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Automatic Irregularity-Aware Fine-Grained Workload
Partitioning on Integrated Architectures

Feng Zhang, Jidong Zhai, Bo Wu, Bingsheng He, Wenguang Chen, Xiaoyong Du

Abstract—The integrated architecture that features both CPU and GPU on the same die is an emerging and promising architecture for
fine-grained CPU-GPU collaboration. However, the integration also brings forward several programming and system optimization
challenges, especially for irregular applications such as graph processing. The complex interplay between heterogeneity and
irregularity leads to very low processor utilization of running irregular applications on integrated architectures. Furthermore,
fine-grained co-processing on the CPU and GPU is still an open problem. Particularly, in this paper, we show that the previous
workload partitioning for CPU-GPU co-processing is far from ideal in terms of resource utilization and performance. To solve this
problem, we propose a system software called FinePar, which considers architectural differences of the CPU and GPU and leverages
fine-grained collaboration enabled by integrated architectures. Through irregularity-aware performance modeling and online
auto-tuning, FinePar partitions irregular workloads and achieves both device-level and thread-level load balance. We evaluate FinePar
with eight irregular applications in graphs and sparse matrices on two integrated architectures and compare it with state-of-the-art
partitioning approaches. Results show that FinePar demonstrates better resource utilization and achieves an average of 1.6X speedup
over the optimal coarse-grained partitioning method.

Index Terms—Heterogeneous Computing, Integrated Architecture, Irregular Application, Workload Partitioning.
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1 INTRODUCTION

In recent years, GPUs have made big strides in throughput-
oriented computing thanks to the massively parallel ar-
chitecture. GPUs have been used as a powerful acceler-
ator for many database applications, including relational
databases [1], [2], [3], [4], [5], [6] and graph processing [7],
[8], [9], [10], [11], [12]. Moreover, integrated architectures cou-
pling the CPU and GPU on the same die show great promise
to bring the synergy of CPU and GPU to a significantly
higher level. The CPU and GPU share the same physical
memory, which eliminates the data transfer bottleneck via
PCI-e bus in the discrete architecture and eases heteroge-
neous programming. Therefore, chip vendors have started
to release integrated architectures, exemplified by AMD’s
Accelerated Processing Units (APUs), Intel’s Ivy Bridge
processor, and Nvidia’s Denver architecture.

Integrated architectures have enabled a series of per-
formance optimization opportunities over discrete architec-
tures. First, shared memory makes it possible for differ-
ent devices to access the same memory space simultane-
ously. Some integrated architectures have shared cache and
embedded DRAM [13], which makes the communication
between devices more efficient. Second, the co-processing
between the CPU and the GPU can be made more fine-
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grained. The fine-grained cooperation needs to consider
architectural differences between the CPU and GPU for
optimal performance. Specifically, the GPU has a large
number of processing cores but adopts a lockstep execution
model, which forces the threads in the same SIMD (Single
Instruction Multiple Data) group to always execute the same
instruction. Hence, load imbalance among these threads
greatly devastates performance because the performance
is limited by the slowest thread. In contrast, the CPU has
fewer, yet more powerful cores, and its threading model is
more flexible.

Previous work tried to leverage the integrated architec-
ture to accelerate irregular applications [14], [15], [16], [17],
[18], [19], [20], [21], [22]. However, the interplay between
heterogeneity and irregularity in integrated architectures
poses severe technical challenges in the effectiveness of
workload partitioning, which existing studies do not well
address. First, many previous studies [14], [15], [16], [17],
[19] only perform coarse-grained workload partitioning,
without considering the fine-grained collaboration between
the CPU and GPU. For example, Delorme et al. [19] and
Pandit et al. [15] break the workload into many jobs. Each
job typically operates on adjacent data and is processed by
a work-group (in OpenCL terminology). The work-groups
running on the GPU process the jobs from the beginning to
the end, while those on the CPU process the jobs in the re-
verse direction. A runtime makes sure that the whole work-
load is processed with good load balance. Kaleem et al. [16]
addressed more complicated applications and dynamically
assigned the jobs to processors through lightweight online
profiling. Second, although some studies [18], [20], [21], [22]
use fine-grained workload partitioning, they are applied to
specific applications only such as hash join in databases
[21] and MapReduce [20]. They do not necessarily offer an
automatic or general solution to irregular applications.
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In this study, we find that even if such coarse-grained
workload partitioning approaches provide optimal load
balance between the CPU and GPU, the computational
resources may still be under-utilized. For instance, in sparse
matrix vector multiplication (SpMV), a job involves the pro-
cessing of tens or hundreds of adjacent rows. The numbers
of non-zero elements in those rows may vary significantly.
As a result, if a group of SIMD threads on the GPU process
this job, the thread that processes the row with the most
non-zero elements slows down all the other threads. Coarse-
grained partitioning groups adjacent data (e.g., adjacent
rows in SpMV) as a unit for partitioning and hence ignores
the irregularity inside each unit. The shared memory on
integrated architectures provides an opportunity for the
CPU and GPU to co-process data in a fine-grained manner
to tackle the problem of resource underutilization.

To fully exploit the benefits of integrated architectures,
we propose a fine-grained workload partitioning frame-
work for irregular applications, called FinePar. The basic
idea is that we automatically identify the irregular data
that introduces load imbalance for GPU threads and assign
them to the CPU, while the GPU processes the remain-
ing relatively regular data and enjoys higher performance.
To realize this idea, we need to tackle multiple techni-
cal issues. First, the partitioning should be transparent to
avoid tedious programming burden on users. Second, the
framework should introduce no offline pre-processing for
practical use, as the input data is typically unavailable until
runtime. Third, the partitioning should introduce the mini-
mum runtime overhead. A preliminary exploration has been
published in [23], and this paper provides more optimiza-
tions, experiments, and implementation details of FinePar,
including a more fine-grained partitioning optimization, an
adaptive partitioning method for dynamic workloads, and
a method to process large datasets.

Our framework employs the following key techniques:
1) We design a program transformation to automatically
transform the given OpenCL program to enable fine-grained
partitioning; 2) We build performance models to predict the
performance of the CPU and GPU given any specific fine-
grained partitioning; 3) We design an auto-tuner to guide
the fine-grained workload partitioning for load balancing
between the CPU and GPU. In addition, we also integrate a
series of optimization strategies into FinePar.

As case studies, we focus on sparse matrix and graph
processing applications. We evaluate FinePar with eight ir-
regular applications for typical input matrices and compare
it with four state-of-the-art workload partitioning methods
on two integrated architectures. Results show that FinePar
demonstrates better resource utilization and achieves an av-
erage of 1.6X speedup over the optimal coarse-grained par-
titioning method. Meanwhile, FinePar is very lightweight,
only introducing less than 6% space overhead and 3% time
overhead. In summary, we make the following contributions
in this work:

• We propose a fine-grained workload partitioning
that takes advantage of the special features of inte-
grated architectures.

• We propose irregularity-aware performance model-
ing that takes architectural differences between the
CPU and GPU into consideration.

• We integrate those techniques into the software
framework, called FinePar, which automatically par-
titions the workload for irregular applications with
well controlled space and time overhead.

• We further integrate a series of optimization strate-
gies into FinePar, including a more fine-grained par-
titioning method, an adaptive partitioning for dy-
namic workloads, and partitioning techniques for
large dataset.

• We evaluate FinePar on a set of irregular applications
and inputs to demonstrate their benefits over state-
of-the-art approaches.

The remainder of this paper is organized as follows.
Section 2 reviews integrated architectures and motivates
our work. Section 3 describes each component of FinePar
in details. Section 4 presents the optimizations. Section 5
shows the evaluation results. Section 6 discusses related
work. Section 7 concludes the paper.

2 BACKGROUND AND MOTIVATION

2.1 Integrated Architecture and Execution Models
We focus on the architecture that integrates both the CPU
and GPU on the same chip as illustrated in Figure 1. The
most beneficial feature of such architecture is the shared
physical memory accessible to both the CPU and GPU,
which enables fine-grained collaboration between the two
processors. Unlike in discrete architectures, the program
running on integrated architectures can leverage both de-
vices to accelerate the processing of data in shared memory.

System 
DRAM

CPU
core …

CPU
CPU
core

CPU
core

GPU
core …

GPU
GPU
core

GPU
core

Integrated Architecture

Fig. 1. A general view of the integrated CPU/GPU architecture.

A commonly used programming model for general-
purpose computing on integrated architectures is OpenCL,
as it is supported by both the CPU and GPU. The main
computation of an OpenCL program happens in the ker-
nel function. When a kernel is launched on a device, the
OpenCL runtime creates a computation domain of many
work-items (i.e., threads), each executing the same kernel
function. The computation domain is composed of many
work-groups; the work-items belonging to the same work-
group can synchronize with each other.

The execution models on the CPU and GPU are different.
When a work-group runs on the GPU, its work-items are
grouped into wavefronts, each of which runs on the SIMD
unit in lockstep. The CPU, on the other hand, creates a
thread to perform computation for the whole work-group.
When the workload of the work-group is regular, meaning
that each item processes the same amount of data, the
performance of the GPU is typically several times larger
than that of the CPU because of the efficiency of SIMD
execution.

The GPU’s performance, however, may degrade signif-
icantly when processing irregular applications. We explain
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Fig. 2. An example to demonstrate the performance features of the CPU and GPU to execute irregular application.

the reason through an example depicted in Figure 2. The
kernel function performs SpMV (Sparse Matrix-Vector Mul-
tiplication) with each work-item processing one row. We
assume the matrix is stored in CSR (Compressed Sparse
Row) format.

Sparse matrices typically have rather irregular distri-
bution of the non-zero elements. As shown in Figure 2
(a), the first row contains six non-zero elements, while the
other three rows only contain two. Figure 2 (b) shows the
execution on the GPU. The kernel launch creates four work-
items in a wavefront to process the data. The consequence is
that the last three work-items need to wait for the first work-
item to finish processing all the non-zero elements, wasting
50% of the computational resources. As shown in Figure 2
(c), if a two-core CPU processes the same data, it may create
two threads, with the first to process the first row and the
second to process the other rows. The CPU threads do not
need to wait for each other, as they do not execute in the
SIMD fashion.

To demonstrate the sensitivity to irregularity for the CPU
and GPU on real-world workloads, we run SpMV on the
CPU and GPU using 80 different sparse matrices. For each
matrix, we treat the number of non-zero elements in a row as
a random variable and calculate its variance. Figure 3 shows
the performance trend when the variance of input matrices
increases. We quantify performance as the number of non-
zero elements processed per second. After normalization
over the input that yields the best performance, we observe
that the GPU’s performance drops quickly with the increase
of variance, while the CPU’s performance trend does not
demonstrate a clear impact from the variance.
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Fig. 3. The normalized performance of the CPU and GPU given input
matrices with different degrees of irregularity.

Figure 4 shows the GPU utilization and memory band-
width trends with the increase of variance. The statistics are
obtained through the profiler from AMD’s CodeXL. Figure 4
(a) shows the percentage of active threads in a wavefront.
Larger variances lead to more serious load imbalance for
threads in the same wavefront, and hence lower GPU core
utilization. Figure 4 (b) shows that because of the workload
imbalance, the memory bandwidth is not fully utilized
when the variance is high. The results serve as a strong
motivation to consider the devices’ sensitivity to irregularity
when partitioning workloads.
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Fig. 4. Core utilization and memory bandwidth of the GPU given input
matrices with different degrees of irregularity.

2.2 Understanding the Inefficiency of Coarse-Grained
Workload Partitioning
Previous work [14], [15], [16], [17] all leverages some form
of coarse-grained partitioning to optimize load balance be-
tween the CPU and GPU. In the context of sparse matrix
processing using OpenCL, those approaches group many
adjacent rows as a task to assign to a work group, which
serves as a unit for workload partitioning. We show in
Figure 5 that even if coarse-grained partitioning achieves
optimal load balance, the computational resources may still
get under-utilized. The input graph has 8 vertices with var-
ied out-going degrees. Represented as an adjacency matrix,
the irregular structure leads to different numbers of non-
zero elements in the rows. We assume that two threads run
on the CPU and a wavefront of four threads runs on the
GPU. We further assume that a CPU thread is 1.5X more
powerful than a GPU core, meaning that a GPU thread
needs 50% extra time to process the same number of non-
zero elements compared to a CPU thread.

If we want to achieve load balance between the CPU and
GPU, we can group the first four rows as a job to allocate
to the CPU (shown as coarse-grained partitioning), with the
remaining four rows to form a job for the GPU to process.
As Figure 5 shows, the slowest CPU thread (the first one)
finishes at the same time as the slowest GPU thread (the
first one). However, the other three GPU threads are seri-
ously under-utilized due to the lockstep execution model.
Hence, we conclude that coarse-grained partitioning has
two pitfalls. First, it does not consider the irregularity of the
data input (in this case demonstrated by the non-uniform
distribution of the non-zero elements). Second, it does not
fully exploit the capability of the integrated architecture
to enable fine-grained collaboration between the CPU and
GPU (demonstrated by only grouping adjacent rows into
jobs in the example).

Figure 5 also demonstrates the performance gain from
fine-grained partitioning. The new partitioning assigns rows
0 and 4 to the CPU threads and the remaining rows to the
GPU. Note that the processing time of row 3 on the CPU
is two thirds of that on the GPU due to the CPU’s faster
single-core performance. For the same reason, the execution
time of rows 1, 2, and 3 is lengthened by 50% on the GPU.
As in coarse-grained partitioning, the load balance remains
optimal because the CPU and GPU finish processing at the
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Fig. 5. An example to show the benefits from fine-grained partitioning.

same time. However, fine-grained partitioning improves the
overall performance by 1.5X through better utilization of the
GPU resources.

2.3 Demand for an Automatic Fine-Grained Partitioning
Framework
The idea of fine-grained workload partitioning is simple,
but manually realizing it places a non-trivial burden on
programmers. While coarse-grained workload partitioning
distributes workload to the GPU and CPU for load bal-
ance, fine-grained workload partitioning also needs to select
irregular data for CPU processing to improve the perfor-
mance of the GPU, which introduces several challenges.
First, the irregularity of the input data is unknown until run-
time. Second, the low-level load balance for the GPU threads
and the high-level load balance between the CPU and GPU
are both critical for performance. Third, the runtime cost
incurred by the partitioning should be well controlled not to
outweigh the benefit. To address the challenges, we design
and implement FinePar by following four guidelines.

• FinePar should automatically transform the input
program to enable fine-grained partitioning. The
user only needs to focus on the functionality of the
program instead of the partitioning for optimized
performance.

• FinePar should partition the relatively regular work-
load to the GPU and the remaining workload to the
CPU and still guarantee good load balance between
the two processors.

• FinePar should assume no prior knowledge of the
irregularity distribution in the input and identify
various input features through online tuning.

• FinePar’s runtime optimization should only incur
marginal time and space overhead.

3 FINEPAR FRAMEWORK

3.1 Overview
Figure 6 shows the overview of FinePar. To use the system,
the only job for the user is to feed into FinePar the target
OpenCL program and a set of representative inputs to train

the framework for optimized performance. Once the train-
ing is done, FinePar automatically partitions the given input
during runtime to optimize the utilization of the integrated
architecture.

OpenCL	
Program 

Transforma1on	
Engine 

Transformed	Program	for	
Fine-Grained	Par11oning 

Performance	
Modeling Auto-Tuner 

Op1mized	
execu1on	
on	APU 

Offline Online 

Training	Data 

Input	Data 

… 

Fig. 6. The overview of FinePar.

The FinePar framework consists of three major compo-
nents, transformation engine, performance modeling, and
auto-tuner. The FinePar transformation engine and the
performance modeling components are used in the of-
fline stage. The transformation engine transforms the input
OpenCL program to enable fine-grained partitioning. More
specifically, the transformed code takes a parameter as the
irregularity threshold (to be detailed in Section 3.2). The
more irregular part of the data and the less irregular part
are dispatched to the CPU and GPU, respectively. The
performance modeling component takes both architecture
differences and data irregularity into consideration. It trains
itself with the provided training data and builds matrix
category-specific performance models for both the CPU and
GPU.

The auto-tuner component is active during runtime and
completes two tasks. First, it determines the performance
model to use based on input sampling. Second, it searches
for a partitioning threshold based on the performance model
and input features.

3.2 Code Transformation
The goal of the transformation engine is to transform the
input irregular OpenCL program to enable workload par-
titioning in a fine-grained manner. The FinePar framework
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can also target coarse-grained partitioning for performance
comparison. We present the flowchart of code transforma-
tion engine in Figure 7. The transformation engine consists
of two main modules: analysis module and transformation
module. Analysis module is used to identify computa-
tion kernels and related parameters in OpenCL programs,
while transformation module is in charge of performing
actual code transformation. OpenCL programs usually in-
clude two parts: management part (host.c in Figure 7),
which contains device and kernel calling information, and
computation kernel part (compute.cl in Figure 7), which
defines computation kernels. Our transformation engine
manipulates two parts separately. Analysis module only
parses the management part and identifies main kernels and
parameters. Transformation module changes code in both
management part and computation kernel part, enabling the
fine-grained CPU/GPU co-running. Specifically, it initializes
key data structures, launches both CPU and GPU kernels,
and finally releases resource in the management part, as
well as redefines computation kernels in computation part,
shown in Figure 7. Note that FinePar handles inputs that
can be represented in the CSR format or adjacency lists.
In case of more complex situations, FinePar allows users
to provide the kernels instead of directly transforming the
kernels. More details are discussed in Section 4.4.

Transformation Module:

Input code:

Analysis Module:
identify kernels and parameters 

compute.cl

Step 2: launch CPU and 
GPU kernels

Step 3: release resource

Output code: newCompute.cl

Step 4: redefine 
computation 

kernels

Step 1: initialize key 
data structures

host.c

newHost.c

Management Part Computation Kernel Part

Fig. 7. Illustration of code transformation engine.

Figure 8 presents the basic ideas of the transformations
using sparse matrix processing as an example. Figure 8 (a)
shows the pseudocode of the original program. The host
code initializes the sparse matrix M , and invokes a kernel
function to process it. Each work-item executes the same
kernel function, which processes the corresponding row
according to its global ID. Note that when launching the
kernel, the host code needs to specify whether to use the
CPU or GPU, but not both.

To utilize both the CPU and GPU resources for
coarse-grained partitioning, the framework only needs
to slightly change the program as shown in Figure 8
(b). On the host code part, FinePar inserts a func-
tion getCoraseGrainedPartitioningThreshold (detailed
in Section 5.2), which analyzes the matrix to return a par-
titioning parameter Tc. Logically, the framework breaks the
input matrix M with N rows into two parts, with the CPU
processing the first part (i.e., the first Tc rows) and the GPU

main() { //host code
InitializeMatrix(M); // N = M.size;
launchKernel(N); // create N work-items

}
kernel(M) { //device code

rowID = globalID;
processRow(M, rowID);

}

main() { //host code
initializeMatrix(M);          
Tc = getCoraseGrainedPartitioningThreshold(M);
launchCPUKernel(Tc);
launchGPUKernel(N-Tc);

}
kernelCPU(M) { // CPU kernel

rowID = globalID;
processRow(M, rowID);

}
kernelGPU(M) { // GPU kernel

rowID = globalID + Tc;
processRow(M, rowID);

}

main() { //host code
initializeMatrix(M);
Tf = getFineGrainedPartitioningThreshold(M);
for( row in matrix) {

if (row.length >= Tf)
cpuRowMap.append(row.ID);

else // (row.length < Tf)
gpuRowMap.append(row.ID); }

launchCPUKernel(cpuRowMap.size);
launchGPUKernel(gpuRowMap.size);

}
kernelCPU(M) { // CPU kernel

rowID = cpuRowMap[globalID];
processRow(M, rowID);

}
kernelGPU(M) { // GPU kernel

rowID = gpuRowMap[globalID];
processRow(M, rowID);

}

(a) Original Program

(b) Coarse-Grained Partitioning

(c) Fine-Grained Partitioning

Fig. 8. Code transformation for coarse-grained and fine-grained parti-
tioning.

processing the second part (i.e., the last N − Tc rows). The
kernel function for the CPU is the same as that in the original
program, but its launch should only create Tc work-items.
The GPU kernel is different from the original kernel because
it should start the processing from the Tcth row with N−Tc

work-items. In the case of coarse-grained partitioning in
Figure 5, the CPU processes the first 4 rows, and hence the
value for Tc is 4. By adding it to the global ID of all work-
items of the GPU kernel, the GPU will work on the last four
rows.

Figure 8 (c) shows the transformed code for fine-grained
partitioning. The host counts for each row the number of
non-zero elements. If the number is larger than the threshold
Tf returned by getF ineGrainedPartitioningThreshold,
the row is appended to the queue cpuRowMap, indi-
cating its processing on the CPU. Otherwise, the row
should be processed by the GPU. In the kernel functions,
the work-items running on the CPU and GPU figure out
the rows to work on through the row IDs recorded in
cpuRowMap and gpuRowMap, respectively. Similar as
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in the transformation for coarse-grained partitioning, the
number of work-items to create for each kernel launch
depends on the number of rows it processes. The func-
tion getF ineGrainedPartitioningThreshold needs so-
phisticated performance models and the input features to
determine Tf for both load balance and optimized GPU
utilization. We delay its discussion in the next two subsec-
tions. For the example shown in Figure 5, the optimal value
for Tf should be 4. Hence, the values in gpuRowMap are
{1, 2, 3, 5, 6, 7}, and the values in cpuRowMap are {0, 4}.

3.3 Performance Modeling
FinePar uses linear regression to build performance models
because they are lightweight and efficient for online use.
Moreover, the performance models should be automatically
generated and general enough to cover various inputs and
irregular applications. Since the input graphs can be rep-
resented by adjacency matrices, we use non-zero elements
processed per second as the prediction goal in the perfor-
mance models. We build a separate performance model
for the CPU and GPU, respectively, due to their different
architectures.

Accurate performance models for irregular applications
are notoriously difficult to build. Particularly in this work,
we address two challenges. First, we need to select several
features that are easy to obtain and have great impact on
performance. Second, the model should be lightweight
for online use. We next describe how the performance
modeling component addresses these challenges.

Feature Selection We select features that are closely re-
lated with the OpenCL programming model and those that
represent irregularity of the workload. More specifically, we
select four features: 1) the average workload for a work-
item (AW ), 2) the variance of the distribution of non-zero
elements across the rows (VW ), 3) the number of work-
items in the computation domain (NW ), and 4) the size of
the whole workload (SW ). Please note that these features
belong to metadata. We obtain the metadata with a pre-
processing process in an offline manner, since each dataset
only requires calibrating for once. Thus, at the runtime
we do not need to scan the entire dataset to obtain the
values. All four features greatly influence the performance
explained as follows:

• Average workload for a single work-item: Work-
items need enough workload to amortize the over-
head of thread creation. We use the mean of the num-
bers of non-zero elements in the rows to represent
the average workload for a single work-item because
the input program uses one work-item to process a
row.

• Variance of the distribution of non-zero elements:
As explained in Section 2, the irregularity of the
workload may dramatically influence the perfor-
mance of the GPU. We use the variance of the
distribution of non-zero elements to quantify the
irregularity of the workload.

• Number of work-items in the computation do-
main: This feature plays an important role in the
performance of the GPU, because the GPU needs to
create enough threads to utilize the computational
resource. Due to the one-to-one mapping between

the work-items and rows, this feature is the same as
the number of rows in the workload.

• Size of the whole workload: The amount of data fed
to the processor affects performance because large
data size may lead to better utilization of the memory
bandwidth.

Addressing Substantial Differences among Matrices One
tricky feature of graph and sparse matrix applications is
their irregular memory access pattern, which affects cache
performance and the main memory bandwidth utilization.
However, the memory access pattern is not captured by
the linear regression model. To illustrate its impact, we run
SpMV on two matrices (M1 and M2) of similar features as
selected for the modeling. The difference between these two
matrices is that M1 is a quasi-diagonal matrix (i.e., its non-
zero elements are close to the diagonal), while M2 is not.
We observe that on both devices, the processing of M1 can
be 2X faster than that of M2.

Despite its importance, the memory access pattern de-
pends on the distribution of the non-zero elements and the
interleaved execution of the threads, which is expensive to
profile and hard to model. Hence, to circumvent this prob-
lem, we categorize the training matrices into quasi-diagonal
matrices and non-quasi-diagonal ones, which are referred as
Type 1 and Type 2 matrices, respectively, in the remainder of
the paper. We build different performance models for each
type. Note that we can create more categories to further
differentiate the matrices, but leave that to future work.

We quantify the closeness of the non-zero elements to
the diagonal in the following way. For each row, we say
a non-zero element is close to the diagonal if its column
ID within one eighth of the width of the matrix away
from the diagonal. We calculate the ratio of the number of
such non-zero elements to the total number of non-zero
elements. If the result is larger than the threshold Tdiag (0.8
in our experiments), we categorize the matrix as a Type 1
matrix. Otherwise, we categorize it as a Type 2 matrix.

Building and Training Lightweight Linear Regression
Models For each type of matrices, we build a linear regres-
sion model for the CPU and one for the GPU. Given a train-
ing matrix or graph, we choose a value for Tf (the partition-
ing threshold) from {16, 32, 64, 128, 256, 512, 1024, 2048}
and partition the matrix into CPU and GPU workloads
as described in the fine-grained partitioning approach in
Section 3.2. We then run the partitioned workloads on the
CPU and GPU to collect execution times for the training,
which capture performance degradation due to co-running.
Moreover, we choose to use log(NW ) instead of NW in the
model because GPU can only simultaneously run up to a
certain number of threads. Further increasing the number
of threads does not improve performance. Similarly, we use
log(SW ) instead of SW because of the memory bandwidth
limit of the shared physical memory. Equation 1 and Equa-
tion 2 show the performance models for the GPU and CPU,
respectively. The Ci’s (i = 1 · · · 5) are the parameters of the
model we need to train.

To quickly generate training data with various patterns,
we use the graph generator from Graph 500 [24] to generate
all the training data. The generator has five parameters: S,
A, B, C , and D. The scale parameter S controls the size
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performanceGPU = C1GPU ×AWGPU + C2GPU × VWGPU + C3GPU × log(NWGPU ) + C4GPU × log(SWGPU ) + C5GPU (1)

performanceCPU = C1CPU ×AWCPU + C2CPU × VWCPU + C3CPU × log(NWCPU ) + C4CPU × log(SWCPU ) + C5CPU (2)

of the generated graph, which has 2S vertices and 2(S+4)

edges. The other four parameters control the distribution of
non-zero elements in the adjacency matrix that represents
the generated graph. We refer the readers to [25] for the
detailed meaning of these parameters, but note that the sum
of the four parameters should be 1. We set S to be each of
{16, 17, 18, 19}. For each scale parameter S, we randomly
generate 20 quadruplets. Each quadruplet contains four
positive floating-point numbers whose sum is 1. The largest
number is assigned to A, and the other three are randomly
assigned to B, C , and D. We hence generate 80 matrices of
Type 2. We generate Type 1 matrices by placing the non-
zero elements in each row of Type 2 matrices around the
diagonal. Note that because Tf has eight possible values,
the training process needs 1280 runs in total.

3.4 Online Tuning

Given the input data, the goal of online tuning is to select
the threshold (Tf in Figure 8) for fine-grained partitioning
to achieve the best performance. It consists of two stages:
(1) matrix category detection, and (2) threshold search. The
detection stage determines the matrix category and subse-
quently the performance models to use. The search stage
leverages the performance models to predict performance
given a threshold and search for the optimal threshold.

While we can use the method discussed in Section 3.3 to
determine the category the input belongs to, the overhead
is prohibitive. To be suitable for online use, FinePar samples
a number of rows from the input matrix and only counts
the non-zero elements close to the diagonal for the sampled
rows. For the quantification to determine the category, we
scale down the total number of non-zero elements according
to the sampling ratio. We tried multiple sampling ratios and
found that the sampling ratio 0.001 introduces acceptable
overhead and always categorizes the input matrix as the
offline training phase does.

Threshold search uses the hill climbing algorithm [26]
to search for the optimal threshold. FinePar first chooses an
initial value for Tf such that the ratio between the numbers
of non-zero elements in the two partitioned workloads
matches the ratio of the peak performance between the CPU
and GPU. It then uses the performance model to estimate
the execution time given Tf , (Tf − step), and (Tf + step)
as the threshold, respectively. If Tf produces the optimal
performance, the tuning process terminates. Otherwise, Tf

is assigned one of the two other values, which yields better
performance, and the search process continues. We empiri-
cally choose 64 for the step parameter, which performs well
in the experiments.

4 OPTIMIZATIONS

In this section, we further provide three optimization strate-
gies to improve the performance of FinePar. We provide the
detailed optimizations below.

4.1 More Fine-Grained Partitioning Method
Although FinePar removes substantial irregularity through
fine-grained partitioning between the CPU and GPU, the
workload in each device may still contain certain irreg-
ularity for some applications, as shown in Figure 9 (a).
To further improve the performance for each device, we
propose a more fine-grained partitioning method to map the
data into different groups, and each group is processed by a
computation kernel. Compared to the original FinePar [23]
in which each device only launches one kernel to process the
workload after partitioning, the optimized version allows
each device to launch multiple kernels to further reduce
irregularity.

GPU Kernel 1

GPU Kernel 2

CPU Kernel 1 CPU Kernel 2

GPU Kernel

CPU Kernel

(a) Original Version (b) Optimized Version

Fine-grained 
mapping to 
more kernels 
to reduce 
irregularity

Still contain 
irregularity!

Fig. 9. A more fine-grained partitioning method. The length of each bar
represents the number of non-zero elements in each row.

We show the CPU and GPU kernels in FinePar after this
mapping in Figure 9 (b). For each device, we map the rows
that have the similar number of non-zero elements into one
group, and launch a separate computation kernel for this
group. With this method, we can further reduce irregularity
for each device. By default, FinePar uses the power of 4
to determine the groups; groupi contains the rows with
the number of non-zero elements greater than or equal to⌊
4i−1

⌋
, and less than 4i (i is a non-negative integer). Exper-

imental results show that this method achieves significant
performance benefits in the situation where the dataset size
and variance of non-zero elements in each row are large. The
reason is that the benefit of reducing irregularity outweighs
the cost of launching multiple kernels.

4.2 Dynamic Workload
So far, FinePar only considers the situation where the work-
load does not change during the execution. However, for
some applications such as BFS (Breadth First Search), the
data processed in each iteration are changed dynamically.
For a given graph data in dynamic workloads, the sizes of
nodes or edges needed to be processed for each iteration (ac-
tive elements in frontier) vary greatly. A static partitioning
strategy may achieve a sub-optimal result for these dynamic
workloads.

We use three dynamic applications, BFS, connected com-
ponents, and graph coloring, on dataset circuit5M as an
example to describe this phenomenon, shown in Figure 10.
We find that the frontier size (number of active elements)
can be very high in a limited number of iterations, especially
for some long-tailed distribution graphs. In the remaining
iterations, the frontier size remains low. To address this



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

0e+00
1e+06
2e+06
3e+06
4e+06
5e+06
6e+06

0 1 2 3 4 5 6 7 8 9 ...

Fr
o
n
ti

e
r 

S
iz

e

Iterations

(a) BFS

0e+00

2e+05

4e+05

6e+05

8e+05

1e+06

0 1 2 3 4 5 6 7 8 9 ...

Fr
o
n
ti

e
r 

S
iz

e

Iterations

(b) Graph Coloring

0e+00
5e+06
1e+07
2e+07
2e+07
2e+07
3e+07
4e+07

0 1 2 3 4 5 6 7 8 9 ...

Fr
o
n
ti

e
r 

S
iz

e

Iterations

(c) Connected Component

Fig. 10. Frontier size for different iterations in circuit5M.

problem, we adjust the partitioning strategy to only use the
CPU for processing these iterations, because the elements to
be processed in these iterations are not enough to utilize the
high parallelism of the GPU.

We further propose an adaptive partitioning in FinePar
targeting dynamic workload. FinePar maintains the size of
the frontier at runtime, and leverages both the CPU and
GPU to process an iteration only when the size of the
frontier exceeds a predefined threshold (20% of the total
elements). Moreover, after processing the majority of the
non-zero elements (e.g., 80%), we do not count the number
any more to reduce the runtime overhead. We take BFS as
an example. In BFS, the active elements are vertices in a
frontier list. We can count the number of frontier list for each
iteration and adjust our partitioning strategy accordingly. In
our implementation, we use the CPU to calculate the frontier
size for the next iteration. Moreover, the majority of the total
elements are usually processed in the first few iterations,
and then the procedure of calculating frontier size is not
needed; thus, compared to the whole program execution,
the overhead incurred by the calculation of frontier size in a
limited number of iterations can be ignored.

4.3 Large Datasets
One major advantage of the integrated architecture is that
it provides much larger memory capacity than the discrete
GPU architecture. Therefore, we can leverage the integrated
architecture to process large datasets. However, due to the
limitation of the creation size of OpenCL memory object,
we cannot directly process a large dataset on such an archi-
tecture. In FinePar, we partition a large dataset into several
medium-sized parts and create a separate OpenCL memory
object for each part. Moreover, for a large dataset exceeding
the total memory, these medium-sized objects need to be
processed sequentially, to avoid memory overflow by re-
leasing the resource of processed objects. Specifically, we
propose a pipeline-based method to maximize the perfor-
mance of processing large datasets, as shown in Figure 11.
The processing of each part consists of two stages: IO stage
and computation stage, which can be pipelined. After each
iteration, FinePar collects the intermediate result and reuses
the allocated memory space. With this method, FinePar can
effectively hide processing latency and take full advantage
of the integrated architecture.

4.4 Discussion
Building More Sophisticated Models Although Linear Re-
gression model is simple and efficient in our experiment,
a natural question is whether the linear model is good
enough and whether more sophisticated learning models
can further improve performance. As a sanity check, we

Compute1IO: part1 result1

result2

result3

…             …

result n

final
result

different partitions

time

Compute2IO: part2

Compute2IO: part2

Compute nIO: part n

Fig. 11. Pipelined processing for large datasets.

also built a Multi-Layer Perceptron (MLP) model [27]. The
MLP model is a supervised machine learning model that is
theoretically more powerful than linear regression. Similar
to the linear regression model, the MLP model takes as
inputs the four features AW , VW , log(NW ), log(SW ) and
predicts the performance in terms of the number of non-zero
elements processed per second. We use the same training set
as used for the linear regression model and build separate
performance models for the CPU and GPU. We show the
results in Section 5.4.
Application Scope In general, FinePar is designed for irreg-
ular applications, in which the inputs can be represented
in the CSR format or adjacency lists with one level of
row-pointers. However, the insight in FinePar can be ex-
tended to other irregular data types, such as MPI derived
datatypes [28], [29], [30]. In a CPU-GPU distributed environ-
ment, to fully release the system’s power, the idea of FinePar
still applies, but challenges such as data communication
need to be considered as future work. For well balanced
workload, in case that CPUs and GPUs might not deliver the
same throughput for each iteration, a dynamic adjustment
approach [31] could help. Additionally, FinePar uses a
generated dataset to train the model; if users target a higher
accuracy, real input data can be added into the training set,
which will be evaluated in our future work.

5 EXPERIMENT

In this section, we evaluate FinePar using a variety of
irregular programs with different types of input matrices.
We start by describing our platform and benchmarks.

5.1 Experiment Setup
Platforms We measure the performance of FinePar on two
platforms, one with AMD’s A-Series APU A10-7850K (code
named “Kaveri”) [32], which has four cores with four
processing threads, and the other with AMD’s latest inte-
grated architecture, Ryzen 5 2400G with Radeon RX Vega
11 GPU. We use GCC (version 4.8.2) with O3 optimization
level for compilation on A10-7850K. For Ryzen 5 2400G,
currently, AMD only provides Windows 10 64-bit driver, so
we perform all experiments on it using Visual Studio for
compilation.
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Benchmarks We select five programs from the GraphBIG
benchmark suite [33] , the Rodinia benchmark suite [34], and
the SHOC benchmark suite [35]. Breath-First Search (BFS) is
from the Rodinia benchmark suite. Connected Component
(CC), and Graph Coloring (GC) are from the GraphBIG
benchmark suite. Sparse Matrix-Vector Multiplication using
Compressed Row Format (SpMV-CSR) and Sparse Matrix-
Vector Multiplication using Ellpack Format (SpMV-ELL)
are from the SHOC benchmark suite. We also implement
three well-known algorithms in OpenCL, Page Rank [36],
Hyperlink-Induced Topic Search (HITS) [37], and Random
Walk with Restart (RWR) [38], which brings the total num-
ber of evaluated benchmarks to eight.

Input Matrices We evaluate FinePar using eight sparse
matrices listed in Table 1, which are different from the
training set. Specifically, the matrices of scale20 and scale21
are generated by the generator of Graph 500 [24]. We
use four sparse matrices, circuit5M, eu-2005, FullChip, and
web-BerkStan from the University of Florida Sparse Matrix
Collections [39]. These sparse matrices are widely used in
previous studies, such as [40], [41]. Since the ELL format
introduces significant space overhead, our platform can only
execute SpMV-ELL on web-BerkStan. Moreover, we use two
large matrices of uk-2002 and indochina-2004 to validate the
performance for processing large datasets.

TABLE 1
Matrices used in our experiments. Dimension: the dimensions of

matrices. NNZ: the number of total non-zero elements. µ: the average
number of non-zero elements per row. σ: variance of the number of
non-zero elements per row. MAX: the maximum number of non-zero

elements per row.

Name Dimension NNZ µ σ MAX
scale20 1.05M 31.35M 29.90 258.04 66546
circuit5M 5.56M 59.52M 10.71 1356.62 1290501
eu-2005 0.86M 19.24M 22.30 29.33 6985
scale21 2.10M 63.42M 30.24 300.38 106906
FullChip 2.99M 26.62M 8.91 1806.80 2312481
web-BerkStan 0.69M 7.60M 11.09 16.36 249
uk-2002 18.52M 298.11M 16.10 27.53 2450
indochina-2004 7.41M 194.11M 26.18 215.83 6985

5.2 Performance of FinePar
We compare our method with four state-of-the-art workload
partitioning methods on heterogeneous platforms listed in
Table 2. The single-device method [17] uses the device
from the CPU and GPU that produces better performance.
The adaptive method [16] calculates a performance ratio
between CPU and GPU through executing partial workload
and then partitions the workload using this ratio. The dy-
namic method [15] uses both GPU and CPU to execute the
workload simultaneously, while the GPU executes the work-
load from the beginning to the end and the CPU executes in
the opposite direction, which can achieve a dynamic load
balance. Because it is implemented in Pthreads, we only
evaluate it on the A10-7850K platform. The coarse-grained
oracle method [14] performs workload partitioning from 0
to 100% and selects the best partitioning ratio. We also list
the original FinePar [23].

Figure 12 and 13 show the performance results for
different partitioning methods. We use single-device as the
baseline. Speedup is defined as the baseline’s execution time
divided by the corresponding method’s execution time. In

TABLE 2
Summary of different partitioning methods.

Method Descriptions
Single-Device [17] Choose CPU or GPU that yields the best

performance
Adaptive [16] Partition workload based on online profiling
Dynamic [15] Both GPU and CPU execute the workload

from opposite directions
Coarse-Grained Oracle [14] Coarse-grained workload partitioning with

optimal load balance
FinePar (Original) [23] The original fine-grained workload

partitioning method
FinePar FinePar with all optimizations including

the more fine-grained partitioning, dynamic
adaptation, and pipelining in Section 4

general, FinePar achieves consistent performance improve-
ment for most of the evaluated programs and is much
better than the other partitioning methods. The average
performance speedup of FinePar is 1.67X over the single-
device method, and 1.08X over the original FinePar version.
For the FullChip matrix, the performance speedup is up to
2.40X on A10-7850K platform. For the coarse-grained oracle
method, the average speedup is 1.07X. FinePar achieves
an average of 1.6X speedup over the coarse-grained oracle
method.

From Figure 12 and 13, we can see that FinePar achieves
performance improvement over the optimal single device
method in most cases. The adaptive method calculates a
partitioning ratio with a light-weight sampling method, but
this ratio sometimes cannot reflect the most balanced parti-
tioning point for some inputs, such as scale20 and circuit5M.
The coarse-grained oracle method presents the upper limit
of the adaptive results. However, for most irregular inputs,
it only brings very little performance improvement over
the single device method. For the dynamic method, it can
achieve good load balance for most programs, but it incurs
large runtime overhead for checking whether CPU and GPU
execute to the same point.

We show the performance of processing large datasets
in Figure 14. FinePar uses the partitioning technique to
process these datasets, which is explained in Section 4.3.
The average speedup is 1.3X, and the performance on both
large datasets is similar. Compared to the baseline of using
a single device, FinePar still presents clear performance
benefits. Compared to the performance on medium-sized
datasets, FinePar produces moderate performance speedup
because of unbalanced workload partitioning, especially for
dynamic workloads with long-tailed distribution dataset.

5.3 Result Analysis

In general, our method partitions an irregular workload
into two parts, the relatively regular part allocated to the
GPU and the more irregular part allocated to the CPU.
By considering the architectural differences between two
devices, we can effectively improve the performance of
irregular programs. In this section, we give detailed analysis
about our fine-grained partitioning.

5.3.1 Analysis for Transformation
Our method largely benefits from mitigating the irregularity
of the GPU workload. Table 3 shows the changes after
performing fine-grained partitioning in FinePar for different
matrices. We use the variance of the number of non-zero
elements per row to describe the matrix irregularity. The
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Fig. 12. Performance results of different partitioning methods on A10-7850K. The baseline is the optimal single device result, GPU- or CPU- only
version.
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Fig. 13. Performance results of different partitioning methodson on Ryzen 5 2400G. The baseline is the optimal single device result, GPU- or CPU-
only version.
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Fig. 14. Performance results for large datasets. The baseline is the
optimal single device result, GPU- or CPU- only version.

Matrix Variance column represents the variance of the orig-
inal matrix before partitioning. The GPU Variance and CPU
Variance columns represent the variances for the GPU work-
load and the CPU workload, respectively, after partitioning.

The GPU/CPU Workload Ratio column shows the size of the
GPU workload divided by the size of the CPU workload.

TABLE 3
Mitigating the irregularity of the input matrices by FinePar.

Matrix GPU CPU GPU/CPU
Name Variance Variance Variance Workload Ratio
scale20 258.04 56.57 2496.13 1.36
circuit5M 1356.62 0.50 5416.37 0.78
eu-2005 29.33 15.38 71.18 2.92
scale21 300.38 35.41 2230.48 0.71
FullChip 1806.80 2.74 26307.03 3.80
web-BerkStan 16.36 6.73 29.49 1.64

After transformation by FinePar, the variance for the
GPU workload is significantly reduced, while the variance
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for the CPU workload is increased. For instance, for the
matrices of circuit5M and FullChip, the original matrices
have very high irregularity with variances of 1356.62 and
1806.80, respectively, but after fine-grained partitioning, the
irregularity of GPU workloads has been significantly re-
duced (with the variances of 0.50 and 2.74). In contrast,
the traditional coarse-grained partitioning does not realize
such input irregularity and only considers the load balance.
Moreover, the GPU/CPU Workload Ratio column shows that
the workload partitioning ratios vary greatly across inputs.

From the aspect of matrix variance, we classify the
performance results in Figure 12 into three categories. First,
the matrices of circuit5M and FullChip have the largest irreg-
ularity and their irregularity can be significantly decreased
after fine-grained partitioning. Our method can get very
high performance improvements for these inputs. Second,
the matrices of eu-2005 and web-BerkStan have the moderate
irregularity and there is no significant irregularity difference
between CPU and GPU after the fined-grained partitioning.
However, our method can still produce moderate perfor-
mance improvement for these inputs. Third, for scale20 and
scale21, their irregularity is uniformly distributed in the
whole matrix, so it is difficult to greatly reduce their irreg-
ularity. For example, Table 3 shows that the GPU workload
of scale20 still has a variance of 56.57 after fine-grained
partitioning. Consequently, the performance improvement
is limited for this matrix.

5.3.2 Performance Profiling
We also use performance counters in GPU to analyze the
micro-architecture-level performance behaviors of the dif-
ferent partitioning approaches. Figure 15 shows the im-
provement on GPU utilization over the GPU-only approach
as the baseline. The improvement is defined as the uti-
lization of the compared approach divided by that of the
GPU-only approach. Each bar represents the average im-
provement of all inputs for the corresponding benchmark.
The bar height of one means there is no improvement or
degradation. All the performance data is collected by AMD
CodeXL. CodeXL crashes when collecting the performance
data for BFS-Dynamic and HITS, which is hence removed
from the graph. For the coarse-grained oracle approach, all
the workload of GC and BFS is dispatched to the CPU,
so there is no data on the GPU side. We observe that all
the three coarse-grained approaches have similar GPU uti-
lization as the GPU-only approach does. The reason is that
those approaches only concern the load balance between the
CPU and GPU, but do not change the load balance across
GPU threads in the same work group. FinePar substantially
improves GPU utilization over the other approaches. The
average improvement over coarse-grained oracle is 10.1X.
Additionally, FinePar achieves 4.4X speedup over the orig-
inal version, which implies that the optimizations in Sec-
tion 4 are effective.

Due to space limitation, we only show the results for
scale20, but the other input matrices have similar trends.
Since our fine-grained partitioning method can significantly
mitigate the input irregularity for the GPU workload, load
balance for GPU threads is improved, which leads to better
GPU core utilization. Moreover, it also enhances memory
bandwidth utilization because more active GPU threads can
issue memory requests together.
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Fig. 15. Improvement on GPU core utilization (scale20).

5.4 Accuracy of Performance Models

Table 4 shows the trained parameters of the performance
models from our offline training. We use a statistical met-
ric, called coefficient of determination [42], to analyze the
accuracy the predicted performance model. The values of
r2 range from 0 to 1. The larger this value is, the better the
predicted result is. For the type 1 matrices, the values of r2
are close to 1, which means that our performance model has
very high accuracy. For the type 2 matrices, the values of r2
are not very large, because the type 2 matrices have a great
diversity of sparsity patterns and it is hard to provide an
accurate performance model for prediction.

TABLE 4
Estimated parameters of performance models. Type 1: non-zero

elements around the diagonal. Type 2: non-zero elements not around
the diagonal. r2 is the coefficient of determination.

Type Device C1 C2 C3 C4 C5 r2
Type 1 CPU -0.05 0.03 -283.83 605.24 -2165.00 0.81

GPU 19.03 -5.11 2752.44 244.77 -16924.91 0.93
Type 2 CPU -0.05 0.07 14.42 13.26 122.77 0.50

GPU -2.24 0.88 413.11 79.54 -2661.51 0.69

To understand the importance of the features in the mod-
els for different devices and types of matrices, we provide
their correlation coefficients in Table 5. We list main findings
below. (1) The average workload for a work-item (AW) is
critical for the GPU, because the GPU has a large number of
hardware threads which are more sensitive to the average
workload for a work-item. (2) The variance of workload
(VW) is also much more important for the GPU. This is
because the GPU uses the lockstep execution model as
mentioned in Section 2. (3) The number of work-items (NW)
is more important for the GPU, because work-items are
mapped to hardware threads and the GPU performance is
more dependent on available parallelism. (4) The workload
size (SW) is much more important for the CPU, because
the CPU has very few hardware threads compared with the
GPU and its performance is more dependent on the input
workload size.

TABLE 5
Correlation coefficient of the features in the performance model.

Type Device AW VW NW SW
Type 1 GPU 0.88 0.52 0.85 0.15

CPU 0.08 0.18 0.77 0.49
Type 2 GPU 0.64 0.75 0.75 0.28

CPU 0.33 0.03 0.50 0.45

To demonstrate the effectiveness of our performance
model, we enumerate all possible fine-grained partitioning
thresholds and obtain the maximum performance improve-
ment for each input matrix across all benchmarks. Figure 16
shows the comparison between the improvement by FinePar
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and the optimal performance improvement FinePar can
achieve (named Oracle). For most of the input matrices,
FinePar demonstrates very high consistency with the op-
timal performance. The optimal performance improvement
for the proposed fine-grained partitioning approach is 29%
on average while FinePar achieves an average of 27% per-
formance improvement.
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Fig. 16. Performance improvement between FinePar and the optimal
partition.

Figure 17 shows the performance comparison between
the linear regression model and MLP. Each bar represents
the performance speedup when the corresponding model
is used for a particular input and program. On average,
MLP only provides 2.6% extra performance benefit, but
has longer training time. We hence use the linear model
as the default model in FinePar, but users can also choose
to use MLP if the longer training time is not a concern.
Please note that we use the MLP in Scikit-learn [43] in our
implementation. We use the set of tuned parameters with
the best performance in training set.
5.5 Performance Overhead Analysis
5.5.1 Time Overhead
Before kernel computation, the evaluated programs perform
I/O operations and data initialization. Our fine-grained
partitioning method adds runtime overhead to this pre-
kernel processing phase from two aspects. First, it randomly
samples a number of rows from the input matrix to estimate
its type. Second, it chooses a suitable performance model
and searches for the partitioning threshold.

Table 6 shows the runtime overhead of the original
FinePar and the optimized version compared to the pre-
processing time of single device version for each program
for the matrix web-BerkStan. The other matrices have similar
performance overhead. We observe that the overhead of
the original FinePar only accounts for less than 0.2% of
the preprocessing time of single device version, while the
optimized version has less than 3% occupancy overhead,
which is negligible.

TABLE 6
The time overhead of the fine-grained partitioning method.

I/O(%) Initialization(%) Occupancy(%)
Program FinePar FinePar FinePar FinePar FinePar FinePar

(original) (original) (original)
BFS 74.67 74.66 25.25 25.16 0.08 0.18
ConnectedComp 31.27 31.5 68.70 68.41 0.03 0.09
GraphColoring 58.91 58.79 41.05 41.07 0.04 0.14
HITS 52.36 51.04 47.51 47.04 0.13 1.92
PageRank 55.22 54.58 44.73 44.24 0.05 1.18
SpMV-CSR 75.00 73.37 24.90 26.44 0.10 0.19
RWR 71.78 70.18 28.08 27.81 0.14 2.01
SpMV-ELL 15.53 15.25 84.44 84.62 0.03 0.13

5.5.2 Space Overhead
The APU has two separate main memory data paths to the
CPU and GPU. To accurately evaluate and compare different

partitioning approaches, we allocate two copies for read-
only data for the two data paths to reduce the interference
due to bus contention. For a graph with n vertices and m
edges. The needed storage space for read-only data is:

Sizetotal = (m + n)× sizeof (int)× 2 (3)
The original FinePar creates a bit vector of n bits, named

gpuRowMap, to inform the GPU the rows it should process.
The bit vector reduces storage space and improves memory
coalescing for the GPU. Since the GPU typically processes
much more rows than the CPU does, it only uses a regular
integer array of size n for the CPU. Hence, the space
overhead incurred by the original FinePar is:

SizeFinePar(original) = n/8 + n × sizeof (int) (4)
For the optimized version, FinePar also uses the bit vec-

tor. FinePar allows each device to launch multiple kernels,
and it creates one vector for each kernel. Therefore, the size
of bit vector relates to the number of launched kernels, g. To
avoid IO overhead, CPU also reads the bit vector. The space
overhead incurred by FinePar is:

SizeFinePar = n/8 × g (5)

Table 7 shows the extra space overhead introduced by
the original FinePar and the optimized version. The column
named “Size (MB)” shows the original size for each matrix.
The columns in “Extra Allocation (MB)” show the size
incurred by both versions. The last two columns show the
space overhead of both versions normalized to the original
matrix size. Because the optimized version does not use
the integer array for CPU, its space overhead is lower than
that of the original version. For all the inputs, our method
introduces little space overhead (less than 6%).

TABLE 7
The space overhead of the fine-grained partitioning method.

Extra Allocation(MB) Space Overhead(%)
Matrix Size FinePar FinePar FinePar FinePar

(MB) (original) (original)
scale20 259 4 3 1.54 1.01
circuit5M 521 23 16 4.41 3.07
eu-2005 161 4 2 2.48 1.34
scale21 524 10 6 1.91 1.05
FullChip 237 12 8 5.06 3.47
web-BerkStan 66 3 2 4.55 2.60

6 RELATED WORK
Heterogeneous architectures pose new optimization oppor-
tunities for knowledge and data engineering applications,
thanks to the high parallelism and throughput. He et
al. [44] used GPUs to accelerate SimRank computation. Shi
et al. [45] accelerated graph processing on GPUs. Lin et
al. [46] applied GPUs to accelerate the identification process
of network motifs. There have been other recent studies on
using GPU or FPGA to accelerate data processing opera-
tions. Serra et al. [47] designed a GPU-based Monte Carlo
algorithm that significantly reduces the long running time.
Zhou et al. [48] provided a hardware-accelerated solution
for hierarchical index-based merge join. As for this work,
FinePar shows the possibility of using both the CPU and the
GPU to further accelerate these applications on integrated
architectures.

Recently, heterogeneous CPU-GPU architectures have
been used in optimizing irregular applications and multi-
dimensional data processing. Vilches et al. [49] developed
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Fig. 17. Comparison between Linear Regression and MLP.

a novel adaptive partitioning algorithm for parallel loops
to find the appropriate chunk size for GPUs and CPUs.
Navarro et al. [50] also studied the partitioning strategy
for parallel loops, specially for irregular applications on
heterogeneous CPU-GPU architectures. Sakai et al. [51]
proposed a novel decomposition method that can execute
single-GPU code on multi-GPU systems. In contrast, the
core idea of FinePar is to reduce the workload irregularity
for GPUs, and the partitioning of FinePar is reflected in the
mapping of data to devices: irregular data are assigned to
CPU threads while the rest of relatively regular data are left
to GPU threads. Thus, we adopt different strategies and the
application scenarios are not the same.

Some researchers have used GPUs for graph process-
ing [7], [8], [9], [10], [11], [12], [52]. Sha et al. [7] proposed
a GPU-based dynamic graph storage scheme to support
existing graph algorithms. Wang et al. [8] developed a
programmable high-performance graph library, Gunrock,
to abstracting GPU graph analytics. Zhong et al. [9], [11]
developed a GPU programming framework, Medusa, which
enables developers to leverage the massive parallelism of
GPUs.

7 CONCLUSION
In this paper, we identified the pitfall of coarse-grained
workload partitioning for irregular applications on inte-
grated architectures. We pointed out that even if coarse-
grained partitioning achieves ideal load balance between
the CPU and GPU, the integrated architecture may still get
under-utilized. To deal with the problem, we developed a
system software named FinePar to achieve fine-grained par-
titioning. FinePar considers architectural differences of the
CPU and GPU, and builds irregularity-aware performance
models for partitioning the workload through auto-tuning.
Experimental results of eight applications demonstrated
1.6X performance speedup over the optimal coarse-grained
partitioning.
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