝑘 > ∆min, 𝑢min = arg min
𝑢∈𝑇∪𝑆𝑘

𝑤𝑢 (𝑇 ∪ 𝑆𝑘 ).

PROOF. Consider a vertex 𝑢 ′ ∈ 𝑇 ∪𝑆𝑘 , where 𝑢 ′ ̸= 𝑢𝑘 or 𝑢 ′ ̸= 𝑢min.
1) If 𝑢 ′ ∈ 𝑆𝑘 , due to Lemma A.1,𝑤𝑢′ (𝑇 ∪𝑆𝑘 ) > 𝑤𝑢′ (𝑆𝑘 ) > 𝑤𝑢𝑘 (𝑆𝑘 ) ≥
𝑤𝑢𝑘 (𝑇 ∪𝑆𝑘 ) = ∆𝑘 > ∆min. 2) If 𝑢 ′ ∈ 𝑇 ,𝑤𝑢′ (𝑇 ∪𝑆𝑘 ) > 𝑤𝑢min (𝑇 ∪𝑆𝑘 ) =
∆min. Hence, 𝑢 ′ is not the vertex that has the smallest peeling weight.
Therefore, 𝑢min has the smallest peeling weight. □

LEMMA A.2. If ∃𝑢 ∈ 𝑆 , such that𝑤𝑢 (𝑆) < 𝑔(𝑆∗), then 𝑆 ̸= 𝑆∗.

PROOF. We prove it in contradiction by assuming that 𝑆 = 𝑆∗. By
peeling 𝑢 from 𝑆 , we have the following.

𝑔(𝑆∗ \ {𝑢 }) =
𝑓 (𝑆∗) − 𝑤𝑢 (𝑆∗)

|𝑆∗ |−1
>

𝑓 (𝑆∗) − 𝑔(𝑆)
|𝑆∗ |−1

=
𝑓 (𝑆∗) − 𝑔(𝑆∗)

|𝑆∗ |−1
=

𝑓 (𝑆∗) − 𝑓 (𝑆∗ )
|𝑆∗ |

|𝑆∗ |−1
= 𝑔(𝑆∗)

(6)

A better solution can be obtained by peeling 𝑢𝑖 from 𝑆∗. This contra-
dicts the notion that 𝑆∗ is the optimal solution. Hence, 𝑆𝑖 ̸= 𝑆∗. □

LEMMA 4.3. Given an edge 𝑒 = (𝑢𝑖 , 𝑢 𝑗 ), if 𝑒 is a benign edge, after
the insertion of 𝑒, 𝑢𝑖 ̸∈ 𝑆∗ and 𝑢 𝑗 ̸∈ 𝑆∗.

PROOF. We prove this lemma in contradiction by assuming that
𝑢𝑖 ∈ 𝑆∗. 𝑤𝑢𝑖 (𝑆∗) ≤ 𝑤𝑢𝑖 (𝑆0) + 𝑐𝑖 𝑗 < 𝑔(𝑆𝑃 ) ≤ 𝑔(𝑆∗). We have 𝑆∗ ̸= 𝑆∗
due to Lemma A.2. We can conclude that 𝑢𝑖 ̸∈ 𝑆∗. Similarly, 𝑢 𝑗 ̸∈
𝑆∗. □

LEMMA A.3. If ∃𝑢 ∈ 𝑆𝑖 ,𝑤𝑢 (𝑆𝑖 ) < 𝑔(𝑆𝑖 ), then 𝑆𝑖 ̸= 𝑆𝑃 .

PROOF. We prove this in contradiction by assuming that 𝑆𝑖 = 𝑆𝑃 .
Suppose that 𝑢𝑖 is peeled from 𝑆𝑖 . Hence, 𝑤𝑢𝑖 (𝑆𝑃 ) ≤ 𝑤𝑢 (𝑆𝑃 ) due to
the peeling definition. The proof can be obtained as follows:

𝑔(𝑆𝑃 \ {𝑢𝑖 }) =
𝑓 (𝑆𝑃 ) − 𝑤𝑢𝑖

(𝑆𝑃 )
|𝑆𝑃 |−1

>
𝑓 (𝑆𝑃 ) − 𝑤𝑢 (𝑆𝑃 )

|𝑆𝑃 |−1
> 𝑔(𝑆𝑃 ) (7)

This contradicts the fact that 𝑆𝑃 has the highest density. We can
conclude that 𝑆𝑖 ̸= 𝑆𝑃 . □

LEMMA 4.4. Given a benign edge 𝑒 = (𝑢𝑖 , 𝑢 𝑗 ) insertion, at least
one of the following two conditions is established: 1) 𝑢𝑖 ̸∈ 𝑆𝑃

′
and

𝑢 𝑗 ̸∈ 𝑆𝑃
′
; and 2) 𝑔(𝑆𝑃

′
) < 𝑔(𝑆𝑃 ).
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1853 transactions

Figure 13: Case study: three fraud patterns

PROOF. Without loss of generality, we assume 𝑖 ≤ 𝑗 . We prove
this in contradiction by assuming 𝑔(𝑆𝑃

′
) ≥ 𝑔(𝑆𝑃 ) and 𝑢𝑖 ∈ 𝑆𝑃

′
or

𝑢 𝑗 ∈ 𝑆𝑃
′

after inserting the edge 𝑒.
Due to Lemma A.1 and 𝑆𝑃

′ ⊆ 𝑆0, we have

𝑤𝑢𝑖 (𝑆
𝑃 ′

) ≤ 𝑤𝑢𝑖 (𝑆0) < 𝑤𝑢𝑖 (𝑆0) + 𝑐𝑖 𝑗 < 𝑔(𝑆𝑃 ) < 𝑔(𝑆𝑃
′
) (8)

Therefore, 𝑆𝑃
′

is not the result returned by peeling algorithms due
to Lemma A.3 which contradicts that 𝑆𝑃

′
maximizes 𝑔.

□

B More case studies
We next present the effectiveness of Spade in discovering meaningful
fraud through case studies in the datasets of Grab. There are three pop-
ular fraud patterns as shown in Figure 13. First, customer-merchant
collusion is the customer and the merchant performing fictitious trans-
actions to use the opportunity of promotion activities to earn the bonus
(Figure 13(a)). Second, there is a group of users who take advantage
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of promotions or merchant bugs, called deal-hunter (Figure 13(b)).
Third, some merchants recruit fraudsters to create false prosperity by
performing fictitious transactions, called click-farming (Figure 13(c)).
All three cases form a dense subgraph in a short period of time.

Customer-merchant collusion. We detail the customer-mercant col-
lusion in Figure 13(d). IncDG and DG start both at 𝑇0. Under the
semantic of DG, the user becomes a fraudster at 𝑇1 (one second after
𝑇0). IncDG spots the fraudster at 𝑇1 with negligible delay. However,
DG cannot detect this fraud at 𝑇1, as it is still evaluating the graph
snapshot at 𝑇0. By DG, this fraudster will be detected after the second
round detection of DG at 𝑇2 (about 60 seconds after 𝑇0). During the
time period [𝑇1,𝑇2], there are 720 potential fraudulent transactions
generated.

Deal-hunter. We investigate the details of customer-merchant collu-
sion in Figure 13(e). IncDW and DW start both at 𝑇0. Under the
semantic of DW, the user becomes a fraudster at 𝑇1 (0.7 second af-
ter 𝑇0). IncDW identifies the fraudster at 𝑇1 with negligible delay.
However, DW cannot detect this fraud at 𝑇1, as it is still evaluating
the graph snapshot at 𝑇0. By DW, this fraudster will be detected af-
ter the second round detection of DW at 𝑇2 (about 60 seconds after
𝑇0). During the time period [𝑇1,𝑇2], there are 71 potential fraudulent
transactions generated.

Click-farming. Last but not least, we present the details of click-
farming in Figure 13(f). IncFD and FD start both at 𝑇0. Under the
semantic of FD, the group of users becomes fraudsters at 𝑇1 (1.6 sec-
ond after 𝑇0). IncFD spots the fraudsters at 𝑇1 with negligible delay.
However, FD cannot detect this fraud at 𝑇1, as it is still evaluating the
graph snapshot at 𝑇0. By FD, these fraudsters will be detected after
the second round detection of FD at 𝑇2 (about 60 seconds after 𝑇0).
During the time period [𝑇1,𝑇2], there are 1853 potential fraudulent
transactions generated.
Consider a dense subgraph 𝐺 , it could consists of multiple fraud
instances as shown in Figure 14. 𝐺 consists of 𝐺𝑠1 , 𝐺𝑠2 and 𝐺𝑠3 and
all of their densities are equal to 3. Therefore, all will be returned,
since they commonly form a dense subgraph 𝐺 . We enumerate these
instances once new fraudsters are identified.
Fraud enumeration. Figure 15 depicts the new fraudsters identi-
fied by Spade in 28 timespans. Once new fraudsters are detected,
Spade enumerates them and reports them to the moderators. In Fig-
ure 15, each bar represents the number of fraudulent instances are
detected in the corresponding timespan. We investigated the detected
fraudsters and found that most of their transactions corresponded to
actual fraud, including customer-merchant collusion, deal-hunter and
click-farming.

C Future extensions
We discuss a few possible extensions of our current system, including
edge deletion, enumeration and fraud detection within a given period
of time.

C.1 Peeling sequence reordering with edge deletion
The company will delete some outdated transactions since they are
not of much value for fraud detection in some operational demands,
e.g., some transactions generated several years ago. Given such an
operational demand, we consider the extension of incremental main-
tenance with edge deletion of (𝑢𝑖 , 𝑢 𝑗 ) (without loss of generality, we
assume 𝑖 < 𝑗). A straightforward solution is also to reorder the peel-
ing sequence. We summarize the key steps as follows and leave the
extension details of Spade in future work.
Incremental algorithm (T𝑑 ). T𝑑 initializes an empty vector for the
updated peeling sequence 𝑂 ′. Spade maintains a pending queue 𝑇
to store the vertices pending reordering. We iteratively compare 1)
the head of 𝑇 , denoted by 𝑢min and 2) the vertex 𝑢𝑘 in the peeling
sequence 𝑂 , where 𝑘 < 𝑖. The corresponding peeling weights are
denoted by ∆min and ∆𝑘 . We consider the following two cases.
Case 1. If the peeling weight𝑤𝑢𝑘 (𝑆0) > ∆min, we insert 𝑢𝑘 into𝑇 and
update the priorities in 𝑇 for the neighbors of 𝑢𝑘 , 𝑁 (𝑢max), 𝑘 = 𝑘 − 1.
Case 2. If the peeling weight𝑤𝑢𝑘 (𝑆0) ≤ ∆min, we append 𝑂[1 : 𝑘] to
𝑂 ′[1 : 𝑘].

While 𝑇 is non-empty, we iteratively compare 1) the head of 𝑇
and 2) the vertex 𝑢𝑘 in the peeling sequence 𝑂 , where 𝑘 ≥ 𝑖 + 1.
The incremental maintenance is identical to that of edge insertion in
Section 4.1. Specifically, we consider the following three cases:
Case 1. If ∆min < ∆𝑘 , we pop the 𝑢min from 𝑇 and insert it to 𝑂 ′.
Then we update the priorities in 𝑇 for the neighbors of 𝑢min, 𝑁 (𝑢min).
Case 2. If ∆min ≥ ∆𝑘 and ∃𝑢𝑇 ∈ 𝑇, (𝑢𝑇 , 𝑢𝑘 ) ∈ 𝐸 or (𝑢𝑘 , 𝑢𝑇 ) ∈
𝐸, we insert 𝑢𝑘 into 𝑇 . The peeling weight is 𝑤𝑢𝑘 (𝑇 ∪ 𝑆𝑘 ) = ∆𝑘 +∑

(𝑢𝑇 ∈𝑇 )∧((𝑢𝑇 ,𝑢𝑘 )∈𝐸) 𝑐𝑇𝑘+ ∑
(𝑢𝑇 ∈𝑇 )∧((𝑢𝑘 ,𝑢𝑇 )∈𝐸) 𝑐𝑘𝑇 , 𝑘 = 𝑘 + 1.

Case 3. If ∆min ≥ ∆𝑘 and ∀𝑢𝑇 ∈ 𝑇, (𝑢𝑇 , 𝑢𝑘 ) ̸∈ 𝐸 and (𝑢𝑘 , 𝑢𝑇 ) ̸∈ 𝐸, we
insert 𝑢𝑘 to 𝑂 ′, 𝑘 = 𝑘 + 1.

We repeat the above iteration until 𝑇 is empty.

EXAMPLE C.1. Consider the graph 𝐺 in Figure 16 and its peel-
ing sequence 𝑂 = [𝑢3, 𝑢2, 𝑢1, 𝑢4, 𝑢5]. Suppose that an outdated edge
(𝑢1, 𝑢5) is deleted from 𝐺 as shown in the LHS of Figure 16. The
reordering procedure is presented in the RHS of Figure 16. 𝑢1 is
pushed to the pending queue 𝑇 . Since the peeling weights 𝑤𝑢2 (𝑆0)
and 𝑤𝑢3 (𝑆0) are larger than the peeling weight of 𝑢1. 𝑢2 and 𝑢3 are
inserted into 𝑇 . Since the peeling weight of 𝑢1 is less than that of
𝑢4, it will be appended to 𝑂 ′. Similarly 𝑢3 and 𝑢2 are appended to
𝑂 ′ accordingly. Once 𝑇 is empty, the rest of the vertices, 𝑢4 and 𝑢5,
in 𝑂 are appended to 𝑂 ′ directly. Therefore, the reordered peeling
sequence is 𝑂 ′ = [𝑢1, 𝑢3, 𝑢2, 𝑢4, 𝑢5].

C.2 Dense subgraph enumeration
In case of the enumeration of dense subgraphs due to some operational
demands, we consider both static graphs and dynamic graphs.
Static graphs. Given a graph 𝐺 = (𝑉 , 𝐸), peeling algorithm 𝑄 re-
turns 𝑆𝑃 . To enumerate dense subgraphs, we can perform the peeling
algorithm𝑄 by removing 𝑆𝑃 from𝐺 , denoted by𝐺 ′ = (𝑉 ′, 𝐸 ′). Specif-
ically, 𝑉 ′ = 𝑉 \ 𝑆𝑃 and 𝐸 ′ = 𝐸 \ 𝐸𝑃 , where ∀(𝑢𝑖 , 𝑢 𝑗 ) ∈ 𝐸𝑃 , 𝑢𝑖 ∈ 𝑆𝑃
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or 𝑢 𝑗 ∈ 𝑆𝑃 . Therefore, 𝑆𝑃 ′ will be returned as the second densest
subgraph. We can perform the peeling algorithm 𝑄 recursively to
enumerate all dense subgraphs.

It is remarkable that we do not have to compute 𝑆𝑃 ′ from scratch.
Instead, we can perform the incremental maintenance of edge deletion
as introduced in Section C.1.
Dynamic graphs. Given a graph𝐺 and graph updates ∆𝐺 = (∆𝑉 ,∆𝐸),
a straightforward solution is to reorder the peeling sequence by Algo-
rithm 2 first. For the enumeration, we can think of this dynamic graph
𝐺 ⊕ ∆𝐺 as a static graph.

C.3 Fraud detection during some time period
Given a graph𝐺 = (𝑉 , 𝐸) generated during a timespan [𝜏𝑠 , 𝜏𝑒 ] (𝜏𝑠 < 𝜏𝑒 )
and the peeling sequence 𝑂 = 𝑄(𝐺). Taking a new graph𝐺 ′ = (𝑉 ′, 𝐸 ′)
generated during a timespan [𝜏𝑠′, 𝜏𝑒′], we would like to identify the
peeling sequence on 𝐺 ′, i.e., 𝑂 ′ = 𝑄(𝐺 ′). To simply our discussion,
we denote a set of edges generated during timespan [𝜏𝑠 , 𝜏𝑒 ] by 𝐸[𝑠,𝑒]
Case 1. If 𝜏𝑒′ < 𝜏𝑠 or 𝜏𝑒 < 𝜏𝑠′ , 𝐺 and 𝐺 ′ do not overlap. Therefore,
we directly apply the peeling algorithm 𝑄 on 𝐺 ′.
Case 2. If 𝜏𝑠′ < 𝜏𝑠 and 𝜏𝑒 < 𝜏𝑒′ , we perform Algorithm 2 by inserting
two sets of edges, 𝐸[𝑠′,𝑠] and 𝐸[𝑒,𝑒′] to 𝐺 . Then we can identify the
peeling sequence 𝑂 ′ on 𝐺 ′.
Case 3. If 𝜏𝑠 < 𝜏𝑠′ and 𝜏𝑒′ < 𝜏𝑒 , we perform incremental maintenance
in Section C.1 by deleting two sets of edges, 𝐸[𝑠,𝑠′] and 𝐸[𝑒′,𝑒] from𝐺 .
Then we can identify the peeling sequence 𝑂 ′ on 𝐺 ′.
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Figure 17: Fraud detection during some time period

Case 4. If 𝜏𝑠′ < 𝜏𝑠 < 𝜏𝑒′ < 𝜏𝑒 , we perform Algorithm 2 by inserting
a set of edges, 𝐸[𝑠′,𝑠] to 𝐺 and perform incremental maintenance in
Section C.1 by deleting a set of edges 𝐸[𝑒′,𝑒] from 𝐺 .
Case 5. If 𝜏𝑠 < 𝜏𝑠′ < 𝜏𝑒 < 𝜏𝑒′ , we perform Algorithm 2 by inserting
a set of edges, 𝐸[𝑒,𝑒′] to 𝐺 and perform incremental maintenance in
Section C.1 by deleting a set of edges 𝐸[𝑠,𝑠′] from 𝐺 .

D Accuracy guarantee of Algorithm 2
Correctness and accuracy guarantee. In Case 1, if ∆𝑘 > ∆min, 𝑢min
is chosen to insert to 𝑂 ′ since it has the smallest peeling weight due
to Lemma 4.2. In Case 2(b), ∆𝑘 is the smallest peeling weight and 𝑢𝑘
is chosen to insert to 𝑂 ′. The peeling sequence is identical to that of
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𝐺 ⊕ ∆𝐺 , since in each iteration the vertex with the smallest peeling
weight is chosen. The accuracy of the worst-case is preserved due to
Lemma 2.1.

E Properties of density metrics
Density metrics 𝑔. We adopt the class of metrics 𝑔 in previous stud-
ies [6, 18, 19], 𝑔(𝑆) = 𝑓 (𝑆)

|𝑆 | , where 𝑓 is the total weight of 𝐺[𝑆], i.e.,
the sum of the weight of 𝑆 and 𝐸[𝑆]:

𝑓 (𝑆) =
∑︁
𝑢𝑖 ∈𝑆

𝑎𝑖 +
∑︁

𝑢𝑖 ,𝑢 𝑗 ∈𝑆
∧(𝑢𝑖 ,𝑢 𝑗 )∈𝐸

𝑐𝑖 𝑗 (9)

We use 𝑓𝐸 (𝑆) to denote the total suspiciousness of the edges 𝐸[𝑆]
and 𝑓𝑉 (𝑆) to denote the total suspiciousness of 𝑆 , i.e.,

𝑓𝑉 (𝑆) =
∑︁
𝑢𝑖 ∈𝑆

𝑎𝑖 (10)

and

𝑓𝐸 (𝑆) =
∑︁

𝑢𝑖 ,𝑢 𝑗 ∈𝑆
∧(𝑢𝑖 ,𝑢 𝑗 )∈𝐸

𝑐𝑖 𝑗 (11)

The density metric defined in Equation 9 satisfies Axiom 1-3. We
adapted these basic properties from [21].

AXIOM 1. [Vertex suspiciousness] If 1) |𝑆 |= |𝑆 ′ |, 2) 𝑓𝐸 (𝑆) =
𝑓𝐸 (𝑆 ′), and 3) 𝑓𝑉 (𝑆) > 𝑓𝑉 (𝑆 ′), then 𝑔(𝑆) > 𝑔(𝑆 ′).

PROOF.

𝑔(𝑆) =
𝑓𝑉 (𝑆) + 𝑓𝐸 (𝑆)

|𝑆 | >
𝑓𝑉 (𝑆 ′) + 𝑓𝐸 (𝑆 ′)

|𝑆 ′ | = 𝑔(𝑆 ′) (12)

□

With slight abuse of definition, we use 𝑔(𝑆(𝑉 , 𝐸)) to denote the total
suspiciousness of 𝑆 on the graph 𝐺 = (𝑉 , 𝐸).

AXIOM 2. [Edge suspiciousness] If 𝑒 = (𝑢𝑖 , 𝑢 𝑗 ) ̸∈ 𝐸, then𝑔(𝑆(𝑉 , 𝐸∪
{𝑒})) > 𝑔(𝑆(𝑉 , 𝐸)).

PROOF.

𝑔(𝑆(𝑉 , 𝐸 ∪ {𝑒})) =
𝑓𝑉 (𝑆) + 𝑓𝐸 (𝑆) + 𝑐𝑖 𝑗

|𝑆 | >
𝑓𝑉 (𝑆) + 𝑓𝐸 (𝑆)

|𝑆 | = 𝑔(𝑆) (13)

□

AXIOM 3. [Concentration] If |𝑆 |< |𝑆 ′ | and 𝑓 (𝑆) = 𝑓 (𝑆 ′), then
𝑔(𝑆) > 𝑔(𝑆 ′).

PROOF.

𝑔(𝑆) =
𝑓 (𝑆)
|𝑆 | >

𝑓 (𝑆 ′)
|𝑆 ′ | = 𝑔(𝑆 ′) (14)

□

F Instances of Spade
We show that the popular peeling algorithms can be easily imple-
mented and supported by Spade, e.g., DG [6], DW [18] and FD [19].

Instance 1. Dense subgraphs (DG) [6]. DG is designed to quantify
the connectivity of substructures. It is widely used to detect fake
comments [24] and fraudulent activities [3] on social graphs. Let
𝑆 ⊆ 𝑉 . The density metric of DG is defined by 𝑔(𝑆) = |𝐸[𝑆] |

|𝑆 | . To
implement DG on Spade, developers only need to design and plug
in the suspiciousness function esusp by calling ESusp. Specifically,
esusp is a constant function for edges, i.e., esusp(𝑢𝑖 , 𝑢 𝑗 ) = 1.

Instance 2. Dense weighted subgraphs (DW) [18]. On transaction graphs,
there are weights on the edges in usual, such as the transaction amount.

The density metric of DW is defined by 𝑔(𝑆) =
∑

(𝑢𝑖 ,𝑢𝑗 )∈𝐸[𝑆] 𝑐𝑖 𝑗

|𝑆 | , where
𝑐𝑖 𝑗 is the weight of the edge (𝑢𝑖 , 𝑢 𝑗 ) ∈ 𝐸. To implement DW, users
only need to plug in the suspiciousness function esusp, i.e., given an
edge, esusp(𝑢𝑖 , 𝑢 𝑗 ) = 𝑐𝑖 𝑗 .
Instance 3. Fraudar (FD) [19]. To resist the camouflage of fraudsters,
Hooi et al. [19] proposed FD to weight edges and set the prior sus-
piciousness of each vertex with side information. Let 𝑆 ⊆ 𝑉 . The
density metric of FD is defined as follows:

𝑔(𝑆) =
𝑓 (𝑆)
|𝑆 | =

∑
𝑢𝑖 ∈𝑆 𝑎𝑖 + ∑

𝑢𝑖 ,𝑢 𝑗 ∈𝑆
∧(𝑢𝑖 ,𝑢 𝑗 )∈𝐸 𝑐𝑖, 𝑗

|𝑆 | (15)

Listing 2: Implementation of FD on Spade
1 double vsusp(Vertex v, Graph g){
2 return g.weight[v]; //side information on vertex
3 }
4 double esusp(Edge e, Graph g){
5 return 1/log(g.deg[e.src]+5); //user-defined function
6 }
7 int main() {
8 Spade spade;
9 spade.VSusp(vsusp); //plug in vsusp (line 1-3)

10 spade.ESusp(esusp); //plug in esusp (line 4-6)
11 spade.TurnOnEdgeGrouping(); //enable edge grouping
12 spade.LoadGraph("graph_sample_path");
13 vector<Vertex> fraudsters = spade.Detect();
14 //edge insertions prepared by developers
15 vector<Edge> edge_insertions;
16 for(Edge e: edge_insertions){
17 fraudsters = spade.InsertEdge(e);
18 }
19 return 0;
20 }

To implement FD on Spade, users only need to plug in the sus-
piciousness function vsusp for the vertices by calling VSusp and
the suspiciousness function esusp for the edges by calling ESusp.
Specifically, 1) vsusp is a constant function, i.e., given a vertex 𝑢,
vsusp(𝑢) = 𝑎𝑖 and 2) esusp is a logarithmic function such that given
an edge (𝑢𝑖 , 𝑢 𝑗 ), esusp(𝑢𝑖 , 𝑢 𝑗 ) = 1

log(𝑥+𝑐) , where 𝑥 is the degree of the
object vertex between𝑢𝑖 and𝑢 𝑗 , and 𝑐 is a small positive constant [19].

Developers can easily implement customized peeling algorithms
with Spade, which significantly reduces the engineering effort. For
example, users write only about 20 lines of code (compared to about
100 lines in the original FD [19]) to implement FD as shown in List 2.
Spade enables FD to be incrmental by nature. Similar observations
are made in DG and DW.
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