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Abstract—This paper introduces gMig, an open-source and practical vGPU live migration solution for full virtualization. Taking the

advantage of the dirty pattern of GPU workloads, gMig presents the One-Shot Pre-Copy mechanism combined with the hashing based

Software Dirty Page technique to achieve efficient vGPU live migration. Particularly, we propose three core techniques for gMig: 1)

Dynamic Graphics Address Remapping, which parses and manipulates GPU commands to adjust the address mapping and adapt to a

different environment after migration, 2) Software Dirty Page, which utilizes a hashing based approach with sampling pre-filtering to

detect page modification, overcomes the commodity GPU’s hardware limitation, and speeds up the migration by only sending the

dirtied pages, 3) Overlapped Migration Process, which significantly compresses the hanging overhead by overlapping the dirty page

verification and transmission concurrently. Our evaluation shows that gMig achieves GPU live migration with an average downtime of

302 ms on Windows and 119 ms on Linux. With the help of Software Dirty Page, the number of GPU pages transferred during the

downtime is effectively reduced by up to 80.0%. The design of sampling filter and overlapped processing can bring about further 30.0%

and 10.0% improvements in page processing.

Index Terms—GPU, Virtualization, Migration
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1 INTRODUCTION

GPUs have revolutionized cloud computing applications
in domains such as 3D rendering and machine learning,
leading to the rise of the demand of GPU resources on
the cloud. In order to provide GPU instances on the cloud,
several GPU virtualization solutions have been proposed.
As a sophisticated and complex I/O device, GPU can be
virtualized by mainly five methods: 1) device pass-through
(PT), which is now widely used by vendors like Amazon [1]
and Aliyun [2]; 2) API forwarding, such as vCUDA [3] and
rCUDA [4]; 3) para-virtualization (PV), such as GPUvm [5],
[6]; 4) SRIOV or similar hardware features, such as NVIDIA
Grid [7] and AMD MxGPU [8]; 5) mediated pass-through
(MPT), such as Intel GVT-g [9].

Among these methods and technologies, MPT (Mediated
Pass-Through) based solutions are explored to provide a
highly scalable IO virtualization architecture with near-
native performance. It traps and emulates all privileged
operations such as the MMIO register modification, and
passes through performance-critical resources. As a result,
by using MPT, a hypervisor is able to share a physical IO de-
vice among multiple VMs (virtual machines), and provides
each VM a full featured device instance. Intel GVT-g, also
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known as gVirt, is an example of using MPT to virtualize
IO devices. By successfully virtualizing GPU, GVT-g shows
that MPT is an efficient method of IO virtualization.

VM migration is one of the most widely used key fea-
tures in virtualization and cloud computing, and is of vital
importance for IaaS (infrastructure as a service) providers.
With VM migration, a cloud vendor can: 1) provide HA
(high available) instances [10], 2) enable VM relocation and
make the management of a data center more flexible, and
3) develop some power-saving techniques [11], [12]. We
believe GPU live migration is important and it could bring
a lot of benefits for IaaS vendors who provide virtualized
GPU instances. By supporting GPU live migration, cloud
vendors could provide all the mentioned features to GPU-
enabled VMs. However, pass-through or SRIOV based GPU
virtualization solutions are not migration-friendly, because
the hypervisor can not be aware of some hardware context
states [13], [14]. MPT is the only solution where the hypervi-
sor can manipulate the GPU device states directly through
the driver and control the vGPU execution flow [9], making
it perfect for GPU live migration.

Still, even supporting GPU live migration on an MPT-
based platform can be challenging. One major challenge
is how to migrate a vGPU instance without stopping or
pausing the virtual machine for a long time. This is due
to both the complexity of GPU programming model and the
lack of some special hardware features. For example, the
absence of the dirty bit (a bit in the page table entry, which
would be set to 1 if the corresponding page were modified)
in the page table of Intel GPU1, poses serious challenges

1. In this paper, Intel GPU refers to the Intel Processor Graphics.



when implementing live migration. Moreover, if a software-
based solution is constructed to overcome the hardware
limitation, how to reduce the overhead of the introduced
software-based manipulation becomes another challenge.

This paper presents the system architecture
called gMig2, which is an efficient, practical, and
open-source vGPU live migration solution for MPT
based virtualization. First published in [15], gMig is also
considered as a state-of-the-art GPU live migration solution.
We demonstrate this gMig on the basis of Intel GVT-g,
which is a sophisticated MPT-based full GPU virtualization
solution for Intel GPU. In order to efficiently live-migrate
virtual machines with vGPU instances, we overcome the
hardware limitation and design a software-based migration
mechanism including pre- and stop-and-copy phases with
high efficiency in verification and transmission for graphics
memory. Besides, compared with the gMig strategy with
the improvement of hashing-based verification as the
baseline, we inspect the shortages in current design for
the further optimizations, including the optimizable page
verification and the sequential migration process, and then
reach a better performance in page verification and the
whole migration process. The contributions of this paper
about gMig can be summarized as follows:

• Provide a practical and efficient vGPU live migration
solution in virtualization platform with mediated
pass-through vGPU support, including the funda-
mental architecture and the optimized processing
mechanisms. This solution is based on the Dynamic
Graphics Address Remapping mechanism, solving
the main problem of correcting shadowed vGPU
memory address space mapping after migration. We
denote it as gMig-Basic.

• Present the Software Dirty Page technique, which
uses a hashing based approach to overcome hard-
ware limitations of commodity GPU, and enables
pre-copy for GPU live migration. This strategy, de-
noted as gMig-Hashing, is based on the conclusion
from an analysis that vGPU has a better locality of
memory writing.

• Present the sampling-based filtering stage imple-
mented in dirty page verification, which faces the
significant overhead of hashing process in the orig-
inal gMig-Hashing. This fast bit-testing mechanism
significantly reduces the unnecessary hashing fre-
quency to improve the performance compared with
this baseline.

• Present the overlapped migration process design to
optimize the waiting overhead in the original gMig-
Hashing by decoupling two sequential stages in page
processing. According to this baseline, our strategy
overlaps the dirty page verification and transmission
concurrently in migration to optimize the computa-
tion resources and reduce the hanging overhead.

• Provide an evaluation to show that gMig achieves
as fast as a sub-second downtime during live mi-
gration. Using a hashing based Software Dirty Page
optimization technique, the average downtime can
be reduced to 302 ms. Meanwhile, the GPU pages

2. https://github.com/mjc0608/gMig-qemu

transferred during downtime are effectively reduced
by 80.0%. As a baseline, this result can be further
optimized with sampling pre-filtering by up to 37%
and overlapped migration by about 13% compared
with the original gMig configuration.

The rest of this paper is organized as follows. Section 2
describes the background of gMig system. In Section 3,
we elaborate the design and implementation of gMig. In
Section 4, we provide the evaluation of gMig. We discuss
our work and present hardware proposal in Section 5.
In Section 6, we present the related work, and finally in
Section 7, we present the conclusions.

2 BACKGROUND

2.1 Mediated Pass-through and Intel GVT-g

Mediated Pass-through (MPT) is a highly scalable method-
ology to virtualize IO devices, which can achieve both near-
native performance and good security. By using MPT, a
hypervisor can share a physical IO device among multiple
VMs and provide each VM a full featured virtualized device.
MPT traps and emulates privileged operations, and passes
through the performance-critical resource directly. In the
case of GPU, the MPT driver traps the modification of GPU
page tables and MMIO registers, and executes the GPU
commands, which are performance-critical, directly on the
hardware. Intel GVT-g, also known as gVirt [9], is a practice
of MPT-based virtualization solution for Intel GPU. With the
help of GVT-g, a VM can freely access all the vGPU features
through native graphics drivers.

Intel GPU reserves main memory partition as the graph-
ics memory. In an Intel GPU, there are two page tables,
called a) the Global Graphics Translation Table (GGTT) and
b) the Per-Process Graphics Translation Table (PPGTT). The
GGTT, presented in the MMIO space, is a single unique
page table for all GPU components, e.g. the display engine
and the render engine. The PPGTT is only visible to the
corresponding process. Most batch buffers are presented in
this address space, where the data for GPU access are stored.

GVT-g uses a software-based method to achieve GPU
virtualization. However, the hardware limitations still raise
serious challenges. Unlike the page tables of the main mem-
ory, neither the GGTT nor the PPGTT has support for dirty
bits, because such support requires a DMA write, which is
time-consuming. In a pre-copy style live migration, the dirty
bits of the page table are used to trace the modifications
in memory and reduce the unnecessary memory copy. Due
to this lack of dirty-bit support, we may face challenge in
employing this mechanism.

2.2 Live Migration and Pre-Copy

Live migration is a key feature of virtualization, where a
virtual machine can be moved from one host to another
without affecting or notifying the user of the VM. The
effectiveness of live migration is measured by the required
service downtime, which is the time that the VM must be
stopped during the migration. Service downtime is mainly
caused by the transmission of VM’s memory.

The approach of pre-copy [16] is widely used to decrease
the service downtime, where the key idea is to minimize



the pages transmitted during the downtime. This solution
divides the migration procedure into two parts: 1) pre-copy
phase, and 2) stop-and-copy phase. The first phase refers to
the procedure copying data while the VM continues running
at the source. In this phase dirtied pages are iteratively
transmitted by rounds to minimize the transmission in the
second phase. The second phase refers to the procedure
transmitting data as the actual migration when the VM is
restarted at the destination.

In the migration process, the hashing-based technique
is introduced to verify and trace the modification of the
memory space. In the page table, the dirty bit reflects if the
related memory page is modified. However, traversing the
whole memory page data and comparing it with the old
record to verify the identity can be both time- and space-
consuming. Alternatively, the hash fingerprint of a memory
page is calculated and recorded, and the identity is verified
through the comparison between the current fingerprint and
the old one.

2.3 Dirty Pattern of GPU Workloads

Before migrating a vGPU, we should have an overview of
the dirty pattern of GPU workloads, which has a strong
influence on live migration. We trace and analyze the dirty
pattern of different GPU intensive workloads in a virtu-
alized environment. For this, we launch a new thread in
QEMU to record the number of pages that are dirtied by the
CPU and the GPU over a short period. From the analysis, we
obtain the following statistics: 1) the ratio of pages dirtied
by the CPU or the GPU at least once during execution,
2) the locality of the CPU and the GPU’s memory writing
operation in the whole process.

Firstly, we find that the dirty pattern of the GPU is
similar to that of the CPU. In other words, only part of the
graphics memory is actually dirtied. Secondly, we find that
the memory writing of a GPU shows better locality than that
of a CPU during GPU intensive workloads. Once a GPU
page is dirtied, it is likely to be dirtied more frequently.
Based on the above dirty pattern of GPU workloads, we
obtain some intuitions that: 1) the pre-copy method can
be applied to decrease the service downtime in GPU live
migration, 2) since GPU dirty pattern shows better locality,
we can only do few pre-copy rounds and skip a lot of rounds
to decrease the total migration time. For the more detailed
discussions and evaluation analysis about the GPU dirty
pattern, the Appendix can be referenced.

3 DESIGN AND IMPLEMENTATION

In this section, we start with the overview of gMig, followed
by the detailed design and implementation of each com-
ponent, including the technique of detecting and verifying
dirty pages without the help of hardware, along with per-
forming graphics memory transmission and optimizing this
process.

3.1 Top-level Architecture

The architecture of gMig is illustrated in Figure 1. gMig is
based on KVMGT, which is the KVM version of Intel GVT-g
solution. The gMig implementation includes modifications

Fig. 1: gMig Architecture

on both Linux kernel and QEMU. In QEMU, the vGPU
Migration Manager is responsible for controlling the vGPU
migration procedure. It accesses the vGPU memory and
then uses a hashing-based technique (i.e., Software Dirty
Page) to identify the dirty pages of graphics memory in
the Dirty Page Detector. After that, the Manager transmits
these pages to the destination. Considering that the hashing
traversal may usually be time-consuming, the additional
sampling mechanism can be adopted to reduce the dirty
verification overhead. Also, dirty identification and page
transmission can be handled concurrently to avoid the
hanging. vGPU Migration Manager also requires the kernel
to provide some specific functionalities. gMig implements
these functionalities and exposes them to QEMU via the
vGPU Migration Kernel Driver. Through this interface, the
Migration Manager can scan the memory access to deter-
mine the dirty region and then read the vGPU context status
for the rebuilding after the migration.

Based on this architecture, the gMig migration flow
illustrated in Figure 2 then becomes available in execu-
tion with the supporting functionalities it provides. In this
migration iteration flow, first 1) the dirty record of vGPU
memory pages constructed by the vGPU migration manager
is traversed to search for dirty page address. Once a possibly
dirtied page is found, 2) the system filters the dirty page
through the sampling records and then 3) performs the
hashing-based verification. After that, the searching and ver-
ifying stage is ended and then the system starts transmitting
stage, where 4) the dirty page data is copied and transmitted
for the 5) restoration at the destination. With the overlapped
design, these two stages can be overlapped to process the
verification and transmission concurrently.



Fig. 2: gMig Migration Flow

3.2 Supporting Mechanisms for Migration

vGPU Context Clone: GVT-g maintains the states of each
vGPU including GPU page tables (i.e. GGTT and PPGTT),
MMIO register states and etc, which should be cloned and
transmitted to the destination for guest reconstruction. The
vGPU Migration Driver is responsible for packaging and
exposing them to QEMU in the source, and then QEMU
restores them in the destination.

1) Reconstruct Shadow Graphics Translation Tables:
Due to the change of Host Physical Address (HPA) and host
page tables of the VM after migration, both the shadow
GGTT and PPGTT require reconstruction after migration to
correct the memory access of the vGPU. In our implementa-
tion, the host driver possesses a copy of guest GGTT. While
migrating a VM, gMig first transmits the guest GGTT to the
destination, and then constructs a shadow page table where
the GPA (guest physical address) in the PTE (page table
entry) is replaced by HPA. The shadow PPGTT is rebuilt
when the guest workload submits commands for the first
time after migration. 2) Reconstruct Shadow MMIO Regis-
ters: The CPU communicates with the GPU through MMIO
registers. In order to share the GPU resource among the
VMs, these registers are shadowed by GVT-g, and all visits
to them will be trapped and emulated. During migration,
these states are packaged by the vGPU Migration Driver
and transmitted to the destination, where they are rebuilt.

Dynamic Graphics Address Remapping: As mentioned
above, GVT-g shares the GGTT with a static partitioning,
where each VM is assigned its disjoint partition. The guest
driver will reference this information while generating GPU
commands. Figure 3 shows an example, where the guest is
assigned vGPU 1 partition. However, in the destination host,
the guest has to use vGPU 2 after migration. If the guest
driver is unaware of this partition change and still accesses
the vGPU 1 partition, obviously this behavior will be consid-
ered illegal by GVT-g and crash the vGPU. gMig leverages
GVT-g’s command parser to fix the address mismatching
with a tiny module to help the guest to adapt to the new
environment. The graphics address space mismatching only
happens in the GGTT address space. So we solve this mis-
matching problem by modifying all the addresses appearing
in GPU commands located in the GGTT address space.
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Fig. 3: Graphics Address after Migration

3.3 Mechanism for Dirty Page Verification

3.3.1 Hashing Based Software Dirty Page

Using the architecture described above, we can successfully
migrate a vGPU instance by simply transferring and restor-
ing the vGPU’s context during the stop-and-copy phase,
when both vCPU and vGPU are stopped. Unfortunately, the
excessive number of pages accessed by vGPU may result
in a relatively long service downtime, especially when the
network is congested. In order to improve the performance
of migration and reduce service downtime, we propose the
idea of Software Dirty Page, which detects page modifi-
cation by software and collects the set of dirtied vGPU
memory pages. Then we are able to overcome the hardware
limitation of commodity GPUs and implement a software
based pre-copy mechanism for GPU live migration.

Considering the implementation difficulty and over-
head, gMig implements Software Dirty Page by monitoring
the hash value change of the pages. As shown in Figure 4,
gMig ① generates and stores the hash value of all pages
during the first round of memory page transmission, and
② transmits all pages. Then, during the rest transmission
rounds, gMig ③ calculates the hash values again and ④ only
transmits the pages whose hash value changes.

Fig. 4: Hashing Based Software Dirty Page Detector

When implementing the Software Dirty Page, vari-
ous hashing algorithms were tested including XOR and



xxHash3. The hash value length is configured as 256 bits,
and the XOR algorithm is optimized with AVX-2 instruc-
tions. We evaluate more hashing algorithms in Section 4.2.
To ensure the reliability, the hash conflict is estimated. If as-
suming the pages are evenly distributed among all buckets,
we can find that p = 2

−l, where p is the probability of two
pages with the same hash value and l is the hash length.
Since l = 256, p should be approximately 10

−77. Moreover,
if denoting the probability of two pages with the same hash
value in a k-page address space as Pk, there is:

Pk = 1−
k−1
∏

i=0

2
l − i

2l
. (1)

The value of Pk should be approximately 10
−62 in a 4GB ad-

dress space (where k is 1M). This probability is far less than
that of hardware failure, so it can be considered reliable. The
downtime effect of utilizing this hashing optimization or not
will be discussed in Section 4.2.

As mentioned before, gMig maintains the set of Sg in
the host. While migrating a VM, QEMU reads Sg from the
interface of the vGPU Migration Driver and obtains Dc from
the kernel using KVM IOCTL. After obtaining Sg and Dc,
gMig categorizes all pages into two classes: 1) those should
be transmitted directly, denoting as Td, 2) those should be
transmitted after hashing and comparing, denoting as Th. It
is obvious that at any time t0:

T t0
d = Dt0

c . (2)

For stop-and-copy phase, we let:

T t0
h =

(

t≤t0
⋃

St
g

)

\Dt0
c . (3)

For pre-copy phase, we let:

T t0
h =

t≤t0
⋃

St
g. (4)

All pages in Dc should be transmitted directly. However,
since many GPU dirtied pages are also dirtied by the CPU,
some pages may be transferred twice during a pre-copy
or stop-and-copy round. Since we already know that these
pages are dirtied and need to be transferred, to minimize
service downtime, gMig removes the pages in Dc from
the Sg bitmap during the stop-and-copy phase. We do not,
however, remove these pages during the pre-copy phase.
This is because during the pre-copy phase, the VM is still
running and may still modify these pages. Besides, the guest
driver may remove a modified GPU page from the GPU
page tables. The removed GPU page may still be in the page
table of the CPU, which means it can still be accessed by the
CPU. If we do not hash and compare it, the CPU may read a
wrong value or fail to read the value after the VM resumes
in the destination. As a consequence, in Equation 3 and 4,
we use the union of Sg since the beginning rather than St0

g .

Moreover, apart from the pages in the GPU page tables,
there is one extra case where the pages should be rehashed

3. https://github.com/Cyan4973/xxHash

before transmission. We denote the set of these pages as H ,
and at any time t0:

Ht0 = T t0
d ∩

(

t≤t0
⋃

St
g

)

. (5)

If a page dirtied by the CPU is also in the GPU page tables,
the hash value of that page should also be updated, because
the hash value kept by the QEMU should be exactly that of
the page transmitted to the destination. If this value were
not updated, some problem could occur in the next round
of hashing and comparing.

3.3.2 Sampling-based Filtering in Dirty Verification

As we discussed above about the implementation of
software-based memory tracking system on dirty page lo-
cation with hash-like validating algorithms, it is obvious
that the dirty verification process through the whole GPU
memory space is time-consuming. The following evaluation
results about the throughputs of various hash algorithms
also confirm this fact, which becomes a significant factor
of the overhead in migration process, causing throughput
degradation and longer downtime. Facing this problem,
we try to apply a specified strategy to optimize the whole
verification process based on the speciality of GPU memory
accessing pattern to relieve these extra expenses.

According to the dirty page pattern shown above, we can
get a clear impression that the hit style of the GPU memory
has better locality and higher frequency. It means that such
a dirty page may be touched and modified repetitively in
the whole migration procedure. So we can conclude that a
majority of the pages tagged dirty in the pre-copy stage have
been further modified and will be validated as dirty in the
stop-and-copy phase. Considering this pattern, a strategy
which is able to filter out most of the dirty page quickly can
apparently optimize the overhead by reducing the hashing
frequency while the migration.

So we introduce the sampling strategy, that the system
stores a few sampling bytes of the whole memory page
when first hashing this dirty one, and then tests these
stored bytes for identity verification during the stop-and-
copy phase. This strategy only requires much less time
consumption, but can filter out most of dirty pages without
the hashing process. It is obvious that the false negative
rate is inversely proportional to the length of the sampling
record. The left pages should be validated by the page-
hashing process. With this sampling strategy, if the dirty
rate of GPU memory page accessing is high enough, this
sampling process can reduce much of the hashing work.

Also, considering the memory storage space expenses of
this strategy, obviously it only needs a few bytes for every
memory page as the page sampling record. Compared with
the length of the whole memory page, the space overhead at
this level is acceptable and negligible, since even the space
overhead of hashing fingerprints is an order of magnitude
more than this sampling records. So there is no block in our
way to adopting sampling strategy if we need to consider
the space issues.

Moreover, the sampling strategy can be flexibly adjusted
to reach an optimized performance result in this specific ap-
plicative environment. One dimension of the adjustment is



the distribution of the sampling bits. The sampling strategy
may have different false negative rate if we apply different
distributions, such as uniform distribution, and assigning a
higher density at the head or tail region of the whole address
space. The other dimension of the adjustment is the number
of the sampling bits. Apparently, more sampling bits can
result in lower false negative rate but longer testing process,
and less sampling bits can reduce the testing overhead but
cause higher false negative rate. There should have a precise
trade-off to get the optimized performance.

In our implementation, we mainly realize this sampling
features appended to the hashing mechanism. First, we add
a new field in the structure recording page-related logging
data, where the dirty page table is another field word. We
will record the sampling record per page at this position
in the migration process. Also, we modify the functions
responsible for driving the memory page traversing in the
migration process. Before invoking the hashing methods, we
insert the sampling features for record saving and identity
verification. With these modifications, the migration process
will record the configured sampling record of every page
during pre-copy, and then filtering dirty page before hash-
ing according to the recorded sampling record during stop-
and-copy phase.

Although the simple speculative strategy described
above requires only some incremental modification, it can
intuitively reduce a majority of the computation expenses
in validation process, and the overhead it introduces is
obviously acceptable.

3.4 Memory Transfer Implementation and Optimization

3.4.1 Graphics Memory Transmission

Intel GPUs utilize part of the main memory as the
graphics memory. As a result, the main memory can be
categorized into two sets: St

g , which denotes for the set of
memory used by the GPU at time t, and St

c, which denotes
for the set of memory used by the CPU at time t. As a result,
at any time t, we have:

St
c 6= ∅, St

g 6= ∅, St
g 6⊂ St

c, S
t
c ∩ St

g = St
cg 6= ∅. (6)

Since only Sc and Scg are CPU-accessible, we have to
handle Sg \ Scg specifically during migration. We modify
the procedure of allocation and deallocation of the graphics
pages to keep the set of Sg in the vGPU Migration Driver.
Then, as a basic approach, we simply add pages in Sg to the
dirty bitmap of QEMU before the stop-and-copy phase and
therefore all the requisite graphics pages can be successfully
transferred to destination.

However, this basic approach suffers from a drawback.
Since we have to send all pages in Sg in the stop-and-
copy phase, the service downtime will be relatively longer.
Actually, if denoting dirtied CPU pages at time t as Dt

c and
dirtied GPU pages at time t as Dt

g, it is easy to find:

Dt
c ⊂ St

c, D
t
g ⊂ St

g, D
t
g 6⊂ Dt

c, D
t
c ∩Dt

g = Dt
cg 6= ∅. (7)

Only Dg, which is a subset of Sg, needs to be transmitted
during the stop-and-copy phase. By applying a pre-copy
alike method, we can reduce the number of pages that
need to be transferred during the stop-and-copy phase, and

minimize the service downtime. We have discussed this
approach in Section 3.3.1.

3.4.2 Overlapped Migration Procedure

The gMig system discussed above has realizes the func-
tionality of GPU memory migration, but it is still far from
avoiding performance bottlenecks. The sequential design
pattern of the whole migration procedure is just one obvious
architectural bottleneck inherited from QEMU-based system
prototype. This sequential design causes problems when
the additional hash-like verification process is introduced
into the gMig. Since the migration implementation in gMig
requires the hash-like mechanism for tagging and verifying
memory accessing pattern, the verification and transmission
tasks have become two time-consuming workloads with no
necessity to be executed in sequence and to be pending
for each other. As a result, the hashing calculation delay
becomes a new time overhead, where the overlapped design
can utilize this time delay and accelerate the whole process.

In the pre-copy stage, the sequential design first searches
for a dirty GPU memory page, and then generates the
hash snapshot of the current page. After that, the migration
process transfers this dirty page. Also, in the stop-and-copy
phase, the sequential design searches for a dirty GPU mem-
ory page again, and then generates the hash snapshot of
the current page to compare it with the previous snapshot,
validating if this page is modified after being transferred.
If there is no modification, this page will be skipped, and
otherwise this page will be transferred again.

So it is obvious that the hashing step and the transferring
step in the pre-copy phase have no dependent relationship.
The migration process can easily hash a memory page and
transfer it concurrently with no risk of data consistency. In
the stop-and-copy phase, the situation becomes a bit more
complicated. After all, there is a dependent relationship
between the two steps. That is, only when the identity verifi-
cation through hashing step is completed then the migration
process can confirm if transferring this memory page is
necessary. However, if we amortize the whole process, we
can find out that there is no dependent relationship between
the step of transferring the previous memory page and the
step of validating the identity of the current memory page.
We can also process the two steps in concurrency.

In our development, we overlap the hashing step and
the transferring step in the migration process to improve
the performance. In the pre-copy phase, the iteration pro-
cedure of the migration process still continues searching
for dirty GPU memory page. Once such a page is found,
the transferring task and the hashing task for this page
will all be registered and respectively pushed into the
pending queues for hashing and transferring. In this design,
the hashing workloads and the transferring workloads are
processed independently and asynchronously. In the stop-
and-copy phase, the iteration procedure of the migration
process continues searching for dirty GPU memory page
and then pushes it into the pending queues for hash-based
identity verification. When the verification is finished, if it is
necessary for this page to be transferred again, the relevant
transferring task will be pushed into the pending queues
for transferring. Since the validating workloads and the
transferring workloads are also processed independently



and asynchronously in this stage, the processing of the two
types of workloads is also overlapped and in concurrency.

According to our implementation, we will introduce
new worker thread to handle the hashing-based verification
concurrently with the main migration thread responsible
for memory page traversing and transmitting. In the orig-
inal design, there is only one iteration loop executing on
a single thread responsible for the whole migration pro-
cess, including page traversing and verification, along with
transmission to the destination. We upgrade this execu-
tion flow to a trivial producer-consumer model, where the
main thread traverses the dirty page table to select dirty
memory page. In the pre-copy phase, the selected page
is submitted to the worker thread for calculating hashing
fingerprint concurrently, while the main thread starts the
transmission of the page data. In the stop-and-copy phase,
the main thread submits the selected page to the worker
thread and then fetches the completed hashing result to
judge the necessity of transmission. As a result, then in the
whole migration procedure, all the hashing workloads and
transferring workloads are processed in overlapped pattern,
without unnecessary hanging waiting for independent pro-
cessing tasks and irrelevant system resources.

4 EVALUATION

This section evaluates gMig from several aspects. Firstly,
our experiments measure the service downtime of gMig
under different configurations in various factors, consider-
ing that the service downtime is the main criterion when
measuring the efficiency of live migration. Since the gMig
is the only state-of-the-art solution for vGPU migration, we
use the gMig-Basic configuration as the baseline, and then
these experiments significantly illustrate the contribution of
the proposed hashing-based memory verification strategy
(gMig-Hashing). Secondly, we evaluate the performance im-
pact of migration on workloads. The loss of efficiency shows
that the GPU performance overhead due to migration is ac-
ceptable. Additionally, we evaluate the optimizing effect of
the sampling mechanism for reducing hashing overhead in
dirty page verification (gMig-Sampling) compared with the
gMig-Hashing version as the baseline where only hashing-
based verification is enabled in the migration. This strat-
egy largely reduces the unnecessary hashing calculation to
improve the performance of the memory page verification.
Finally, we verify the effectiveness of overlapped migra-
tion design (gMig-Overlapped) in hanging time reduction,
where the sequential migration design in the gMig-Hashing
is the baseline. Obviously, with this strategy, the stalling
idle can be omitted in the gMig migration process. All the
experiment configurations for the evaluations are listed in
the Table 1 as follows.

4.1 Experimental Setup

The experiments are conducted on two physical machines
configured as shown in Table 2. Each guest is configured
with 2 vCPUs and 2 GB system memory, running Ubuntu
16.04 with the kernel version of 4.3, and Windows 10 Red-
stone with native graphics drivers. And there is only one
pre-copy round in the following evaluations according to

TABLE 1: Experiment Configurations.

Experiment Configurations

Algorithm Comparison gMig-basic gMig-xor gMig-xxHash
Bandwidth Comparison 5Gbps 7.5Gbps 10Gbps

Baseline:gMig-Basic Improvement:gMig-Hashing

Sampling Filtering
Workload

Tropic PerfTest
Heaven 3DMark06

Test Length 1-byte 2-byte 4-byte
Test Location Head Tail Uniform

Baseline:gMig-Hashing Improvement:gMig-Sampling

Overlapped Migration Sequential Idealized Overlapped
Baseline:gMig-Hashing Improvement:gMig-Overlapped

CPU i5-6500
GPU Intel Graphics HD 530
Memory 8GB
Storage SAMSUNG 850EVO 256G
Network Intel 82599ES 10-Gigabyte NIC
OS Ubuntu 16.04
Kernel 4.3.0-rc6

vCPU 2
Memory 2GB
OS Ubuntu 16.04 / Windows 10 Redstone

Source / Destination Host Configuration

Linux / Windows VM Configuration

TABLE 2: Experimental Configuration

the pre-copy round impact analysis in Appendix. Since GPU
workloads focus on jobs like 3D rendering and machine
learning on cloud environment, our experiments mainly
use 3D benchmarks and machine learning applications. For
3D rendering on Linux, we choose Phoronix Test Suite 3D
marks4. It is a popular benchmarking suite with benchmarks
including Lightsmark, Nexuiz, OpenArena, and Warsow. For
Windows 3D rendering, we use 3DMark 065, 3DMark 116,
Heaven7, and Tropics8. Most machine learning benchmarks
use CUDA, running on NVIDIA GPU. In order to include

4. https://www.phoronix-test-suite.com
5. https://www.futuremark.com/benchmarks/legacy
6. https://www.futuremark.com/benchmarks/3dmark
7. https://benchmark.unigine.com/heaven
8. https://benchmark.unigine.com/tropics

Fig. 5: Throughput of Different Hash Algorithms



Fig. 6: Impact of Hash Algorithm on the Downtime

Fig. 7: Impact of the Bandwidth on the Downtime

machine learning benchmarks in our evaluation, we create
an image recognition application using a classic convolu-
tional neural network (CNN). The benchmark is based on
clDNN9, a compute library for neural networks on the
Intel platform. We mainly use this model to evaluate the
performance of gMig during migration.

4.2 Performance Analysis on Migration Downtime

Observation 1: The proposed hashing-based software dirty
page verification techniques can significantly optimize the
migration downtime by reducing page transmission. The
optimization extent can be up to 80%. This influence is even
much heavier than that of the bandwidth.

Algorithm: We experimented with several hashing al-
gorithms while implementing the Software Dirty Page of
gMig. The throughput of 7 different hashing algorithms
is shown in Figure 5. Optimized by AVX2 instruction set
extension, XOR256 is the fastest one and achieves more than
141x performance of SHA1 and 80x performance of MD5.
xxHash is also fast, and achieves 28x performance of SHA1.
We mainly use XOR256 and xxHash to evaluate gMig in the
following experiments.

With hashing algorithms like XOR256 and xxHash, the
Software Dirty Page can significantly decrease the service
downtime by reducing the number of pages transferred
during the stop-and-copy phase. However, executing a
hashing function over all the GPU pages can be time-
consuming. In this experiment, we individually apply the
XOR256 or xxHash functions to evaluate the downtime of
multiple benchmarks and record the number of GPU pages

9. https://01.org/cldnn

transferred during the stop-and-copy phase. We use gMig
without Software Dirty Page as the baseline for evaluation.
The results of the evaluation are shown in Figure 6. The
gMig-basic transfers all the GPU pages while the gMig-
xor and the gMig-xxHash adopt a Software Dirty Page
Detector based on XOR256 and xxHash. Win-desktop and
Linux-desktop respectively represent migrating Window and
Linux without running any workloads other than its default
desktop environment. Win-CNN and Linux-CNN represent
a classical Convolutional Neural Network running on Win-
dow and Linux.

We find that when a hash function is adopted, there is
an 80% average decrease in the number of GPU pages trans-
ferred during the stop-and-copy phase. This reduction in the
number of pages can greatly decrease the service downtime
and greatly improve the performance of the system.

Bandwidth: The network bandwidth between the source
and the destination machines may have impact on the
service downtime during migration. In this experiment, we
evaluate the downtime of multiple benchmarks when the
bandwidth is increased from 5 Gbps to 7.5 Gbps and to
10 Gbps. The XOR256 hash function is adopted in this
experiment for the benchmarking.

As shown in Figure 7, the downtime of a service has
a strong negative correlation with the network bandwidth.
Even for some low-load benchmarks such as Lightsmark and
OpenArena, the downtime increased by 42.1% and 48.1%
respectively as the bandwidth was dropped from 10 Gbps
to 5 Gbps. For benchmarks with heavy-load such as Heaven,
the downtime can increase to over 90%. Besides, Figure 7 in-
dicates the real bandwidth used in the migration. As we can
find in the figure, this value is very close to the given band-



width. Figure 7 also demonstrates that the network speed is
approximately proportional to the speed of migration. This
means that the number of pages transferred during the stop-
and-copy phase approximately remains unchanged.

4.3 Workload Performance Analysis During Migration

Observation 2: The workload performance degradation dur-
ing the gMig migration is not obvious, which indicates that
the overhead of gMig solution is acceptable.
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Fig. 8: The Speed of the CNN while Migrating

We create a classical CNN application to log the perfor-
mance change. In this experiment, we launch two Windows
VMs (VM 1 and VM 2) on the source host, with the above
benchmark running inside them. Then we migrate VM 1 to
the destination side and observe the performance of both
VMs. Figure 8 shows the relationship of the performance
of the CNN and the execution time during migration. The
execution of the guest VM is inevitably stopped during
the stop-and-copy stage. Therefore, a notable pause can be
observed during the execution of the CNN in VM 1. The
performance drop is not obvious in the pre-copy phase
because the hashing procedure is done by the CPU while the
benchmark is GPU-intensive. Additionally, the performance
of both VMs boost up after migration. This shows that
gMig effectively implements a load balancing policy in a
GPU cluster. In the stop-and-copy phase, since the VM 1
is not scheduled, the performance of the machine drops to
zero. However, considering the short service downtime, the
performance loss is acceptable.

4.4 Performance Analysis of Sampling Pre-filtering

Observation 3: The sampling pre-filtering strategy can filter
about 90% dirty page requiring hashing and provide up to
37.1% overhead reduction in dirty verification.

In this section, we will discuss the performance improve-
ment effect of the sampling-based pre-filtering strategy.
Since in the current system architecture, the minimum pro-
cessing unit in the comparison operation is the byte-length
word, there is no profit in reducing overhead to perform the
sampling on a more fine-grained record length. So, we will
perform the evaluation under the sampling record length of
1, 2, and 4 bytes on behalf of performance-first, mean and
effectiveness-first settings respectively.

The Figure 9 refers to the percentage distribution of the
types of processed dirty pages in stop-and-copy phase of
the migration. During the migration, the workload Tropics
was being executed and the first byte in every memory
page is tested. According to the data, about 18.9% pages
are new dirty pages which require no verification. In the
remaining pages, about 38.4% pages have no modifications
after being transferred, which have to be fully validated
through hashing procedure. About 37.8% pages can be fil-
tered dirty through sampling, saving the hashing overhead.
Only about 4.8% pages will be false negative in sampling
filter and require hashing procedure to confirm that they
are dirty. According to this percentage distribution where
the false negative rate is only about 11.4%, we can conclude
that the sampling strategy is significantly effective. The Fig-
ure 10 further summarizes a horizontal comparison among
different on-migration workloads including the Tropics, the
PerfTest, the Heaven and the 3DMark06 Demo, along with
different sampling record lengths (1, 2, and 4 bytes). The
result still reflects the similar conclusion.

In the Figure 11 we illustrate the time expenses per
page in the whole migration duration whether additional
sampling is active. All the results are the integrations of the
sampling overhead and the reduced hashing time optimized
by sampling filter. The configuration is the same as above
in Figure 9. According to the evaluation result, the data
reflect that we can get much lower overhead in average after
enabling sampling strategy. In the current situation, the av-
erage page processing overhead can be reduced from 468.6
ns to 353.5 ns, which is a 24.5% performance improvement.
The Figure 12 expand the comparison among experiments
under different configurations. We have listed the evalua-
tion results of the sampling strategy with 1-, 2-, and 4-byte
sampling records testing the beginning of the memory page,
under the execution of the Tropic, PerformanceTest, Heaven
and 3DMark06 workloads. We compare the performance
under these configurations with that under non-sampling
strategy. Then we can still get a similar conclusion as above.
Quantitatively, the sampling strategy can provide up to
37.1% reduction on time overhead, which is 184.22ns per
page. Also, reflected by the chart, we can conclude that the
1-byte sampling record is already an acceptable configura-
tion in performance. According to the 3DMark06 example,
the doubled or even quadrupled scanning overhead can be
more than offset by the further reduced hashing time with
longer sampling length.

Also, the Figure 13 and Figure 14 illustrates the status
when we access the sampling data at different locations of
the memory page, including the head, tail and spreading
the whole space. According to the evaluation result, we can
see that recording the head of a page is always best choice
in performance. So it is obvious that it is unnecessary to
sampling in uniform through the whole memory page, and
the tail of a memory page is usually not sensitive to the
modification on this page. For example, in the configuration
that sampling 1 byte at page tail for the Tropic workload,
the sampling overhead can not be offset by the reduced
hashing time, and then enabling sampling results in even
worse performance.
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Fig. 9: Page processing type distribu-
tion.
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Fig. 10: Page processing type distribu-
tion in different configurations.
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Fig. 11: Comparison of time ex-
penses per page in migration duration
whether sampling is active.
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Fig. 12: Comparison of average time
expenses per page whether sampling is
active in different configurations.
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Fig. 13: Page processing type distribu-
tion in different record locations and
different record lengths.
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Fig. 14: Duration comparison in dif-
ferent record locations and different
record length.

4.5 Performance Analysis of Overlapped Migration

Process

Observation 4: The overlapped migration process design
can reduce the hanging time overhead between the page
verification and transmission with parallelized processing.
This improvement can further reduce the time expense in
migration by about 12%.

Now we will discuss the optimizable stalling overhead
between the hashing step and the transferring step in the
dirty GPU memory migration process and the improvable
memory page processing throughput. In the following eval-
uations, we will record the precise timestamps representing
the beginning and the end of every processing step, and
then calculate out the time consumption of their duration
and the stalling overhead in hashing and transferring every
GPU memory page. Based on the comparison of these
recorded data between the sequential situation and the
improved overlapped one, we can apparently illustrate the
improvement in performance with the overlapped design.

In the evaluations, we will change the configuration
about the executing workloads during the whole migration
process. Since different GPU workloads can result in various
memory accessing pattern and different access distributions
in the migration time period, we can get a more general
summary about the optimization effect of the overlapped
migration process design in various memory accessing pat-
tern, which can confirm actual performance improvement.

In the following evaluations, we will record the times-
tamps of every dirty memory page processing iteration,
and the durations of hashing stage and transferring stage

respectively. In the non-overlapped original design, this
iteration process is sequential, so we will simply record
these runtime data at the end of every iteration. And in the
improved overlapped design situation, the hashing stage
and the transferring stage are running independently and
asynchronously. So, we will record their timestamps and du-
rations separately. Considering the fact that the transferring
stage are processed in the main migration thread loop, we
regard the time record of every beginning of dirty memory
page transfer as the tag of the migration procedure.

 500

 1000

 1500

 2000

 2500

 0

 0
.2

 0
.4

 0
.6

 0
.8  1

D
ur

at
io

n 
(n

s)

Normalized Time

Sequential
Idealized

Overlapped

Fig. 15: Duration comparison for overlapped design in mi-
gration duration.

The Figure 15 illustrates the performance of our over-
lapped migration design through the comparison on the
dirty page processing duration in the migration procedure.



In this figure, we mainly compare the performance under
three different strategies. The first one is our proposed
overlapped migration design. The second one is the original
sequential design. And the last one reflects the idealized
concurrent situation by recording the larger duration value
between the hashing and transferring time expenses of
processing every page. This figure records every per-page
processing duration value during the whole stop-and-copy
phase for more typical discussion.

According to this figure, we can see that in most time
region, the proposed overlapped migration design can re-
sult in a lower per-page processing time compared with
the original sequential design. Also, many processing time
peaks which may caused by the network delay in the trans-
ferring step are relieved or avoided in our overlapped mi-
gration design. The idealized situation reflects the best per-
formance level in this figure. Considering the new overhead
in the proposed overlapped design introduced by the multi-
thread mechanism, including the thread switching and data
contention overheads, there is still a gap on performance
between our overlapped design and the idealized situation.

Quantitatively, according to the evaluation result, we
can see that the overlapped design has reduced the total
time overhead compared with the sequential design from
about 1218.9 ns to 1054.3 ns in average, where the ideal-
ized situation is 772.8 ns in average. There the overlapped
design incurs an 13.5% (164.6 ns per page) performance
improvement. However, there is still a gap between the
evaluation result and the idealized situation at about 281.5
ns. This 26.7% performance gap can be a space for our
further optimization.
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Fig. 16: Average duration comparison for overlapped design
with different workload configurations.

This chart in Figure 16 is a comparison among evalua-
tion results with different workload configurations during
migration. We listed the average time expenses of page
processing in sequential design, overlapped design and the
idealized situation with overlapping. The workloads used
include the Tropic, PerformanceTest, Heaven and 3dMark06.
The evaluation results have confirmed the performance
improvement reflected in the above discussion again. Ac-
cording to the figure, the time expense reductions are 13.5%
(164.6 ns), 11.0% (189.0 ns), 12.1% (217.8 ns) and 11.3% (191.2
ns) respectively, which contributes to the performance im-
provement. Because of the introduced concurrent overhead,

there is still a gap to the idealized performance level, which
may require further optimizing.

5 DISCUSSION

5.1 Architecture Independence

Although we implement our solution on the Intel platform,
the overall idea and architecture are portable and architec-
ture independent, and can be migrated to any other GPU
virtualization solution based on mediated pass-through. In
this paper, we analyze the dirty pattern of GPU workloads,
which has similar characteristics on different platforms. We
show the possibility of using pre-copy to reduce the down-
time of GPU live migration, which is also architecture inde-
pendent. Vendors such as AMD and Qualcomm, who have
integrated CPU/GPU systems, can benefit from the model
designed in this paper. For companies such as NVIDIA,
which sell off-chip GPU systems, the idea is still useful and
possible to be implemented because the hardware interfaces
of on-chip GPU and off-chip GPU are similar. To implement
Software Dirty Page on off-chip GPU platforms, we can
simply offload the task of calculating the hash value of the
graphics pages to the GPU. Furthermore, since gMig can
achieve the live migration of GPU, which is one of the most
complex I/O devices today, we believe the methodology
could also be applied to other MPT based IO virtualization.

5.2 Hardware Proposal

Even though the vGPU can be migrated without the help
of any specific hardware, the migration can definitely be
better and easier with specific hardware support. If GPU
vendors can add dirty bits or similar hardware features to
the GPU hardware, the service downtime can be further
shortened. This is because, by using dirty bits we can offload
the task of detection of dirty pages to the hardware. This
would ensure that the migration of vGPU does not suffer
from the performance loss due to calculating and comparing
hash value of pages. Once dirty bits or similar features
are added to the GPU hardware, the migration time of the
service can be decreased by approximately 15.3% compared
with our implementation of hash method according to micro
downtime analysis. To overcome the potential slow-down of
the memory access of GPU, the hardware can let the driver
determine whether to turn on this feature.

5.3 Power benefit

With the gMig solution introduced in the GPU-aware VM
migration process, there can also be power benefit caused
by the strategies proposed. First, the hashing-based mem-
ory page verification significantly reduces the memory ac-
cessing activities in the whole migration process, which
largely degrades the power overhead. Second, the one-shot
memory copying strategy also saves the power consump-
tion by simplifying the data transmission. Moreover, the
overlapped migration processing further reduces the power
overhead by avoiding the stalling idles.



6 RELATED WORK

6.1 Live Migration

Live migration has gained a lot of attention in both indus-
trial and research communities [17]. Clark et al. in 2005,
studied the live migration of operating systems and were
the first group to propose the pre-copy based live migration
approach [16]. M. R. Hines, in 2009, proposed a post-copy
based live migration approach of a VM [18]. Nowadays,
both the pre-copy and the post-copy techniques are quite
popular in hypervisors such as Xen [16], [18] and KVM [19].

Some optimizations have been developed for transfer-
ring the VM’s content during live migration. Jin et al. [20]
studied the regularity of the pages in memory to divide
pages into three categories based on their similarity and
percentage of zero bytes inside them. Svard et al. [21]
introduced a simple but fast compression algorithm which
only migrates the delta values between the current and the
previous pages. There are other methods which focus on
only migrating some meta data and establishing the VM in
the same-state at the destination. The CR/RT motion [22]
is one such method, which only transfers the checkpoints
and the trace-log files in pre-copy phase, and then recreates
the memory page by reading these files. Koto et al. [23]
conducted a comprehensive research on the usage of dif-
ferent VM pages by not transferring some soft pages and
then recreating them on the destination VM.

Some researchers found that each time only small pro-
portion of dirty pages are frequently updated. Hu et al.
[24] proposed a time-sliced pre-copy approach, where the
system would look through historical records, figure out the
changeable pages and transmit these pages only at the last
round to reduce repeated transmissions.

Similar to other areas, it is also an effective method
to improve the performance of migration system through
parallelized modification on the system architecture and the
execution flow. Chanchio et al. [25] introduces multi-threads
in migration pre-copy to fulfill the time-bounded require-
ment. Liu et al. [26] constructs the migration process with
asynchronous mechanism for state consistence guarantee
between the source and the destination. Gilesh et al. [27]
schedules live migration placement among multiple virtual
machines in parallel to optimize the completion time and
relieve the inter-VM interference. Nathan et al. [28] has
made a horizontal summary and related comparison.

Currently, the proposed gMig migration solution is the
only state-of-the-art study in vGPU migration strategy,
which is firstly discussed in [15]. There we denote the
original version as gMig-Basic and the version with the
proposed improvement of hashing-based verification as
gMig-Hashing. In this paper extending this study for the
better performance, we have further proposed the sampling
pre-filtering strategy (gMig-Sampling) and the overlapped
migration process design (gMig-Overlapped) to improve the
original hashing-based page verification and the sequential
migration process design.

6.2 GPU Virtualization

GPU virtualization has been widely researched in recent
years [29], [30]. Traditionally, API forwarding qualifies vG-
PUs with functions such as graphics libraries for acceler-

ation. For example, Xen3D [31] and Blink [32] use a new
OpenGL library on Linux which forwards OpenGL API to
help many VMs to concurrently perform their graphics tasks
without interrupting the host machines. GViM [33] and
vCUDA [3] have proposed a GPGPU runtime to VMs by
forwarding CUDA commands. Furthermore, rCUDA [4],
[34] uses RDMA to speed up the forwarding of CUDA
commands. Intel’s GVT-s [35] is used to accelerate the GPU
computation in multiple VMs.

Several software based GPU virtualization solutions
have also been proposed. Such solutions include gVirt
(GVT-g) [9] for Intel GPU, and GPUvm [6] for NVIDIA
GPU. gVirt is based on the idea of mediated pass-through
(MPT), which traps and emulates privileged operations and
passes through the most performance critical operations to
the hardware. GPUvm is based on both MPT and PV (para-
virtualization). gHyvi [36] uses a hybrid shadow page table
to improve the performance of gVirt for memory-intensive
workloads. In order to extend the scalability of GPU virtu-
alization, gScale [37], [38] uses a private shadow page table
to support up to 15 VMs on a single Intel GPU.

The GPU pass-through technology can achieve the best
performance [13] for virtualization. Amazon [1] and Aliyun
[2] applied this technique to achieve high computing ef-
ficiency on the GPU instances offered to their customers.
Intel GVT-d [35] can pass-through Intel GPU to the VM.
However, all device pass-through based GPU virtualization
solutions can only support one VM per physical GPU.

SR-IOV [14] goes further to optimize I/O virtualization.
Supported by hardware, SR-IOV or similar hardware based
I/O virtualization can achieve both high performance and
scalability. AMD recently puts forward its hardware-based
GPU virtualization product: the AMD multiuser GPU [8],
which is based on SR-IOV and can support up to 15 VMs
per GPU. NVIDIA GRID [7] is now hardware supported
and can handle up to 16 VMs per GPU. NVIDIA also
recently announced a vGPU live migration solution based
on XenServer for GRID [39]. However, all these products
are close-sourced, with no publicly technical details.

7 CONCLUSION

gMig presents an open-source GPU live migration solution
for MPT based full virtualization. By exploiting the dirty
pattern of GPU workloads, gMig uses a one-shot pre-
copy mechanism combined with the hashing-based Soft-
ware Dirty Page technology to speed up vGPU migration
by only sending the dirtied pages. gMig also implements
Dynamic Graphics Address Remapping to adapt to a new
environment after migration. Evaluations have shown that
the average downtime can be reduced to 302 ms on Win-
dows and 119 ms on Linux respectively. We also observed
that number of GPU pages transferred during downtime
is effectively reduced by 80.0%. In addition, we optimized
the page verification with sampling-based filtering, which
provides a further overhead improvement by up to 37.1%
as 184.22 ns per page reduction. The overlapped migration
design can also achieve the time reduction up to 13.5%
(164.6 ns per page). We believe that gMig introduces good
management flexibility for product-level full GPU virtual-
ization platforms.
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