
Accelerating Exact Constrained Shortest Paths on GPUs
(complete version)

Shengliang Lu

National University of Singapore

lusl@comp.nus.edu.sg

Bingsheng He

National University of Singapore

hebs@comp.nus.edu.sg

Yuchen Li

Singapore Management University

yuchenli@smu.edu.sg

Hao Fu

Tianjin University, China

haofu@tju.edu.cn

ABSTRACT
The recently emerging applications such as software-defined net-

works and autonomous vehicles require efficient and exact solutions

for constrained shortest paths (CSP), which finds the shortest path

in a graph while satisfying some user-defined constraints. Com-

pared with the common shortest path problems without constraints,

CSP queries have a significantly larger number of subproblems. The

most widely used labeling algorithm becomes prohibitively slow

and impractical. Other existing approaches tend to find approxi-

mate solutions and build costly indices on graphs for fast query

processing, which are not suitable for emerging applications with

the requirement of exact solutions. A natural question is whether

and how we can efficiently find the exact solution for CSP.

In this paper, we propose Vine, a framework that parallelizes the

labeling algorithm to efficiently find the exact CSP solution using

GPUs. The major challenge addressed in Vine is how to deal with a

large number of subproblems that are mostly unpromising but re-

quire a significant amount of memory and computational resources.

Our solution is twofold. First, we develop a two-level pruning ap-

proach to eliminate the subproblems by making good use of the

GPU’s hierarchical memory. Second, we propose an adaptive paral-

lelism control model based on the observations that the degree of

parallelism (DOP) is the key to performance optimization with the

given amount of computational resources. Extensive experiments

show that Vine achieves 18× speedup on average over the widely

adopted CPU-based solution running on 40 CPU threads. Vine also

has over 5× speedup compared with a GPU approach that statically

controls the DOP. Compared to the state-of-the-art approximate

solution with preprocessed indices, Vine provides exact results with

competitive or even better performance.

PVLDB Reference Format:
Shengliang Lu, Bingsheng He, Yuchen Li, and Hao Fu. Accelerating Exact

Constrained Shortest Paths on GPUs (complete version). PVLDB, 14(4):

XXX-XXX, 2021.

doi:10.14778/3436905.3436914

PVLDB Artifact Availability:

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 4 ISSN 2150-8097.

doi:10.14778/3436905.3436914

The source code, data, and/or other artifacts have been made available at

https://github.com/xtra-computing/vine.

1 INTRODUCTION
The constrained shortest path (CSP) problems are widely used to

formulate many applications. Each edge in the graph of such ap-

plications has two properties: a length and a cost. One example is

the vehicle routing problem [41], where edge properties are the

length and cost of the corresponding road segment. The cost could

be road user charges or time costs depending on the application.

Moreover, we have witnessed the recent rise of emerging applica-

tions such as software-defined networks and autonomous vehicles,

which require efficient and exact solutions for CSP. The exact so-

lution requirements come from rigid requirements on safety and

conflicts like routing in autonomous vehicles and battery-powered

drones [6, 8, 17], or minimizing the risk of detection of an aircraft/-

submarine [43, 44]. Those applications cannot tolerate large errors

in CSP solutions because errors can lead to inefficiencies, riskiness,

and safety issues [31]. In this paper, we study whether and how we

can efficiently solve the exact CSP.

The commonly used solution for exact CSP problems is the la-

beling algorithm based on dynamic programming [13]. It has been

well studied and extended to solve a line of CSP problems [7, 18, 41].

In the labeling algorithm, an available path from the source 𝑠𝑟𝑐 to

vertex 𝑣 is presented as a label ℓ𝑣 . Similar to Dijkstra’s algorithm

[5], the labeling algorithm maintains a min-heap of labels and pops

the top label ℓ𝑣 at each iteration. New labels are generated by ap-

pending edges to ℓ𝑣 . The unpromising labels are pruned, and others

are pushed back to the min-heap for further expansion. The objec-

tive is to find the optimal labels at destination vertex 𝑑𝑠𝑡 . In this

paper, we focus on the efficiency of CSP problems with a single

constraint, because they are more commonly used in practice, and

efficiently solving such single-constraint CSP problems is already

very challenging [41]. The single-constraint CSP and the labeling

algorithm are formally presented in Section 2.2.

The labeling algorithm is prohibitively slow in real-world cases

due to the significant computation and memory consumption in-

curred by the large number of labels [14]. It thus significantly limits

the applicability of the labeling algorithm to get an exact solution.

Therefore, many approximate approaches trade off the solution

accuracy for speed. They reduce the number of labels by finding ap-

proximate solutions [38], building indices [37], or both [41]. Wang

et al. [41] present the state-of-the-art approximate CSP solution,

named COLA, which improves the approximate labeling algorithm

https://doi.org/10.14778/3436905.3436914
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3436905.3436914
https://github.com/xtra-computing/vine

by partitioning and building indices on the networks. However,

the approximated solution is not suitable for many emerging appli-

cations with the requirement of exact solutions. Additionally, the

expensive preprocessing of building indexes can be inefficient or

even impractical for frequently updated graphs.

GPUs are promising platforms for solving large-scale graph prob-

lems due to their massive number of cores and high memory band-

width. Existing efforts have shown great success in a plethora of

graph applications on GPUs, such as breadth-first search [26], short-

est path [2], PageRank [11] and subgraph enumeration [10]. Never-

theless, the efficient parallel solutions for CSP on GPUs have been

largely overlooked. Accordingly, we propose a GPU framework

Vine to parallelize the labeling algorithm for the exact CSP solution

efficiently. While the GPU’s massive parallelism is very suitable for

the subproblem parallelism within CSP, the major challenge is how

to deal with the exponential growth of subproblems. Furthermore,

as these subproblems are mostly unpromising in practice, we need

an effective and efficient pruning mechanism to reduce memory

and computational resource usage. Specifically, we propose the

following two techniques to address those challenges.

First, we propose a two-level pruning solution, which makes use

of the hierarchy of memories on the GPU. The first level offers an

efficient pruning in the GPU’s shared memory that reduces GPU

memory contention. The second level prunes labels thoroughly in

GPU’s global memory.

Second, we propose an adaptive parallelism control model that

adjusts the degree of parallelism (DOP) on the GPU at runtime. In

our experiments, we observe that a high DOP explores subprob-

lems quickly but brings more unpromising ones that require more

computation and memory resources, which turns out to be slow

in execution time. Thus, the proposed model is based on the total

number of subproblems and the prediction of its growth at runtime,

which are affected by both the graphs and queries.

Extensive experiments using 11 real-world graphs that comprise

three different applications show that Vine achieves 18× speedups

on average over the widely adopted CPU-based solution on 40

CPU threads, and up to 5× speedups compared to a fine-tuned

GPU approach that statically controls the DOP. Compared to the

state-of-the-art approximate approach, COLA [41], Vine shows

competitive or even better performance while providing the exact

solution without costly preprocessing. The contributions of this

paper are summarized as follows.

• We propose Vine, an acceleration framework for solving exact

CSP queries on GPUs. There are two core techniques proposed: 1)

an efficient two-level pruning technique to prune the subproblems

effectively, and 2) a light-weight adaptive parallelism control model
to adjust the DOP for different graphs and queries at runtime.

• We have conducted extensive experiments to demonstrate that

Vine achieves significant speedups over existing solutions.

• Vine achieves competitive or even better performance to approxi-

mate approaches, which are commonly used in the previous studies

of getting an approximate solution for CSP. This paper shows that,

with our careful optimizations on GPUs, Vine is a viable solution

for solving the exact CSP.

The rest of this paper is organized as follows. In Section 2, we

introduce the definition of CSP, review the relatedwork, and present

the GPU background. In Section 3, we present a baseline approach

for parallelizing the commonly used labeling algorithm.We give the

system overview in Section 4, followed by implementation details in

Sections 5 and 6. Section 7 shows the evaluation of Vine. Section 8

concludes this work.

2 BACKGROUND AND RELATEDWORK
In this section, we provide the GPU preliminaries, define the CSP

problem and labeling algorithm, and review the related work.

2.1 GPU Preliminaries
A single GPU has tens of streaming multiprocessors (SMs). Each

SM contains many processing cores. A program executed by the

GPU is called a Kernel. A kernel executes on multiple thread blocks,

each of which consists of many threads. Thread blocks can further

be divided into warps (each of 32 threads). Each thread block is

assigned to a single SM, and the cores inside each SM execute

the threads in a SIMT fashion, at the granularity of a single warp.

During any given execution cycle, an entire warp of threads only

execute a single instruction.

The global memory of the GPU has a very high bandwidth. It

can be accessed by all threads executing on a GPU, but the latency

is high. In contrast, shared memory is faster for data accesses, but

has limited capacities (usually around 64KB per SM) and can only

be accessed by the threads in the same thread block. There are

two conventional optimization methods for the memory hierarchy

on GPUs. The first is to maximize coalesced memory accesses for

improving the utilization of global memory bandwidth. It requires

that the threads in one warp access one contiguous memory region

at one time instead of scattered accesses. The second is to maximize

the computation within the low-latency shared memory. In this

paper, we develop a novel pruning solution to the efficient use of

both memory optimization methods.

2.2 CSP and Labeling Algorithm
Definition 1 (CSP problem). A CSP problem is defined on a di-

rected graph 𝐺 = (𝑉 , 𝐸), where 𝑉 is the vertex set and 𝐸 is the

edge set. Each edge 𝑒 ∈ 𝐸 is associated with a length 𝑒.𝑙 ≥ 0 and

a cost 𝑒.𝑐 ≥ 0. For a path 𝑝 = ⟨𝑒1, 𝑒2, · · · , 𝑒 |𝑝 |⟩ in 𝐺 , the length

and cost of 𝑝 are defined as 𝑝.𝑙 = 𝑒1 .𝑙⊕𝑒2 .𝑙⊕ · · · ⊕𝑒𝑝 .𝑙 and 𝑝.𝑐 =

𝑒1 .𝑐⊙𝑒2 .𝑐⊙ · · · ⊙𝑒𝑝 .𝑐 , respectively. Following previous works [13,

41], operators ⊕ and ⊙ can be defined as addition, production, min,

and max operators depending on the application. Both operators

satisfy the monotonicity properties.

Problem statement. This paper focuses on CSP problems with

a single constraint. Given a source vertex 𝑠𝑟𝑐 ∈ 𝑉 , a destination
vertex 𝑑𝑠𝑡 ∈ 𝑉 , and a constraint 𝜔 , we let P denote the set of paths
joining 𝑠𝑟𝑐 to 𝑑𝑠𝑡 , where ∀𝑝 ∈ P, 𝑝.𝑐 satisfies the constraint 𝜔 . A
CSP query asks for a shortest path 𝑝∗ = argmin𝑝∈P 𝑝.𝑙 .

The constraint satisfaction function depends on the application.

We detail the constraint used in the vehicle routing problem shortly

in this section, and the constraints of the other two evaluated ap-

plications of this work in Section 7.

Labeling algorithm. The commonly used solution for the exact

CSP is the labeling algorithm based on dynamic programming [13,

A

B

C D E

l = 3 c = 20

l = 6

c = 70

l = 1

c = 20
l = 1

c = 10

l = 9 c = 90

Figure 1: Example of the graph of a vehicle routing problem.

38, 41]. In the labeling algorithm, a path 𝑝 from source vertex 𝑠𝑟𝑐

to vertex 𝑣 is represented as a label attached to vertex 𝑣 , denoted

as ℓ𝑣 = (𝑝.𝑙, 𝑝.𝑐). The result of a CSP query is the label ℓ∗
𝑑𝑠𝑡

, which

represents path 𝑝∗.
The algorithm maintains |𝑉 | non-dominated label lists that store

non-dominated labels separately for every vertex and a shared min-

heap of labels. In each iteration, the algorithm pops the top label ℓ𝑢
from the min-heap and generate a new one ℓ𝑣 from it using edge

𝑒𝑢,𝑣 via the Expansion operation. The Feasibility operation checks

whether ℓ𝑣 satisfies the constraint 𝜔 . The Dominance operation
checks whether ℓ𝑣 is dominated by a label of vertex 𝑣 . If ℓ𝑣 is feasible

and not dominated by any labels, it will be added to both the min-

heap and the non-dominated label list of 𝑣 , otherwise pruned. The

algorithm stops until the optimal label ℓ∗
𝑑𝑠𝑡

is found or the min-

heap is empty. We present more details about the three operations

(Expansion, Feasibility, and Dominance), using the vehicle routing

problem as an example.

Vehicle routing problem. Following previous work [41], we de-

fine both ⊕ and ⊙ to be addition + in the vehicle routing problem.

The constraint 𝜔 is defined as a cost budget so that ∀𝑝 ∈ P, 𝑝.𝑐 ≤ 𝜔 .
Expansion. This operation generates a new label ℓ𝑣 using ℓ𝑢

and edge 𝑒𝑢,𝑣 . It is the transition of a path 𝑝 presented by ℓ𝑢 to

a new path 𝑝 ′ presented by ℓ𝑣 . In the vehicle routing problem,

ℓ𝑣 = (𝑝 ′.𝑙, 𝑝 ′.𝑐) = (𝑝.𝑙 + 𝑒𝑢,𝑣 .𝑙, 𝑝.𝑐 + 𝑒𝑢,𝑣 .𝑐).
Feasibility. This operation checks if the label satisfies the defined

constraint. In the vehicle routing problem, the labeling algorithm

checks if the cost of a path 𝑝 is no more than the predefined budget

(i.e., 𝑝.𝑐 ≤ 𝜔). Paths that do not satisfy the constraints are infeasible
and discarded to reduce the redundancy.

Dominance. This operation checks if a label needs to be pruned.

Specifically, let ℓ𝑣 and ℓ
′
𝑣 present two paths 𝑝 and 𝑝 ′ from 𝑠𝑟𝑐 to

the same vertex 𝑣 , respectively. In the vehicle routing problem, we

define dominance as ℓ𝑣 dominates ℓ ′𝑣 iff 𝑝.𝑙 ≤ 𝑝 ′.𝑙 and 𝑝.𝑐 ≤ 𝑝 ′.𝑐 .
The intuition is that if a longer path 𝑝 ′ takes more cost than 𝑝 ,

𝑝 ′ will never lead to the optimal results. Therefore, the algorithm

prunes the corresponding label ℓ ′𝑣 when it is dominated by any label

attached to the same vertex.

An example of a road network is shown in Figure 1 and we want

to find the CSP from 𝐴 to 𝐸. If there is no constraint, the shortest

path is ⟨𝐴) 𝐵) 𝐷) 𝐸⟩, with total length 4 and cost usage 120. If

we set the cost budget as 100, the shortest path is no longer feasible.

The optimal path becomes ⟨𝐴) 𝐵) 𝐶) 𝐷) 𝐸⟩, where the length
of the path is 6, and the resource usage decreases to 90.

2.3 Related Work
As a classical problem, CSP has been studied for decades [19]. Sev-

eral families of exact algorithms have been proposed, including La-

grangian relaxation [21], column generation [4], path ranking [39],

and integer-linear programming (ILP) [46]. Lagrangian relaxation

iteratively calculates the shortest path with link weights being

weighted sums of the original length and cost on edges in each it-

eration [21]. Path ranking works by solving the 𝑘-th shortest paths

problem and terminates when the first path satisfying all constraints

is found [39]. The ILP approach re-formulates CSP problems and

then invokes external ILP solvers [46]. However, these approaches

are inherently sequential and demonstrate poor practical efficiency.

The most widely adopted solution for CSP problems remains to

be the labeling algorithm [13] based on dynamic programming, as

described in Section 2.2.

Recent approaches focus on providing approximate solutions.

Tsaggouris et al. develop a fully polynomial-time approximation

scheme [38] to improve both asymptotic complexity and practical

performance. Wang et al. [41] present the state-of-the-art work,

COLA, which partitions the network, indexes paths between ver-

tices, and finds approximated CSP. However, either the approxi-

mated result or high overhead of preprocessing is not always satis-

fying in practice. We experimentally evaluate the weak points of

the approximate approach and compare our system’s performance

with COLA in Section 7.5.

The massive parallelism and high memory bandwidth of mod-

ern GPUs are the main reasons for the adoption of GPUs in graph

processing studies. Existing efforts have shown great successes in

parallelizing a plethora of graph acceleration works on GPUs [12,

16, 26, 34, 35]. Many frameworks and primitives have also been pre-

sented for high-performance graph algorithms on GPUs [22, 42, 45].

However, to the best of our knowledge, there is no acceleration of

exact CSP solver and the solutions above cannot efficiently han-

dle the dynamic growth of subproblems. Forcing implementing

the labeling algorithm for CSP using frameworks like Gunrock

would eventually result in rewriting the data storage and process-

ing model, which are mostly the majorities of the components in

such frameworks. We refer the reader to two recent surveys for

more details of GPU-based graph processing [9, 36].

3 A BASELINE APPROACH
In this section, we present a baseline approach of the parallel label-

ing algorithm on the GPU and show our observations to motivate

the designs and optimizations in Vine.

3.1 Sequential vs. Parallel Labeling Algorithms
The sequential algorithm stores labels in the min-heap in order

and the baseline approach of the parallel algorithm maintains the

unexpanded labels in the frontier. The key difference is that the

sequential algorithm always selects the top label from the heap to

expand and prune others in the heap, whereas the baseline approach

expands a fixed number of the frontiers simultaneously in each

iteration. We define it as the degree of parallelism (DOP), denoted

as a tuning parameter 𝐾 .

The DOP of baseline parallel approach is a trade-off between the

parallelism in GPU processing and the amount of workload (the

number of expanding labels). Generally, as illustrated in Figure 2,

there are total 𝑁 labels in the frontiers, 𝐾 of 𝑁 frontier labels are

expanded at the same time. The expanded labels are used to update

the non-dominated label lists. We store the non-dominated label

Pruning

Pruning

Expanded labels

Rest Labels (pruned)

Frontiers

K labels

Expansion

N-K labels

Newly generated labels

Frontiers for the next iteration

Figure 2: The baseline parallel approach expands 𝑲 labels
from the frontiers, and leverages the outcome to prune dom-
inated labels the rest 𝑵 − 𝑲 frontiers in parallel.

A(0,0)

Time

B(1,40)

C(6,70)

Heap top

D(9,90)

C(4,60)

C(6,70)

D(9,90)

D(5,80)

C(6,70)

C(6,70)

E(6,90)

D(5,80)

Expanded labels

D(5,80)C(4,60)B(1,40)A(0,0)

D(9,90)

(a) The sequential labeling algorithm.

A(0,0)

Time

B(1,40)

C(6,70)

D(9,90)

C(4,60)

D(7,90)

D(9,90)

D(5,80)

E(8,100)

E(6,90)Frontier

Expanded labels

B(1,40)

C(6,70)

A(0,0) C(4,60)

D(7,90)

D(5,80)

E(8,100)

(b) The parallel labeling algorithm with 𝑲 = 2.
Figure 3: Processing example of Figure 1 using both sequen-
tial and parallel labeling algorithms. The cost budget is set
to be 100. Dominated labels are stroke out. Unpromising la-
bels are shadowed.

lists in the GPU memory and check each newly expanded label

against those lists for pruning. The updated label lists can be used

to prune the unexpanded (𝑁 − 𝐾) frontiers further.
In the parallel algorithm, there may be unpromising yet un-

pruned labels among the 𝐾 labels expanded, which results in pro-

ducingmore labels than the sequential algorithm.We use Figure 3 to

compare the sequential labeling algorithm and the baseline parallel

approach on solving the CSP example in Figure 1. The intermediate

results are termed in the label format 𝑣 (𝑝.𝑙, 𝑝.𝑐). Both algorithms

start with a label𝐴(0, 0), representing the initial state. In the sequen-
tial algorithm, it only expands four labels before termination. In

comparison, with the DOP set as two (𝐾 = 2), the parallel approach

expands seven labels in total. There are some unpromising labels

among the expanded labels. For example, 𝐶 (6, 70) is dominated by

𝐶 (4, 60). However, since the parallel algorithm expands 𝐶 (6, 70)
before we find 𝐶 (4, 60), we waste the computation on processing

𝐶 (6, 70) and its following labels 𝐷 (7, 90) and 𝐸 (8, 100), which the

sequential algorithm would not expand. As a result, the parallel

labeling algorithm expands more labels than the sequential one.

3.2 Motivation with Baseline Parallel
Algorithm

We experimentally study the impact of different 𝐾 values in tuning

DOP, and analyze the observations from the baseline approach. In

the evaluation, we use three query sets Q1, Q2 and Q3 on different

applications on 11 real graphs. The experimental setup can be found

in Section 7.1.

Observation 1: Label operations, including expansion and pruning,
are the core and the most time-consuming operations in CSP. Paral-
lelizing the labeling algorithm brings a more significant number of

labels than sequential execution. It is because those unpromising

yet unpruned labels generate even more unpromising ones. Label

pruning is very important as it eliminates unpromising labels. How-

ever, parallelizing existing pruning operations causes GPU memory

contention because a label needs to be checked against labels stored

in the non-dominated list and update the list if not being pruned.

The read and write in global memory can contribute over 90% of

label management’s total execution time, thus bottleneck the over-

all performance. Although the shared memory has low latency, its

limited size makes it a challenge to use such a large amount of

subproblems efficiently.

Observation 2: The DOP (i.e., the 𝐾 value) is the key to the per-
formance because of the fact that one needs to carefully examine
the trade-off between “exploring” and “exploiting” subproblems. The
trade-off is already illustrated by the example in Figure 3 that 𝐾 = 2

leads to more label expansions than the sequential algorithm. In

fact, if we further increase the 𝐾 value, it will produce even more

labels (and even more unpromising labels).

Figure 4 demonstrates the execution time of CSP queries on

three graphs with different settings of 𝐾 . As shown in the figure,

the 𝐾 value has a tremendous impact on performance. On the one

hand, setting a large 𝐾 value for high parallelism would quickly

explore subproblems. However, exploration of the subproblems can

result in several times slowdown than the optimal DOP setting.

The reasons are as follows. First, a higher 𝐾 leads to an aggressive

expansion of labels, resulting in a large number of non-optimal

subproblems. In other words, those non-optimal subproblems could

have been effectively pruned if we use a smaller 𝐾 value. Second,

we profile the PCI-e overhead when 𝐾 increases. For the two small

graphs (NW and internet), there is no PCI-e overhead in the test. In

contrast, for a larger graph like LKS, with a large 𝐾 , the processing

runs out the space on GPU global memory and the overhead of

PCI-e data transfer increases dramatically.

On the other hand, setting a small 𝐾 for low parallelism results

in even longer execution time, as shown on the left-end part of the

lines. The reasons are the increasing number of iterations, under-

utilization of the GPU, and degradation of the process. Setting 𝐾

too large or too small would both result in poor performance.

Observation 3: The best setting of 𝐾 is graph- and query-dependent.
The optimal 𝐾 value varies significantly for different graphs with

query set Q2, as shown in Figure 5. In another experiment (figures

are omitted), we also process three query sets on the same NY graph

and find that the best 𝐾 value varies significantly, changing from

500 to more than 4,900 for different queries. The observation is that

the best 𝐾 is both graph-dependent and query-dependent.

0 5 10

0

200

400

600

800

𝐾

E
x
e
c
u
t
i
o
n
T
i
m
e
(
m
s
)

Total execution time

PCI-e overhead

(a) internet

0 5 10 15 20

0

200

400

600

800

𝐾

E
x
e
c
u
t
i
o
n
T
i
m
e
(
m
s
)

Total execution time

PCI-e overhead

(b) NW

0 10 20 30

0

2,000

4,000

6,000

8,000

𝐾

E
x
e
c
u
t
i
o
n
T
i
m
e
(
m
s
)

Total execution time

PCI-e overhead

(c) LKS

Figure 4: The execution time of CSP with Q2, with different settings of 𝑲 on three graphs (internet, NW and LKS).

NY LKS Gnutella internet slashdot gplus

10
3

10
4

10
5

B
e
s
t
𝐾

v
a
l
u
e

Figure 5: Best 𝑲 for different graphs using query set Q2.

Table 1: APIs of Label class in Vine.
API Name Parameter(s) Description

Expansion Edge 𝑒 , Label ℓ𝑣
Expand and generate label ℓ𝑣 using

this label and an edge 𝑒 .

Feasibility None

Return true if this label is feasible,
otherwise false.

Dominance Label ℓ
Return true if this label dominates

ℓ , otherwise false.

The reason is that the query decides the 𝑠𝑟𝑐 and 𝑑𝑠𝑡 , and affects

the total number of subproblems by setting the constraint 𝜔 loose

or tight; the graph structure affects the number of paths from 𝑠𝑟𝑐

to 𝑑𝑠𝑡 ; the lengths and costs of the edges affect the total number of

subproblems. A fixed and predefined 𝐾 value might not capture the

growth of the number of subproblems during the traversal, as the

travel can access different parts of the graph and different parts of

the graph may demonstrate different structures. Instead, adaptively

adjusting 𝐾 at each processing iteration is more promising.

Implications. The above observations motivate the novel design

and careful optimizations in Vine. Observation 1 motivates an ef-

ficient pruning solution that effectively reduces the number of

subproblems while providing high performance by reducing global

memory contention. Observations 2 and 3 motivate us to select

suitable𝐾 values that are adapted to the query and graph structures

at runtime. Instead of finding a single predefined value, we use an

adaptive model to adjust the 𝐾 for each iteration.

4 SYSTEM OVERVIEW
We propose Vine, a parallel framework for finding exact CSP so-

lutions. In this section, we first present an overview of the Vine

framework, including the API design and the algorithm in Vine. In

the following two sections, we present a two-fold solution to deal

with the large number of subproblems at runtime. First, we develop

an efficient two-level pruning solution (in Section 5), which makes

good use of the memory hierarchy of GPU for efficient pruning.

Second, we propose a light-weight adaptive parallelism control

model to adjust the DOP at runtime by learning and predicting the

number of subproblems (in Section 6). In order to differentiate the

static DOP control in the baseline approach, we use 𝐾𝑡 to represent

the DOP of the 𝑡-th iteration in the rest of the paper.

Listing 1: An example of Vine for vehicle routing problem.
class Edge{
int len , cost;

};// end of edge class
class Label{
int vid , l, c; Label *pre = NULL;

void Expansion (const Edge &e, Label &lv) {

lv.l = this ->l+e.l;
lv.c = this ->c+e.c;
lv.pre = this;

}

bool Feasibility () {

return this.c <= cost_budget;
}

bool Dominance (const Label &l) {

return this.l <= l.l && this.c <= l.c;
}

};// end of label class

4.1 API Design
Inspired by the success of existing programming frameworks on

GPU [15, 42, 45], Vine is designed as a programming framework

with three APIs listed in Table 1. The APIs assemble the operations

in the labeling algorithm.We show an example of solving the vehicle

routing problem using Vine in Listing 1. The code consists of the

definition of two classes, Edge and Label. The Edge class contains
length and cost properties. The Label class, with three functions,

defines the behavior of a CSP application. The field pre is used to

backtrack the vertices on the path when we construct the final

optimal path.

Users can develop their applications by simply implementing

these APIs according to their application logic. The abstraction sig-

nificantly reduces the burden of programming on the GPU platform.

Vine automatically executes these functions in parallel on the GPU.

4.2 Algorithm Overview
Vine is powered by accelerating the labeling algorithm using the

GPU. Algorithm 1 shows the labeling algorithm in Vine. There are

fivemajor steps in the algorithm, including initialization, parallelism
control, label expansion, label pruning, and frontier assembling.
• Initialization (Lines 1 to 3). Vine creates an empty label 𝑠𝑟𝑐 (0, 0)
and pushes it into the frontier buffer.

• Parallelism control (Line 6). In each iteration, a parallelism control

model is invoked to determine the DOP for the current iteration

𝑡 . The model outputs the value 𝐾𝑡 by taking the total number of

frontiers and the GPU resources as input. Note that we use the per-

thread and per-warp coarse-grained workload mapping technique

proposed by Gunrock [42].

• Label expansion (Line 8). Vine invokes the user-defined Expansion
function in Label class to generate new labels from the first 𝐾𝑡
frontiers. Without being stored in the global memory, the newly

Algorithm 1: Labeling algorithm in Vine.
Input :Graph g, Source label src (0,0)
Output :Optimal label result
▶Initialization

1 𝑡 ← 0;

2 frontiers← src (0,0);
3 frontierNum← 1;

4 while frontiers ≠ ∅ do
5 𝑡 ← 𝑡 + 1;

▶Parallelism control, executed on the CPU

6 𝐾𝑡 ← AdptParlCtrlModel(frontierNum);

/* GPU kernel 1 */

7 for ℓ ∈ frontiers[1 : 𝐾𝑡] do
▶Label expansion with the first-level pruning intergrated,

leveraging Expansion(), Feasibility(), Dominance()

8 hashPrnTbl← ExpandLabel(ℓ , g);
9 if hashPrnTbl.#EmptyBuckets < threshold then

▶Second-level pruning using Dominance()

10 nondmntLst← 2ndLvlPrn(hashPrnTbl,
nondmntLst);

▶Clean hash-pruning tables

11 nondmntLst← 2ndLvlPrn(hashPrnTbl, nondmntLst);
/* GPU kernel 2 */

▶Pruning unexpanded frontiers using Dominance()

12 for ℓ ∈ frontiers[𝐾𝑡 + 1 : frontierNum] do
13 2ndLvlPrn(ℓ , nondmntLst);

/* GPU kernel 3 */

▶Frontier assembling

14 frontiers, frontierNum← AssembleFrontier();

15 result← nondmntLst [dst];

generated labels are checked by function Feasibility(). Note that
Vine picks the top 𝐾𝑡 labels to expand because expanding such

labels would lead to quicker convergence of the query processing.

• Label pruning (Lines 8 to 13). During the expansion, newly gen-

erated labels in each thread block of the GPU are pushed to a

hash-pruning table for the first-level pruning in shared memory

(Line 8). The hash-pruning table keeps non-dominated labels that

are used to prune the newly generated labels using Dominance().
The hash-pruning table dumps the stored labels to the global

memory for thorough pruning in Lines 10 and 11, when the number

of empty buckets drops under a threshold and after expanding 𝐾𝑡
frontiers, respectively. Non-dominated labels are pushed into the

non-dominated label lists so that they can be used to prune others.

With the list updated, we prune the labels left in the frontiers to

avoid unpromising expansion in Line 13.

• Frontier assembling (Line 14). Vine gathers both the non-dominated

labels expanded and the rest frontiers after pruning. These labels

assemble the frontiers for the next iteration. We adopt the highly

efficient prefix-sum-based frontier generation from [26].

The algorithm terminates when the frontier buffer is empty. The

non-dominated labels stored in the label list associated with 𝑑𝑠𝑡 are

the optimal ones (no feasible result if the label list is empty).

5 TWO-LEVEL PRUNING
Design rationales. Due to the large number of unpromising la-

bels generated during searching, an efficient pruning algorithm

is needed in order to reduce costly memory accesses to the GPU

global memory. We need an approach to achieve a reasonably good

pruning power and very low runtime overhead. To this end, we

take advantage of the shared memory of the GPU and propose the

following two levels of pruning.

The first level offers a very efficient pruning in the shared mem-

ory, with reasonable pruning power. However, the shared mem-

ory has too limited space (e.g., 64KB per SM) to maintain all non-

dominated label lists. Also, pruning in the shared memory only

helps prune labels generated within the block in the current itera-

tion but not thoroughly. Therefore, we design a novel data structure

to effectively take advantage of shared memory to prune as many

labels as possible.

The second-level pruning happens in global memory, which is

applied to the outcome of the first-level pruning and has more

pruning power. Specifically, new labels are checked against non-

dominated labels found in a lazy manner to achieve efficient global

memory access.

5.1 Pruning in the Shared Memory
We design a hash-pruning table to make use of the limited space of

the shared memory. The hash-pruning table indexes a label ℓ𝑣 with

a simple hash function by hashing the vertex id 𝑣 as follows.

𝑖𝑑𝑥ℎ𝑎𝑠ℎ = 𝑣 mod (𝐺𝑃𝑈𝑠ℎ𝑎𝑟𝑒𝑑_𝑚𝑒𝑚𝑜𝑟𝑦_𝑠𝑖𝑧𝑒/𝐿𝑎𝑏𝑒𝑙𝑠𝑖𝑧𝑒)

We employ a linear probing collision resolution since it is cache-

efficient [20]. Particularly, we handle the following three conditions

when pruning the new label ℓ𝑣 . 1) ℓ𝑣 is inserted if 𝑖𝑑𝑥ℎ𝑎𝑠ℎ points to

an empty bucket. 2) If the bucket is not empty and one of the two

collided labels dominate the other, the dominated one is pruned. 3)

If the bucket is not empty and the two labels have different vertex

ids or do not dominate with each other, we probe the new label to

the next bucket according to linear probing.

The indexing in a hash-pruning table is fast due to the efficient

hashing. Moreover, the hash-pruning table dynamically arranges

the limited memory space for efficient occupation. Particularly,

when the number of empty buckets drops under a threshold, the

hash-pruning table dumps the stored labels to the global memory to

make rooms for newly generated labels. Vine dumps the remaining

labels in the hash-pruning table after finishing the current iteration

to make it empty at the beginning of each iteration since different

iterations tend to have very different labels to process.

The hash-pruning table reduces the memory accesses and con-

tentions in the following ways. 1) The hash-pruning operation

aggregates the memory accesses of pruning and visits the global

memory in bulk. 2) Hash-pruning tables located in the different

shared memory of SMs dump contents asynchronously, reducing

the contention significantly.

Figure 6 demonstrates an example of the label pruning using

the hash-pruning table with eight buckets for brevity. The shared

memory of a modern GPU can support more than 8,000 buckets

per SM in the vehicle routing problem.

A

1 2 3 4 5 6 7 8

B

(a) Insert ℓ𝑨 and ℓ𝑩 .

LA LB

L’B LC

1 2 3 4 5 6 7 8

(b) Insert ℓ ′𝑩 , ℓ
′′
𝑩 , and ℓ𝑪 .

(c) ℓ ′𝑩 dominates ℓ𝑩 ; ℓ ′′𝑩 probes; ℓ𝑫
is hashed to 4th bucket.

(d) ℓ𝑫 probes; Insert ℓ ′𝑨.

Figure 6: Collisions and dominance in a hash-pruning table.

• Hashing: Suppose label ℓ𝐴 and ℓ𝐵 are hashed and inserted to

the 1st and 4th bucket of the empty table, respectively (Figure 6a).

Labels ℓ ′𝐵 and ℓ ′′𝐵 are also hashed to the 4th bucket because they all

belong to the same vertex (Figure 6b).

• Collision and dominance: discard dominated labels. A dominance

comparison is conducted because of the collision between labels of

vertex B. In this example, let us assume ℓ ′𝐵 dominates ℓ𝐵 . Therefore,

we discard ℓ𝐵 and put ℓ ′𝐵 at the 4th bucket (Figure 6c).

• Collision only: probe to the next bucket. ℓ ′′𝐵 is inserted after ℓ ′𝐵 .
There is also a collision between them. Let us assume they do not

dominate each other, and thus ℓ ′′𝐵 is probed to the next available

buckets (Figure 6c). In another case, a label ℓ𝐷 is also hashed to

the 4th bucket taken by ℓ ′𝐵 . ℓ𝐷 is then probed to the first available

bucket (Figure 6d), which is the 6th bucket. There is no dominance

comparison required since ℓ𝐷 and ℓ ′𝐵 are from different vertices.

Performance analysis. The number of collisions among labels

from the same vertices is essential for the effectiveness of the first-

level pruning in the shared memory. Thus, in the following, we

develop an analytical model to obtain the expected number of

collisions in each iteration.

We assume there are 𝑤 labels fed into the hash-pruning table

in an iteration and they are randomly distributed among vertices

for simplicity. We define an indicator function 𝑋 (𝑖, 𝑗) to denote the
event of collision between two labels 𝑖 and 𝑗 .

𝑋 (𝑖, 𝑗) =
{
1, if label 𝑖 and label 𝑗 belong to the same vertex;

0, otherwise.

(1)

Given 𝑋 (𝑖, 𝑗), the expected number of collisions is derived from

E[𝑋]. The calculation of E[𝑋] can be modeled as the birthday

problem [40]. The details about this formulation are omitted due to

space constraints.

E[𝑋] =
𝑤∑
𝑖=1

𝑤∑
𝑗=𝑖+1

E[𝑋 (𝑖, 𝑗)] =
(
𝑤

2

)
1

|𝑉 | =
𝑤 (𝑤 − 1)

2|𝑉 | (2)

With the exponential growth in the number of labels, we have𝑤 ≫√
|𝑉 | for most cases. Therefore, we expect a high chance of pruning

labels in the hash-pruning table, as also shown in experiments.

5.2 Pruning in the Global Memory
Figure 7 illustrates the design of pruning in the global memory,

where labels dumped from the hash-pruning table are checked

against the labels stored in the non-dominated label lists for every
vertex. The blocks with the same color represent labels that are

…
…
…

…

…

…

Non-dominated

label lists

A hash-pruning

table

v1

v2

v3

v|v|

Shared memory

Global memory

Figure 7: Dump labels to non-dominated label lists.

attached to the same vertex. In Vine, each list is located in a con-

tiguous GPU memory region to enable coalesced memory accesses.

Lazy update strategy. If a new label dominates some labels in the

non-dominated label list, all of these dominated labels should be

removed to avoid a waste of comparisons when pruning other new

labels later. However, both removing labels and resizing lists are

expensive on GPUs because they require dynamic memory man-

agement and locking to avoid conflict among concurrent threads.

Accordingly, we propose a practical lazy update strategy that only

replaces the first dominated label found in a list by the new label.

We stop the dominance check immediately and ignore the existence

of other dominated labels. If there were some, they remain in the

list until being replaced by other inserted labels.

The lazy update sacrifices the opportunities to reduce redundant

comparisons but enables the efficiency of the list update. Besides, it

keeps the front part of each label list more frequently updated than

other parts. Labels that are closer to the optimal results are likely

to be located at the front part. Therefore, new labels have a high

chance of being pruned by only accessing the front part, reducing

the number of memory accesses. The strategy performs very well

in practice as the pruning is efficient.

Correctness analysis. Vine will eventually find the optimal path

if it exists. Due to the space limitation, we omit the proof here.

6 ADAPTIVE PARALLELISM CONTROL
In this section, we explain how to use the adaptive parallelism

control model to adjust the DOP (Line 6 of Algorithm 1). The output

of the model is 𝐾𝑡 , the DOP of the 𝑡-th iteration. Some frequently

used notations are summarized in Table 2.

Design rationales. We have observed that the DOP (𝐾𝑡) is vital

for the overall performance in Section 3. On the one hand, a low

DOP setting could lead to underutilization of the GPU given that

the GPU has tens of thousands of threads. On the other hand, if we

keep expanding labels at a high DOP, the number of subproblems

would explode and overflow the GPU global memory. Thus, we

must resort to costly PCI-e data transfer between the main memory

and the GPU.

Despite the tradeoffs in DOP, we find that a higher DOP often

achieves higher performance than a significant low DOP.Based

on our observation in Section 3, as long as DOP is not set to be

widely large, the performance is close to the optimal strategy of

varying DOP. Thus, in this paper, we attempt to use higher DOPs

in order to utilize the high parallelism of GPUs, with the goal that

the memory consumption of all labels can be accommodated by

the GPU memory (in order to avoid costly PCI-e traffic during

expansion). Another potential benefit of a higher DOP is to provide

more labels to prune simultaneously in each iteration, amortizing

the overhead of the hash-pruning table and paging between GPU

and CPU memory.

Specifically, we consider both the total number of labels and

the growth of the number of labels at each iteration. The adaptive

model consists of the following design concepts: 1) we dynamically

control the total number of labels within the GPU memory by

modeling an upper limit for the number of unexpanded labels at

each iteration, i.e., the frontier size; 2) given the number of labels

in the current iteration satisfying the upper limit, the number of

labels in the following iteration should also preserve the limit.

6.1 Control the Total Number of Labels
The total number of labels in a CSP processing is estimated as the

sum of two parts, the expanded frontiers and the frontiers in the

future. Let 𝑀𝑡𝑜𝑡𝑎𝑙 be the maximum number of labels that can be

stored in the GPU global memory and𝑀𝑡 be the number of labels

that can be stored in the vacant memory in the 𝑡-th iteration. To

limit these labels within the GPU memory at 𝑡-th iteration, we have:

𝑡∑
𝑖=1

𝑁𝑖 +
𝑇∑

𝑖=𝑡+1
�̂�𝑖 ≤ 𝑀𝑡𝑜𝑡𝑎𝑙 (3)

The label size is application-dependent. In the vehicle routing prob-

lem (Listing 1), a label contains three int values and a pointer, and

the label size is 20 bytes. Thus, 𝑀𝑡𝑜𝑡𝑎𝑙 is calculated as the size of

GPU global memory divided by the label size. In the formula, 𝑇

is defined to be the estimated total number of iterations of solv-

ing the CSP problem. We assume that the frontier size �̂� in the

rest (𝑇 − 𝑡) iterations would be well-controlled by the model and

preserve stable under a limit𝑀𝑎𝑥𝐹𝑡𝑟𝑡+1, i.e.,

�̂�𝑖 ≤ 𝑀𝑎𝑥𝐹𝑡𝑟𝑡+1, 𝑖 ∈ [𝑡 + 1,𝑇] (4)

∴
𝑇∑

𝑖=𝑡+1
�̂�𝑖 ≤ (𝑇 − 𝑡)𝑀𝑎𝑥𝐹𝑡𝑟𝑡+1 (5)

We let

(𝑇 − 𝑡)𝑀𝑎𝑥𝐹𝑡𝑟𝑡+1 = 𝑀𝑡 (6)

∴ 𝑀𝑎𝑥𝐹𝑡𝑟𝑡+1 =
𝑀𝑡

(𝑇 − 𝑡) ,where𝑀𝑡 = 𝑀𝑡𝑜𝑡𝑎𝑙 −
𝑡∑
𝑖=1

𝑁𝑖 (7)

The𝑀𝑎𝑥𝐹𝑡𝑟𝑡+1 value is updated at each iteration with the available

GPU space𝑀𝑡 updated.

Estimating 𝑇 is challenging. In our study, we develop a simple

way to derive the estimation for𝑇 according to graph structures and

the application. For the vehicle routing problem, 𝑇 is capped as the

cost budget of the query divided by the minimum cost of the edges

in the graph. For the applications on social networks and internet

networks, the total number of iterations is usually in hundreds as

we observed in our experiments. Therefore, we empirically set𝑇 as

1,000 for bottleneck shortest path and optimal trust path selection.

6.2 Control the Growth Rate
We aim to find the suitable 𝐾𝑡 to ensure that 𝑁𝑡+1 ≤ MaxFtrt+1
after expanding 𝐾𝑡 labels from 𝑁𝑡 . Since 𝑁𝑡+1 is not known yet in

the 𝑡-th iteration, we use �̂�𝑡+1 to denoted the estimated value. As

illustrated in Figure 2, �̂�𝑡+1 could be calculated as:

�̂�𝑡+1 = 𝑁𝑒𝑤𝐿𝑎𝑏𝑒𝑙𝑡 + 𝑅𝑒𝑠𝑡𝐿𝑎𝑏𝑒𝑙𝑡 ≤ MaxFtrt+1 (8)

Table 2: Summary of notations.
Input Description
𝑇 Estimated total number of iterations

𝑁𝑖 Frontier size of the 𝑖-th iteration

�̂�𝑖 Estimated frontier size of the 𝑖-th iteration

𝑡 Current iteration number

𝑀𝑡𝑜𝑡𝑎𝑙
Maximum number of labels that can be stored in the GPU

global memory

𝑀𝑡
Number of labels that can be stored in the vacant GPU

global memory in current iteration

𝐾𝑡 DOP, the number of labels to expand in current iteration

𝑀𝑎𝑥𝐹𝑡𝑟𝑡+1 Maximum frontier size in the next iteration

𝑁𝑒𝑤𝐿𝑎𝑏𝑒𝑙𝑡 Number of labels generated from the 𝐾𝑡 labels

𝑅𝑒𝑠𝑡𝐿𝑎𝑏𝑒𝑙𝑡 Number of unexpanded frontiers after pruning

𝜔𝑡
Growth ratio of the frontier size in the current iteration,

generated by a forecast model

𝜃𝑡
Pruning ratio of the unexpanded frontiers in the current

iteration, generated by a forecast model

𝑁𝑒𝑤𝐿𝑎𝑏𝑒𝑙𝑡 represents the new labels expanded from 𝐾𝑡 labels, and

𝑅𝑒𝑠𝑡𝐿𝑎𝑏𝑒𝑙𝑡 represents the unexpanded frontiers after pruning in the

𝑡-th iteration. We use 𝜔𝑡 to denote the growth ratio of the frontier

size, i.e.,𝜔𝑡 = 𝑁𝑡+1/𝑁𝑡 . If we expand𝐾𝑡 labels, based on the growth
rate of frontiers, 𝑁𝑒𝑤𝐿𝑎𝑏𝑒𝑙𝑡 can be estimated as:

𝑁𝑒𝑤𝐿𝑎𝑏𝑒𝑙𝑡 = 𝜔𝑡𝐾𝑡 (9)

Suppose 𝜃𝑡 is the pruning ratio of the rest (𝑁𝑡 − 𝐾𝑡) unexpanded
labels in the frontier. We thus model 𝑅𝑒𝑠𝑡𝐿𝑎𝑏𝑒𝑙𝑡 as:

𝑅𝑒𝑠𝑡𝐿𝑎𝑏𝑒𝑙𝑡 = (1 − 𝜃𝑡) (𝑁𝑡 − 𝐾𝑡) (10)

�̂�𝑡+1 can thus be estimated by substitute Equations 9 and 10 into

Equation 8, and we can get 𝐾𝑡 that:

�̂�𝑡+1 = 𝜔𝑡𝐾𝑡 + (1 − 𝜃𝑡) (𝑁𝑡 − 𝐾𝑡) ≤ MaxFtrt+1
∴ 𝐾𝑡 ≤ (MaxFtrt+1 − 𝑁𝑡 + 𝜃𝑡𝑁𝑡)/(𝜔𝑡 − 1 + 𝜃𝑡)

(11)

SinceMaxFtrt+1 and 𝑁𝑡 are known at the 𝑡-th iteration, to obtain

𝐾𝑡 , we need to know the value of 𝜔𝑡 and 𝜃𝑡 . To do so, we adopt a

forecast model to predict both ratios 𝜔𝑡 and 𝜃𝑡 .

Autoregression forecast model. Since the prediction methods

for 𝜔𝑡 and 𝜃𝑡 are similar, we use the prediction of 𝜔𝑡 as an example.

We take the growth ratio of frontier sizes in different iterations as

a time series {𝜔1, 𝜔2, . . . , 𝜔𝑡−1} where 𝜔𝑖 = 𝑁𝑖+1/𝑁𝑖 , 𝑖 ∈ [1, 𝑡 − 1].
We employ an autoregression (AR) forecast model (Equation 12) to

predict the next item in the series, i.e., 𝜔𝑡 , by learning the trend [1].

𝜔𝑡 =

𝑞∑
𝑗=1

𝜑 𝑗𝜔𝑡−𝑗 + 𝑧 + 𝜀𝑡 , where 𝑞 < 𝑡 . (12)

The AR model uses frontier sizes in the previous 𝑞 iterations. In

our implementation, we choose 𝑞 = 6 empirically. 𝜑1, . . . 𝜑𝑞 are

the derived coefficients by applying least squares [23] on the time

series items, 𝑧 is a constant, and 𝜀𝑡 is the Gaussian white noise.

The AR model can forecast an arbitrary number (< 𝑞) of itera-

tions by submitting the predicted values back to itself. There are

other available approaches for prediction, such as applying neural

networks. In this work, we find that AR is light-weight and accurate

enough for our purposes.

7 EXPERIMENTAL EVALUATION
This section experimentally evaluates Vine in comparisons with

existing exact and approximate approaches.

7.1 Experimental Setup
Hardware. Table 3 summarizes the hardware specification. We

conduct experiments on a Linux server with two 10-core Xeon

E5-2640v4 CPUs, 256GB memory, and an NVIDIA Tesla P100 GPU,

which has 12GB global memory and 56 SMs. We also test the per-

formance of Vine on a desktop GPU, Titan Xp, which has 12GB

global memory and 30 SMs. Note, P100 has a larger number of SMs

as well as larger shared memory per SM. All GPU programs are

compiled with NVIDIA’s nvcc compiler (version 10.1), and the CPU

baseline is compiled with gcc 8.3 using -O3 flag. In our experiments,

the graph data is pre-loaded into the GPU memory. The reported

results include the query processing time and the PCI-e transfer

time for query input and output. We run all tests five times and

present the average time.

Comparisons. We have studied the implementations on the CPU

as baselines. Specifically, we note there are some open-source li-

braries in Boost to solve CSP [28]. Boost only supports sequential

algorithms, and thus we parallelize the labeling algorithm [13]

based on dynamic programming using OpenMP, running on 40

CPU threads (denoted as CPU). Our study finds that our home-

grown sequential solution is faster than Boost and our parallel

version is even much faster than Boost. Thus, we only report the

results for our home-grown parallel solution on the CPU. We dis-

cuss more implementation details of the CPU-based approach in

the appendix.

To understand the impact of the proposed techniques, we com-

pare Vine with the following implementations. Note that when

subproblems cannot fit into the GPU memory, all of the evaluated

GPU implementations leverage the UVA (unified virtual addressing),

which allows the GPU to access the main memory.

• Vine (1-level pruning). This approach is the same as Vine ex-

cept that the hash-pruning table is disabled.

• Vine (PC=baseline). This approach is the same as Vine, except

that Vine (PC=baseline) expands all frontier labels in every iteration.

PC stands for parallelism control.

• Vine (PC=static). Vine (PC=static) is the collection of all the

shortest execution for each querywith an optimal predefined𝐾 . The

optimal 𝐾 is obtained by conducting comprehensive experiments

for every single query on each data set with different 𝐾 settings

independently. This is the best case for the static approach. With

this strong comparison candidate, we demonstrate the effectiveness

of our adaptive control.

• COLA. COLA [41] is the state-of-the-art approximate CSP solu-

tion based on indexing on road networks. It is a sequential algo-

rithm with indexes. We study the implementation of COLA [41],

and we find that it is challenging (possibly for another orthogonal

study) to parallelize COLA or optimize it for modern hardware.

First, COLA leverages highly customized data structures like maps,

heaps, and vectors that are not thread-safe. Furthermore, COLA’s

pruning procedure is inherently sequential, tightly coupled to the

label expansion. Therefore, we use the original code of COLA.

Table 3: Hardware specification.
2×E5-2640v4 P100 GPU Titan Xp

of compute units 20 56 30

of threads 40 3,584 3,840

Frequency (GHz) 2.4 1.3 1.58

Mem. (GB) 256 12 12

Mem. Bw. (GB/s) 68.3 549 547.7

Cache/Shared Mem. per SM 25MB 64KB 48KB

Mem. type DDR4 HBM2 GDDR5X

Table 4: Details of data sets.
Type Data set |V| |E| Size

R
o
a
d

New York City (NY) 264,346 730,100 14MB

Florida (FLA) 1,070,376 2,712,798 53MB

Northwest USA (NW) 1,207,945 2,840,208 58MB

Northeast USA (NE) 1,524,453 3,897,636 77MB

Great Lakes (LKS) 2,758,119 6,794,808 141MB

Synthetic road networks 16,200,000 48,600,000 483MB

I
n
t
e
r
n
e
t Router Connection (router) 2,113 6,632 1MB

Internet (internet) 40,164 170,246 2MB

P2P Gnutella (gnutella) 62,586 147,892 3MB

Internet Topology (skitter) 1,696,415 11,095,298 277MB

S
o
c
.

Slashdot Network (slashdot) 70,068 358,647 8MB

Google+ Social Network (gplus) 211,187 1,141,650 36MB

Applications and data sets.We evaluate the performance of Vine

with 11 real-world graphs shown in Table 4. We test the following

three applications implemented using Vine framework.

(1) Vehicle routing on road networks. Following previous works [33,

41], this application is designed to find the shortest path with the

total cost under a given cost budget. The road networks are obtained

from the 9th DIMACS challenge [3], where edge properties are the

road length and the cost.

(2) Bottleneck shortest path with bandwidth constraint on Internet net-
works. This problem is to find the fastest path between two vertices

with a minimum bandwidth requirement, where the vertices repre-

sent access points in the network. Graphs are obtained from [24, 32],

where edge attributes are the link latency and bandwidth. Note

that the latency is the additive objective and the bandwidth is the

min-max QoS measure, which is quantified in the range of [0, 10]
to represent different levels of bandwidth.

(3) Optimal trust path selection on social networks. The objective
of this application is to find the path with the highest trust to

a person [25]. A vertex in these social networks represent one

person, and edges between vertices are assigned with a trust value

(T ∈ [0, 1]) and a social intimacy value (𝛾 ∈ [0, 1]). The optimal

path satisfies the constraint that the attenuated aggregation of social

intimacy (i.e., the multiplication of 𝛾 on the edges) is greater than

a predefined threshold. Different from the other two applications,

optimal trust path is based on a non-additive constraint. We take

the negation of T ’s logarithmic transformations as each edge’s

length to formulate the problem as finding the shortest path with

social intimacy as the cost. We adopt the method in [25] to generate

T and 𝛾 randomly.

Query sets. We adopt the rule proposed in [41] to produce road

network queries. When generating queries, the src and dst vertices
are generated randomly. All these queries are divided into different

sets in terms of the lengths of their shortest-length paths. We pick

0.8

11

1 2

17

3

17

25
29 28

36

1

13

8
6

22

4

17

24
27

24

40

1.1

19

27

10

28

4

15
17

38

28

42

0
5
10
15
20
25
30
35
40
45

N
Y

FLA

N
W

N
E

LK
S

router

internet

gnutella

skitter

slashdot

gplus

Sp
ee
du
p

Q1 Q2 Q3

(a) Tesla P100

1

9

3 2 2
7

17

30

10

32 32

1

6

1 1

6
10

14

24

19

26 27

2

6
10

2

11

6

18
14

28

11

31

0
5
10
15
20
25
30
35
40
45

N
Y

FLA

N
W

N
E

LK
S

router

internet

gnutella

skitter

slashdot

gplus

Sp
ee
du
p

Q1 Q2 Q3

(b) Titan Xp

Figure 8: The speedups of CSP queries on different graphs (Vine over CPU) using two different GPUs.

0

10

20

30

40

50

60

0.2M 0.6M 1.8M 5.4M 16.2M 30.4M

Q
u

er
y

 T
im

e
(s

)

Vertices

CPU
Vine (PC=baseline)
Vine (PC=static)
Vine (1-level pruning)
Vine

Figure 9: The query execution time of different solutions on
synthetic road networks using query set Q2.

three query sets Q1, Q2, and Q3, that have the path lengths within

the range of [𝑑𝑚𝑖𝑛/8, 𝑑𝑚𝑖𝑛/4), [𝑑𝑚𝑖𝑛/4, 𝑑𝑚𝑖𝑛/2), and [𝑑𝑚𝑖𝑛/2, +∞),
respectively, where 𝑑𝑚𝑖𝑛 is the diameter of the graph. Constraints

are also generated randomly between the minimum cost of all

paths and the cost of the shortest-length path from src to dst. Q1 is
designed to be relatively small in search space, Q2 is moderate, and

Q3 is large. Each query set consists of 20 queries. We follow the

same concept to generate three query sets for each internet graphs.

The aggregation of social intimacy in queries for social network

graphs are set as 𝑄1 : 𝛾 ≥ 0.07, 𝑄2 : 𝛾 ≥ 0.04, and 𝑄3 : 𝛾 ≥ 0.01.

Experiment outline. Section 7.2 presents the overall performance

comparison with the CPU-based approaches. Sections 7.3 and 7.4

evaluate the impact of two-level pruning and adaptive parallelism

control, respectively. We compare Vine with COLA in Section 7.5.

7.2 Overall Performance Comparison
Figure 8 shows speedup results of Vine over CPU using P100 and

Titan Xp, respectively. The speedup is calculated as the execution

time of the CPU divided by that of Vine. Vine gets a significant

speedup using a single GPU over using 40 CPU threads (i.e., 18×
speedups on average). The maximum speedup on P100 GPU is 42×
and the minimum is 0.8× on the NY graph. The maximum speedup

on Titan Xp is 32× and the minimum is also 1× on the NY graph.

Since NY is a relatively small network, the GPU related overhead,

including PCI-e transfer and kernel invocation, takes over 70% of

the end-to-end execution time, which is not negligible, unlike other

cases. In order to handle the large search space of the CSP problem,

massive thread parallelism and memory bandwidth of the GPU

are both desirable features (as shown in Table 3). These lead to

significant performance improvement over CPUs.

We also compare the performance of Vine on P100 and Titan

Xp. We observe that Vine performs better on P100 than that on

Titan Xp with 1.8× speedups on average. The main reason for this

performance difference is that P100 has more SMs, as well as larger

shared memory per SM than Titan Xp. Therefore, Vine takes advan-

tage of larger shared memory and achieves more efficient pruning

on P100. As a result, we study the profiling results, and observe

that Vine on P100 has 3.3× fewer global memory transactions than

that on Titan Xp.

Performance-price ratio. Vine shows a high performance-price

ratio. The price of the P100 GPU is 3× than the two-socket CPU

and 5× than Titan Xp. We define the performance-price ratio as:

1/𝑡𝑖𝑚𝑒/𝑝𝑟𝑖𝑐𝑒 . With up to 42× speedups, the performance-price

ratio of Vine is much higher than its CPU counterpart’s for most

of the cases, showing up to 13× better cost-efficiency. Titan Xp

has even higher performance-price ratio as it achieves more 50% of

P100’s performance on average but only costs 1/5 of the price of
P100, delivering even higher (up to 22×) cost efficiency on average

over the CPU-based counterpart.

Performance-power ratio. Vine also shows a high performance-

power ratio compared to CPU. The thermal design powers (TDP)

of the P100 and Titan Xp are both 250W, which is 1.4× of the two-

socket CPUs. With up to 42× speedups on GPUs, Vine delivers

much better energy efficiency than the CPU-based counterparts.

Scalability.Vine gains higher speedups on larger graphs and scales
better than CPU. We further evaluate the scalability of Vine using

synthetic road networks. As shown in Figure 9, Vine (on P100)

shows very good scalability. We terminate the query if it runs more

than 1 minute. Note that 30.4M is the maximum graph size that the

current machine can support in this test. The design of Vine does

not have limits on graph size, and the graph size is limited in the

sense that the graph data and intermediate results need to be in the

main memory and GPU memory.

Through the comparison among GPU baselines with the in-

creased graph size, we have the following observations on the

proposed techniques. First, compared to Vine (PC=baseline), all the

GPU implementations with DOP tuning scale well. As the graph size

increases, adjusting the DOP shows even more significant impact

on the performance. Vine’s adaptive parallelism control effectively

shows minimum influence caused by the increasing graph size. Sec-

ond, the two-level pruning mitigates the costly label management

especially when the graph size is large. Particularly, Vine (1-level

pruning) shows similar performance as Vine and Vine (PC=static)

on small graphs but performs much worse than Vine on the graph

with 16.2M vertices.

1.2 1.0 1.2 1.1 1.0 1.0 1.0 1.2 1.1 1.0 0.91.0
1.5 1.7

1.2 0.9 1.0 1.1 1.2 1.2

2.5

1.8
1.3

4.0

3.2

2.2 2.4

1.6
1.2

2.4
1.8 1.7

1.4

0
1
2
3
4

N
Y

FLA

N
W

N
E

LK
S

router

internet

gnutella

skitter

slashdot

gplus

Sp
ee
du
p

Q1 Q2 Q3

Figure 10: The speedup of CSP queries on different graphs
(Vine over Vine (1-level pruning)).

0

10

20

30

FLA NE

#
 o

f
p
ru

n
ed

 l
ab

el
s x 100000

Vine (1-level pruning) Vine

(a) Number of pruned labels.

0

10

20

30

FLA NE

#
 o

f
ex

p
an

d
ed

 l
ab

el
s x 100000

Vine (1-level pruning) Vine

(b) Number of expanded labels.

Figure 11: The number of expanded and pruned labels of
Vine (1-level pruning) and Vine using query set Q2.

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

Q1 Q2 Q3

E
x
ec

u
ti

o
n
 T

im
e

(m
s)

Vine (PC=baseline) Vine (PC=static) Vine

(a) NW

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

Q1 Q2 Q3

E
x

ec
u

ti
o

n
 T

im
e

(m
s)

Vine (PC=baseline) Vine (PC=static) Vine

(b) NE

Figure 12: Query efficiency of Vine using different paral-
lelism control strategies on different graphs.

7.3 Impact of Two-level Pruning
To understand the impact of the two-level pruning optimization

with the hash-pruning table, we further conduct experiments with

Vine and Vine (1-level pruning) in this part. We present the result

collected by running Vine on P100. As shown in Figure 10, we

can draw an overall conclusion that Vine outperforms Vine (1-level

pruning) on most of the graphs with up to 4× speedups. Vine shows
little speedup on solving Q1 for most of the cases. Because of the

tight constraint of Q1, most of the generated labels are not feasible.

These unfeasible labels are discarded immediately without com-

parison with others. Thus, the two-level pruning does not help to

prune much but even brings slight overhead. Nevertheless, with the

pruning optimization, Vine still outperforms Vine (1-level pruning)

for 31 out of 33 test cases and is never more than 10% slower than

Vine (1-level pruning).

Analysis on the efficiency of label pruning. Efficient pruning

reduces the total number of subproblems, which makes it easier to

find the optimal results. As shown in Figure 11a, Vine prunes more

labels than Vine (1-level pruning). It turns out that Vine finishes

query faster with around 50% number of labels fewer than Vine

(1-level pruning), as shown in Figure 11b. Besides reducing the

total amount of labels, the hash-pruning table also significantly

reduces the global memory contention by buffering updates. Vine

shows similar pruning outcomes on other graphs and queries at

different scales. For brevity, we show only the above cases, where

Vine achieves 1.2× and 1.5× speedups, respectively.

Vine Vine (PC=static)

0 20 40 60 80 100 120 140 160 180 200
Iteration

0

4

8

12

16

20

S
iz

e
of

 fr
on

tie
rs

 (
X

 1
00

0)

(a) Frontier sizes.

0 20 40 60 80 100 120 140 160 180 200
Iteration

0

5

10

15

20

25

K
 V

al
ue

 (
X

 1
00

0)

(b) DOP control with 𝑲 values.

Figure 13: Frontier sizes and DOP (i.e., 𝑲𝒕 and 𝑲) in different
iterations on the NE graph.

7.4 Impact of Parallelism Control
Figure 12 presents the execution time of Vine (PC=baseline), Vine

(PC=static), and Vine on NW and NE graph using P100. We observe

similar behaviors on other data sets using the other GPU, Titan Xp,

and thus we omit the results for brevity. We have the following

observations. First, both static and adaptive parallelism control

help improve the performance over the baseline, because the total

amount of work is reduced since there is more “exploitation”. The

controlled DOP helps reduce global memory accesses and thus also

reduces the execution time.

Second, Vine performs better than Vine (PC=static) since the

static parallelism control overlooks the distinctions of iterations.

As the growth of the number of labels changes depending on the

graph structure and query at runtime, a static value can hardly

perform well at all iterations. Vine, instead, proficiently tailors 𝐾𝑡
for each iteration according to both the estimated total number of

labels and the growth of the number of labels during the process.

Impact to frontier size. Taking one of the query processing on

the NE graph as an example, we show the trend of the frontier size

in Figure 13a. As the first 100 iterations shown in the figure, Vine

maintains a smaller frontier size than Vine (PC=static) and expands

more labels in the middle iterations. Vine turns to converge faster

and achieves 1.3× speedups over Vine (PC=static) in this case.

One of the benefits Vine obtains from the adaptive parallelism

control model is changing 𝐾𝑡 for a different stage of processing. We

show the adaptive value 𝐾𝑡 and the static value of 𝐾 in Figure 13b.

The trend of frontier expansion is steady at the beginning, and thus

adaptive DOP control is not activated yet. After the frontier size

begins to flatten, the model encourages increasing DOP. Vine gets

a steeper trend of frontier sizes, which leads to a fast exploration

in the middle stages, which Vine (PC=static) cannot achieve. At

this point, the adaptive control model guides Vine to slow the

exploration and decrease DOP. At around iteration 120, Vine has

increased DOP to accelerate the convergence.

In summary, the adaptive parallelism control can help achieve a

reliable performance improvement.

7.5 Comparison with Approximate Approaches
Since COLA [41] is the state-of-the-art approximate solution for

CSP, we performed a study with the original source code from

COLA, and have the following findings.

First, the preprocessing is time-consuming, which makes COLA

mostly for static graphs in practice. We present the total prepro-

cessing time of COLA in Figure 14. COLA has a tuning parameter

(approximation ratio 𝛼) to control the solution quality, with value

no smaller than one. A larger 𝛼 leads to smaller preprocessing time

but a more significant relative error. For example, it can take hours

to more than a half-day to index a single graph. This overhead of

preprocessing (i.e., index construction) becomes impractical in the

real-world as the changes in road conditions and charges call for

real-time processing. We discuss more details on the extensions of

dynamic graphs in the appendix.

Second, the solution error of COLA highly depends on the tuning

parameter 𝛼 and the graph structure. Setting 𝛼 = 1.4 leads to a

shorter preprocessing time, but the relative error could be as high

as 14%. The applications with requirements of exact solution may

not be able to tolerate the relative error of the result. On the other

hand, although setting 𝛼 = 1.005 leads to a very small error on

some small graph like NY, it leads to a larger error on other graphs

(meanwhile leads to very high preprocessing time).

Finally, we compare the query response time of Vine and COLA.

Figure 15 shows the query time of Vine and COLA with different

approximation ratios (𝛼). We observe that COLA has better perfor-

mance with a higher approximation ratio (also leading to larger

errors). Compared with COLA’s performance with the smallest er-

ror (𝛼 = 1.005), Vine’s performance is competitive and even better

on larger graphs. We emphasize a few points that are not shown

in this comparison. First, COLA builds indexes, but Vine does not.

Second, Vine leverages the GPU acceleration, but COLA is sequen-

tial on the CPU. Third, Vine processes exact CSP results, but COLA

targets approximated results. Our comparison with COLA demon-

strates that: by efficiently leveraging the GPU acceleration, we can

deliver the exact CSP results whose performance is comparable and

even faster than the state-of-the-art solution.

7.6 Discussions
Summary of experimental findings. The experimental findings

are summarized as follows. First, compared to the labeling algorithm

on 40 CPU threads, Vine achieves 18× speedups on average. Second,
Vine outperforms Vine (1-level pruning) up to 4× due to the effi-

cient two-level pruning. Third, both static and adaptive parallelism

control help improve the query performance over the baseline, and

our adaptive control provides a better performance improvement

for different queries on different graphs. Last but not least, com-

pared to the state-of-the-art approximate solution, Vine produces

exact solutions at a competitive or even better performance without

time-consuming preprocessing.

The significant improvement on accelerating exact CSP on GPUs

enables some potential applications of exact CSP that were not

used before because of its low performance. For example, in net-

work cases with response time requirements of 10 ms, traditional

approaches take more than one second, which cannot fulfill the

rigid user requirement. In safety-critical cases, highly accurate or

exact solutions are required to route automated vehicles to avoid

collisions [8, 29]. Vine has the potential of enabling exact CSPs in

those applications, because 1) Vine is much faster in finding exact

results than other existing exact solutions, and 2) given a time bud-

get of execution, Vine provides comparable or even better results

than the state-of-the-art approximate solution.

Limitations of Vine. First, Vine leverages the support of UVA

between CPUs and GPUs to handle out-of-core processing of labels.

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

NY FLA NW NE LKS

P
re

p
ro

ce
ss

in
g

 T
im

e
(s

) COLA (α=1.005)

COLA (α=1.05)

COLA (α=1.4)

(a) Preprocessing time.

0%

2%

4%

6%

8%

10%

12%

14%

16%

NY FLA NW NE LKS

R
el

at
iv

e
E

rr
o
r

COLA (α=1.005)
COLA (α=1.05)
COLA (α=1.4)

(b) Relative error.
Figure 14: Preprocessing time and relative error of COLA
with different configuration (i.e., 𝜶) on road networks.

0

100

200

300

400

500

600

NY FLA NW NE LKS

Q
u

er
y

 T
im

e
(m

s)

COLA (α=1.005) COLA (α=1.05) COLA (α=1.4) Vine

Figure 15: Execution time of Vine and COLA with different
𝜶 on different road networks.

The total main memory space in the system limits the graph size

that Vine can handle. It will be interesting future work to study

1) how to efficiently support even large graphs on the disk, and 2)

how to scale efficiently in a multi-node GPU cluster.

Second, the CSP problem is NP-hard [14] and Vine only provides

empirical speedups by proposing efficient parallel approaches. We

acknowledge that Vine is not a new algorithm or an approach that

is theoretically better than existing ones. Nevertheless, the labeling

algorithm solves the CSP problem in pseudo-polynomial time [13].

Moreover, as mentioned in [27, 30], many real-world applications

in practice do not exhibit worst-case properties. In this paper, we

demonstrate that Vine efficiently parallelizes the existing exact

algorithm, leveraging GPU for a high performance in practice.

8 CONCLUSIONS
Motivated by the recent rise of emerging applications that require

efficient and exact solutions for CSP, we present Vine, a novel and

practical framework for accelerating exact CSPs on the GPU. There

are two techniques proposed to tackle the extremely large number

of subproblems. First, we develop an efficient two-level pruning

to eliminate the unpromising subproblems by making good use of

the hierarchical memory on the GPU. Second, we propose a light-

weight adaptive model to control the degree of parallelism that

adapts to the number of subproblems and their growth at runtime.

Vine achieves more than an order of magnitude speedup over the

CPU counterpart. Compared to the state-of-the-art approximate

solution, Vine produces exact solutions at a competitive or even

lower latency without costly preprocessing. With the novel design

and optimizations on GPUs, Vine can be a viable and cost-effective

solution for exact CSPs in many emerging applications.

ACKNOWLEDGMENTS
This work is in part supported by a MoE AcRF Tier 1 grant (T1

251RES1824) and Tier 2 grant (MOE2017-T2-1-122) in Singapore.

Yuchen Li’s work is supported by the Ministry of Education, Sin-

gapore, under its Academic Research Fund Tier 2 (Award No.:

MOE2019-T2-2-065). We also thank Liyun Dai, Guangyi Qiao, and

Shiheng Chen for the initial discussions of the work.

REFERENCES
[1] Chris Chatfield andHaipeng Xing. 2019. The analysis of time series: an introduction

with R.
[2] Andrew Davidson, Sean Baxter, Michael Garland, and John D Owens. 2014. Work-

efficient parallel GPU methods for single-source shortest paths. In IPDPS (2014).
349–359.

[3] Camil Demetrescu, Andrew V Goldberg, and David S Johnson. 2009. The Shortest
Path Problem: Ninth DIMACS Implementation Challenge. Vol. 74.

[4] Martin Desrochers, Jacques Desrosiers, and Marius Solomon. 1992. A new opti-

mization algorithm for the vehicle routing problem with time windows. Opera-
tions research 40, 2 (1992), 342–354.

[5] Edsger W Dijkstra et al. 1959. A note on two problems in connexion with graphs.

Numerische mathematik 1, 1 (1959), 269–271.

[6] Kevin Dorling, Jordan Heinrichs, Geoffrey G Messier, and Sebastian Magierowski.

2016. Vehicle routing problems for drone delivery. Transactions on Systems, Man,
and Cybernetics: Systems 47, 1 (2016), 70–85.

[7] Dominique Feillet, Pierre Dejax, Michel Gendreau, and Cyrille Gueguen. 2004.

An exact algorithm for the elementary shortest path problem with resource con-

straints: Application to some vehicle routing problems. Networks: An International
Journal 44, 3 (2004), 216–229.

[8] Ewgenij Gawrilow, Ekkehard Köhler, Rolf H Möhring, and Björn Stenzel. 2008.

Dynamic routing of automated guided vehicles in real-time. InMathematics–Key
Technology for the Future. 165–177.

[9] Chuang-Yi Gui, Long Zheng, Bingsheng He, Cheng Liu, Xin-Yu Chen, Xiao-Fei

Liao, and Hai Jin. 2019. A survey on graph processing accelerators: Challenges

and opportunities. Journal of Computer Science and Technology 34, 2 (2019),

339–371.

[10] Wentian Guo, Yuchen Li, Mo Sha, Bingsheng He, Xiaokui Xiao, and Kian-Lee

Tan. 2020. GPU-Accelerated Subgraph Enumeration on Partitioned Graphs. In

SIGMOD (2020). 1067–1082.
[11] Wentian Guo, Yuchen Li, Mo Sha, and Kian-Lee Tan. 2017. Parallel personalized

pagerank on dynamic graphs. Proceedings of the VLDB Endowment 11, 1 (2017),
93–106.

[12] Wentian Guo, Yuchen Li, and Kian-Lee Tan. 2020. Exploiting Reuse for GPU

Subgraph Enumeration. Transactions on Knowledge and Data Engineering (2020).

[13] Pierre Hansen. 1980. Bicriterion path problems. In Multiple criteria decision
making theory and application. 109–127.

[14] Refael Hassin. 1992. Approximation schemes for the restricted shortest path

problem. Mathematics of Operations research 17, 1 (1992), 36–42.

[15] Bingsheng He, Wenbin Fang, Qiong Luo, Naga K Govindaraju, and TuyongWang.

2008. Mars: a MapReduce framework on graphics processors. In PACT (2008).
260–269.

[16] Changwan Hong, Aravind Sukumaran-Rajam, Jinsung Kim, and P Sadayappan.

2017. Multigraph: Efficient graph processing on gpus. In PACT (2017). 27–40.
[17] Saghar Hosseini, Ran Dai, and Mehran Mesbahi. 2013. Optimal path planning

and power allocation for a long endurance solar-powered UAV. In ACC (2013).
2588–2593.

[18] Stefan Irnich and Guy Desaulniers. 2005. Shortest path problems with resource

constraints. In Column generation. 33–65.
[19] Hans C Joksch. 1966. The shortest route problem with constraints. Journal of

Mathematical analysis and applications 14, 2 (1966), 191–197.
[20] Daniel Jünger, Christian Hundt, and Bertil Schmidt. 2018. WarpDrive: Massively

parallel hashing on multi-GPU nodes. In IPDPS (2018). 441–450.
[21] Alpar Juttner, Balazs Szviatovski, Ildikó Mécs, and Zsolt Rajkó. 2001. Lagrange

relaxation based method for the QoS routing problem. In INFOCOM (2001), Vol. 2.
859–868.

[22] Farzad Khorasani, Keval Vora, Rajiv Gupta, and Laxmi N Bhuyan. 2014. CuSha:

vertex-centric graph processing on GPUs. In HPDC (2014). 239–252.
[23] Steven J Leon, Ion Bica, and Tiina Hohn. 1998. Linear algebra with applications.

Vol. 6.

[24] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. 2005. Graphs over time:

densification laws, shrinking diameters and possible explanations. In SIGKDD
(2005). 177–187.

[25] Guanfeng Liu, Yan Wang, and Mehmet A Orgun. 2010. Optimal social trust path

selection in complex social networks. In AAAI (2010). 1391–1398.
[26] Hang Liu and H Howie Huang. 2015. Enterprise: breadth-first graph traversal on

GPUs. In SC (2015). 1–12.
[27] Lawrence Mandow and JL Pérez De La Cruz. 2009. A memory-efficient search

strategy for multiobjective shortest path problems. In AAAI (2009). 25–32.
[28] Drexl Michael. 2006. Boost Graph Library: Resource-Constrained Shortest

Paths. https://www.boost.org/doc/libs/1_73_0/libs/graph/doc/r_c_shortest_

paths.html.

[29] Rolf H Möhring, Ekkehard Köhler, Ewgenij Gawrilow, and Björn Stenzel. 2005.

Conflict-free real-time AGV routing. In Operations Research. 18–24.
[30] Matthias Müller-Hannemann and Karsten Weihe. 2001. Pareto shortest paths is

often feasible in practice. In WAE (2001). 185–197.
[31] Luigi Di Puglia Pugliese and Francesca Guerriero. 2013. A survey of resource

constrained shortest path problems: Exact solution approaches. Networks 62, 3
(2013), 183–200.

[32] Ryan Rossi and Nesreen Ahmed. 2015. The network data repository with inter-

active graph analytics and visualization. In AAAI (2015).
[33] Antonio Sedeño-Noda and Sergio Alonso-Rodríguez. 2015. An enhanced K-SP

algorithm with pruning strategies to solve the constrained shortest path problem.

Appl. Math. Comput. 265 (2015), 602–618.
[34] Mo Sha, Yuchen Li, Bingsheng He, and Kian-Lee Tan. 2017. Accelerating dynamic

graph analytics on GPUs. Proceedings of the VLDB Endowment 11, 1 (2017),

107–120.

[35] Mo Sha, Yuchen Li, and Kian-Lee Tan. 2019. Gpu-based graph traversal on

compressed graphs. In SIGMOD (2019). 775–792.
[36] Xuanhua Shi, Zhigao Zheng, Yongluan Zhou, Hai Jin, Ligang He, Bo Liu, and

Qiang-Sheng Hua. 2018. Graph processing on GPUs: A survey. Computing
Surveys 50, 6 (2018), 1–35.

[37] Sabine Storandt. 2012. Route planning for bicycles—exact constrained shortest

paths made practical via contraction hierarchy. In ICAPS (2012).
[38] George Tsaggouris and Christos Zaroliagis. 2009. Multiobjective optimization:

Improved FPTAS for shortest paths and non-linear objectives with applications.

TOCS (2009) 45, 1 (2009), 162–186.
[39] Piet Van Mieghem, Hans De Neve, and Fernando Kuipers. 2001. Hop-by-hop

quality of service routing. Computer Networks 37, 3-4 (2001), 407–423.
[40] DavidWagner. 2002. A generalized birthday problem. In CRYPTO (2002). 288–304.
[41] Sibo Wang, Xiaokui Xiao, Yin Yang, and Wenqing Lin. 2016. Effective Indexing

for Approximate Constrained Shortest Path Queries on Large Road Networks.

Proceedings of the VLDB Endowment 10, 2 (2016).
[42] Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy Riffel, and

John D. Owens. 2016. Gunrock: A High-Performance Graph Processing Library

on the GPU. In PPoPP (2016). 265–266.
[43] Alan R Washburn. 1990. Continuous Autorouters, with an Application to Sub-

marines. (1990).

[44] Michael Zabarankin, Stan Uryasev, and Robert Murphey. 2006. Aircraft routing

under the risk of detection. Naval Research Logistics 53, 8 (2006), 728–747.
[45] Jianlong Zhong and Bingsheng He. 2014. Medusa: Simplified Graph Processing

on GPUs. Transactions on Parallel and Distributed Systems 25, 6 (June 2014),

1543–1552.

[46] Mark Ziegelmann. 2007. Constrained Shortest Paths and Related Problems - Con-
strained Network Optimization.

A ADDITIONAL IMPLEMENTATION DETAILS
CPU baseline. We have developed an efficient parallel implemen-

tation on the CPU. Specifically, the CPU-based implementation

takes advantage of the fine-grained dynamic scheduling provided

by OpenMP. It leverages efficient hashing and dynamic memory

management provided by the STL libraries. However, our proposed

techniques like adaptive DOP are more specific to GPU, which are

not applied to the CPU implementations. The reasons are listed as

follows.

First, the two-level pruning is not designed for the CPU. The

two-level pruning only applies to the GPU as it is designed to over-

come the costly dynamic memory management on GPUs, especially

when we perform pruning in parallel. On the CPU, the pruning

can be simpler and more effective because CPU threads can easily

manipulate dynamic-sized label lists.

Second, the DOP of the CPU implementation is fixed at 40 in our

experimental evaluation, as the adaptive parallelism has a small

impact on the CPU. One the one hand, the adaptive model is specifi-

cally designed to limit the number of subproblems for architectures

with low memory-to-core ratio (i.e., available memory divided by

the number of cores). Particularly, the GPU we used only has 12GB

memory and more than three thousand cores, while the CPU has

256GB memory with 20 cores (40 threads with hyper-threading

https://www.boost.org/doc/libs/1_73_0/libs/graph/doc/r_c_shortest_paths.html
https://www.boost.org/doc/libs/1_73_0/libs/graph/doc/r_c_shortest_paths.html

Listing 3: An example of Vine for SPPTW.
class Edge{
int len , time;
int openT , closeT;

};// end of edge class
class Label{
int vid , l, c; Label *pre = NULL;

void Expansion (const Edge &e, Label &lv) {

lv.l = this ->l+e.l;
if (this ->c < e.openT) //edge not available
lv.c = e.openT + e.time;

else
lv.c = this ->c + e.time;

if (lv.c > e.closeT)
lv.c = -1;

lv.pre = this;
}

bool Feasibility () {

return this.c > 0;
}

bool Dominance (const Label &l) {

return this.l <= l.l && this.c <= l.c;
}

};// end of label class

Listing 2: An example of Vine for 2-CSP.
class Edge{
int len , cost;

};// end of edge class
class Label{
int vid , l, r, h; Label *pre = NULL;

void Expansion (Edge e, Label &lv) {

lv.l = this ->l+e.l;
lv.c = this ->c+e.c;
lv.h = this ->h + 1;
lv.pre = this;

}

bool Feasibility () {

return this.c <= cost_budget
&& this.h <= hop_limit;

}

bool Dominance (const Label &l) {

return this.l <= l.l && this.c <= l.c
&& this.h <= l.h;

}
};// end of label class

enabled). On the other hand, compared to tens of thousands of

threads on the GPU, the smaller number of CPU threads tend to

generate a much smaller number of non-optimal problems. Thus,

the CPU version is less likely to overwhelm the main memory

by unpromising subproblems. We also experimentally verify that

applying the adaptive parallelism control has little impact on the

CPU-based implementations (showing less 1% differences to the

static control of DOP).

B EXTENSIONS OF VINE
Multi-constraint shortest path problem. Vine is general to be
extended for finding multi-constraint shortest paths. Here, we

present two examples, as shown in code Listings 2 and 3. The

first application is a variant of vehicle routing problem with an ad-

ditional constraint that limits the number of vertices visited. Since

there are two constraints, we denoted it as 2-CSP. The second appli-

cation is the shortest path problem with time window constraints

(SPPTW) [4], where each edge will only be available between the

open time and close time of its time window.

Dynamic graphs support.We have two points for extending

Vine to support dynamic graphs. First, in comparison with exist-

ing approaches with indexes, Vine is more friendly to dynamic

graphs in the sense that Vine can process CSP queries without

time-consuming preprocessing or index maintenance. Second, to

further extend Vine for supporting dynamic graphs, we can seam-

lessly extend Vine’s graph storage using GPMA [34], a GPU-based

dynamic graph storage scheme. Vine works on a snapshot of the

graph provided by GPMA. It could be more interesting to study

how to incrementally compute CSP on dynamic graphs.

C DISCUSSION
Vine on dense graphs. Due to the NP-hardness of CSP, the per-

formance of Vine can worsen, for example, when the graph is very

dense. Fig. 16 shows Vine’s performance on dense graphs solving

CSP queries with the same setting as the vehicle routing prob-

lem, where we apply a set of synthetic graphs with |𝑉 |=0.01M
and varying degrees. We observe that the execution time increases

dramatically when the average degree is less than 1,800. The rea-

son is that a denser graph provides more routing options, which

makes the optimal one harder to find. As a result, it takes Vine more

than a minute to solve CSP. Still, Vine shows up to two orders of

magnitude speedups over the parallel CPU implementation.

0

20

40

60

80

5 2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

1
2

0
0

1
4

0
0

1
6

0
0

1
8

0
0

2
0

0
0

2
2

0
0

2
4

0
0

2
6

0
0

2
8

0
0

3
0

0
0

3
2

0
0

Q
u
er

y
 T

im
e

(s
)

Average degree

CPU Vine

Figure 16: The query execution time of Vine on synthetic
graphs with 0.01M vertices and varying degrees, solving Q2.

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 GPU Preliminaries
	2.2 CSP and Labeling Algorithm
	2.3 Related Work

	3 A Baseline Approach
	3.1 Sequential vs. Parallel Labeling Algorithms
	3.2 Motivation with Baseline Parallel Algorithm

	4 System Overview
	4.1 API Design
	4.2 Algorithm Overview

	5 Two-level Pruning
	5.1 Pruning in the Shared Memory
	5.2 Pruning in the Global Memory

	6 Adaptive Parallelism Control
	6.1 Control the Total Number of Labels
	6.2 Control the Growth Rate

	7 Experimental Evaluation
	7.1 Experimental Setup
	7.2 Overall Performance Comparison
	7.3 Impact of Two-level Pruning
	7.4 Impact of Parallelism Control
	7.5 Comparison with Approximate Approaches
	7.6 Discussions

	8 Conclusions
	Acknowledgments
	References
	A Additional Implementation Details
	B Extensions of Vine
	C Discussion

