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G3: When Graph Neural Networks Meet Parallel Graph
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ABSTRACT

This paper demonstrates G3, a programming framework
for Graph Neural Network (GNN) training, tailored from

Graph processing systems on Graphics processing units (GPUs).

G* aims at improving the efficiency of GNN training by
supporting graph-structured operations using parallel graph
processing systems. G?® enables users to leverage the massive
parallelism and other architectural features of GPUs in the
following two ways: building GNN layers by writing sequen-
tial C/C++ code with a set of flexible APIs (Application
Programming Interfaces); creating GNN models with essen-
tial GNN operations and layers provided in G*. The run-
time system of G® automatically executes the user-defined
GNNs on the GPU, with a series of graph-centric optimiza-
tions enabled. We demonstrate the steps of developing some
common GNN structures with G®, and the superior perfor-
mance of G* against existing GNN training systems, i.c.,
PyTorch and TensorFlow.
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1. INTRODUCTION

Recent neural network (NN) models have moved beyond
regular data such as image and speech, to irregular graph-
structured data. Graphs, not only as of the de facto data
structures in various applications such as social networks,
chemistry, and weblink analysis but are also showing their
essentials in problem domains across different machine learn-
ing settings. Graph Neural Network (GNN), the NN-based
method on graph-structured data, attracts a surging inter-
est due to its wide adoption and effectiveness in many ap-
plications such as node classification [4] and program veri-
fication [5|. Therefore, popular tools and libraries like Py-
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Figure 1: Time breakdown of training GCN using PyTorch
(P), PyTorch-GPU (PG), TensorFlow (T), TensorFlow-
GPU (TG). “OOM” means the training execution has out-
of-memory errors.

Torch [9] and TensorFlow |1] radically enable graph-based
operations for GNN training.

However, in real-world development, the bottlenecks in
GNN training begin to surface. Our experiments show that
graph-structured operations take a large portion of the to-
tal workload in GNN model training. As shown in Figure|l]
44%-99% of the overall training time of Graph Convolu-
tional Network (GCN) [4] is spent on graph-structured op-
erations for PyTorch and Tensorflow (even with GPU accel-
erations). All of the tested GNN frameworks are developed
based on matrix operations and message passing without
specially optimized for graph structures. As shown in many
previous studies on graph processing |18} |14], matrix-based
graph processing has two major performance pitfalls. First,
memory consumption for storage and intermediate results
is prohibitively large and inefficient. Second, when deal-
ing with graph-structured data, matrix-based operations are
usually costly and contains redundant computation compar-
ing to graph operations. As a consequence, the performance
and scalability of such frameworks are lagged by inefficient
graph processing.

Note that existing parallel graph processing systems (PGPS)
provide high-performance and scale solutions for traditional

graph tasks, e.g., breadth-first search. For example, Medusa |18]

and Gunrock |14] leverage the massive parallelism of modern
GPU platform, while providing flexible APIs that express a
wide range of graph primitives. The success of those PGPS
systems enables systems-wide opportunities in resolving the
performance bottleneck of graph operations in GNN train-
ing. However, the intersection of these two research threads
(GNN and PGPS) has not yet been well studied.

In this work, we advocate that by introducing PGPS to
GNN, we can fundamentally improve graph-structured oper-
ations and the overall efficiency of GNN training. However,
such integrations have the following technical challenges.

First, applying existing deep learning tools and frame-
works trades efficiency in execution for the simplicity of
programming and deploying due to the lack of native sup-
port for graph processing. Second, existing graph process-
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ing frameworks hardly provide essential building blocks for
GNNs. Users need to implement and optimize GPU pro-
grams from scratch for different NN operations. Even though
there are NN-related libraries available as building blocks for
GNN on GPUs, users have to perform memory management
manually and deal with GPU specific programming details
such as kernel configuration and scheduling. Third, a hand-
crafted GNN on GPU with high efficiency requires explicit
program optimizations for GPU architectures. Moreover, a
hand-crafted GNN is limited to specific operations, which
cannot fulfill the surge of new models.

To ease the pain of leverage GPUs for GNN, we propose
a GNN framework, G®, built based on PGPSs on GPUs. In
this work, we use Gunrock , one of the state-of-the-art
PGPSs on GPUs, to take over the graph-related operations
in GNNs. G?® extends the PGPS with essential NN oper-
ations (including matrix operations, SoftMax, and ReLU,
to name a few) that are supported by other libraries, e.g.,
SuiteSparse [2| or implemented by us. Like existing frame-
works, G* embraces the layered GNN processing model and
provides flexible APIs for users.

We will demonstrate the ease-of-programming feature and
the superior performance of G* with two widely applied
GNNs, i.e., GCN [4] and SGC [15]. In particular, G® signif-
icantly outperforms PyTorch and TensorFlow on their CPU
and GPU versions.

2. RELATED WORK AND MOTIVATION

GNN. There are three major categories of GNN mod-
els: graph convolutional networks , graph recursive net-
works , and graph attention networks ‘ Generally,
different GNN models share the same basic operation of col-
lectively aggregating information based on the edge connec-
tions of vertices. We refer the readers to several surveys
, which provide thorough reviews of different GNN mod-
els and applications.

Comparing with standard NN approaches, the complex-
ity of graph-structured operations in GNNs creates a sig-
nificant performance challenge. The inherent irregularity
of graph data structures leads to irregularities in data ac-
cess and control flow, making an efficient implementation on
massively parallel architecture, such as GPUs, significantly
different from standard NNs. Most of the existing tools and
libraries are designed for NN models and do not efficiently
express iterative graph processing models. The fundamen-
tal solution to improve the efficiency of GNN training could
exist in another thread of research, i.e., PGPSs.

PGPS on GPUs. Google has pioneered the research
thread of PGPS by introducing the Pregel |8| system. Since
then, we have seen the development of a large number of
PGPSs. The technical advance of GPU, especially the fea-
tures of massive parallelism and high memory bandwidth,
has attracted many research interests on accelerating graph
processing using GPUs. Existing efforts have shown great
success in parallelizing a plethora of graph applications |§|,
. Many frameworks and primitives have also been pre-
sented for developing high-performance graph algorithms on
GPUs i)

In the past decades, researchers have paid numerous ef-
forts in addressing the performance issues in GPU graph
processing, e.g., memory accesses, workload mapping, and
load balancing. Since GNN and traditional graph algorithms
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Figure 3: Components of GNN developments using G*, Py-
Torch, and Tensorflow

share the same fundamental graph operations, such as trans-
formation on vertices or edges, we can envision the systems-
wide opportunities enabled by PGPSs on GPUs.

Bridging GNN and GPU graph processing. There
have been some preliminary efforts in building a GNN train-
ing system based on combining existing graph systems and
NN models. TuX? makes the first effort by inherit-
ing the benefits of graph computation model, data layout
management, and balanced parallelism for distributed ma-
chine learning. DGL presents a graph-oriented message-
passing wrapper for deep learning systems but does not yet
explore deeply the opportunities to leverage graph-aware
optimizations for efficient executions. Most recently, Neu-
Graph [7] introduces GNN-related graph operations in Ten-
sorFlow to enable processing on large-scale graphs. Un-
fortunately, the system is not yet publicly available. Be-
sides, NeuGraph replaces the layered model of NN with
the Scatter-ApplyEdge-Gather-ApplyVertex graph model,
which fails to ease the GNN development, while G sticks to
the layered model, similar to PyTorch, at users’ convenience.

3. G*SYSTEM

The overview of G* is shown in Figure The system
is built based on a GPU-based PGPS with other libraries
that support NN operations integrated. In particular, G*
boosts the graph processing in GNN training in order to
improve the overall training. As shown in Figure[3] compar-
ing with PyTorch and Tensorflow, G? contains graph-aware
components, including graph-structured operations, graph
data management, workload mapping, and load balancing.
These components are commonly available in PGPSs at high
performances but were not used to previous GNN training
systems.

To ease the pain of leverage GPUs, G* embraces the mod-
ular design principle and provides flexible APIs. Descrip-



Table 1: APIs in G

Graph APIs Description

Filter Filters all the nodes/edges in the frontier

Atomic AtomicAdd/AtomicMin/AtomicMac operations

Advance Performs a customized function on the
nodes/edges, powered by Gunrock

NN APIs Description

ForEach Performs a customized function on each element

Forward Training and inference of the NN layer

Backward Gradient updating scheme for the NN layer

GNN Layers | Description

GraphSum Aggregates information from neighbor vertices

SparseMul Sparse dense matrix multiplication layer

ReLU Rectified linear units as activation function

MatMul Dense dense matrix multiplication layer

SoftMax Normalize input to a probability distribution

DropOut Eliminates a portion of elements randomly

CrossEntropy Loss function, output layer

tions of the APIs are listed in Table Specifically, G* offers
three categories of APIs: 1) Graph APIs exposed from exist-
ing PSGS or from our extensions on PSGS based on PSGS’s
provided APIs; 2) NN APIs for manipulating the NN layers;
3) on top of Graph APIs and NN APIs, we further imple-
ment common GNN layers. Due to space limitations, we do
not go into details of each layer and refer the readers to a
survey paper for more details [10]. Note that these APIs
require only sequential C/C++ code. Users do not have to
handle GPU-related programming explicitly. G® automati-
cally executes the GNN application created using these APIs
on the GPU at a high performance.

Listing[]shows the implementation of the GraphSum layer
(graph aggregation). G® uses the graph intrinsics in the
PGPS, e.g., Advance, to build graph Graph-structured op-
erations and APIs to avoid reinventing the wheel.

The Graph/NN APIs exposed in G? allow users to imple-
ment customized GNN layers to support the fast-emerging of
new GNN models. Similar to the given GraphSum sample,
to implement customized layers, users only need to describe
the behaviors of forward and backward operations applied
on vertex, and G* integrates them into the Advance kernel
at compilation time.

3.1 Implementation Details

We build G* based on Gunrock [14] as it is one of the
state-of-the-art systems and satisfies our requirements of
building a GPU-based GNN system. The requirements in-
clude rich graph-related intrinsics and efficient GPU man-
agements, e.g., low-level GPU memory management, work-
load mapping, and load balancing. The other libraries, e.g.,
SparseSuite, are integrated into the Gunrock environment
as header-only files, which provide essential functions within
the memory space of G*. In the rest of this section, we give
implementation details of G*.

Graph Storage. Gunrock stores graph in compressed
sparse row (CSR) format and represents all per-node and
per-edge data as structure-of-array (SOA) data structures
that allow coalesced memory accesses with minimal mem-
ory divergence. G® maximizes the chances to keep the high
efficiency of the Gunrock system. We reuse the graph stor-
age provided by Gunrock and extend the support for graph
storage with feature vectors and weighted matrices required
for different layers of GNN.

Neural Network Generation. G® fuses user-defined
operations into GPU processing kernel and statically assem-
bles them with pre-built layers during compilation. G con-
nects the layers in order by directing the dataflow from the
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Listing 1: Building the GraphSum layer using Graph APIs

class GraphSum G3::Layer {
// vertex forward operation
auto _f=[&]__G3__(VtxT &src, VtxT &des){
float coef=1.0/(numNgb (src)*numNgb(des));
for (int i=0;i<dim;i++)

atomicAdd (out+des*dim+i,

*(in+srcxdim+i) *xcoef) ;

} .

void forward () {
PGPS :: Advance (graph.csr () ,&local,_f);

}

// vertex backward operation

auto _b=[&]__G3__(VtxT &src, VtxT &des){
float coef=1.0/(numNgb (src)*numNgb (des));
for(int i=0;i<dim;i++)

atomicAdd (out+src*xdim+i,
*(in+des*dim+i)*coef) ;
};

void backward () {
PGPS :: Advance (graph.csr() ,&local,_b);
}};

Table 2: Data set statistics

Dataset # Nodes # Edges # Features
Pubmed 19,717 44,338 500
Reddit 233K 11.6M 602

output of preceding layers to the input of subsequent layers.

G?® Runtime. G® adopts the existing GPU memory man-
agement solution provided by Gunrock. Gunrock handles
the low-level GPU memory management, including mem-
ory accesses and data transfers, while G* handles high-level
dataflow among GNN operations provided by different li-
braries. G*'s dataflow management avoids memory copy
between different layers and minimizes data transfers be-
tween GPU global memory and host memory.

Processing graphs with a wide variance in the node de-
grees, such as the social network, usually causes severe load
imbalance. GNNs are more complicated than traditional
graph processing because that 1) vertices and edges are as-
sociated with feature vectors rather than single values, and
2) the density of graph-structured data changes among dif-
ferent layers. Therefore, G* enhances the existing load bal-
ancer in Gunrock by considering not only graph-structured
data but also the coefficients and feature vectors. Since G is
aware of the density changes of graph-structured data among
different operators, it thus manages the workload mapping
and load balancing by configuring Gunrock at runtime.

4. DEMONSTRATING G*

Our demonstration focuses on the following two aspects.

1. How to develop a GNN application using G3?

2. How well does G* perform on GNN training?

Demonstration setup. We plan to conduct the evalua-
tions with remote access to a Linux server with two 10-core
Xeon E5-2640v4 CPUs, 256 GB memory, and an NVIDIA
Tesla P100 GPU. The GPU has 12GB global memory and
56 SMs. The demonstration is mostly based on web pages.
It would be easy to access using our prepared laptops or
participants’ smartphones.

The statistics of data sets used for evaluations are sum-
marized in Table[2] We use two commonly used GNN mod-
els, namely GCN (Graph Convolutional Network) and SGC
(Simplifying Graph Convolutional Networks). The imple-
mentations are adopted from the original authors.
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Figure 4: Web-based front-end of G*

Ease-of-programming demonstration. Overall, we
hope to demonstrate to the audience that leveraging exist-
ing PSGS enjoys their high programmability, and also the
convenience of G® in constructing GNN models. This part
of demo consists of two aspects.

Firstly, we let participants understand the layered struc-
ture of GNN. We invite participants to observe and use the
web-based GU]EI shown in Figure [4| to assemble a GNN ap-
plication. We will guide the participants to generate one
of the most famous GNN models by adding different layer
modules to the right panel of the web page.

Secondly, we illustrate how to program a new network
layer using the provided Graph/NN APIs. G*’s functor code
is C/C+-+ sequential code with little requirement of parallel
programming knowledge. Participants will be provided with
code editor boxesﬂ to complete forward and backward func-
tors, which will be encapsulated as a user-defined layer. We
will present the forward and backward functors of GraphSum
as examples (Listing [1).

Performance demonstration. We shall demonstrate
that the proposed system significantly improves the perfor-
mance of GNN training against existing solutions. Mainly,
we show the breakdown of the elapsed time on each type of
layer and the speedups of G?* over other frameworks.

Figure [5] shows the time breakdown and the speedup for
two common GNN models GCN and SGC. We do not in-
clude the results for SGC on Tensorflow, because there is no
publicly available implementation for SGC in Tensorflow.
We hope to include our homegrown implementation in the
demo. The speedup of a framework is defined as the ratio
of the execution time of PyTorch (P, running on the CPU)
and the execution time of the framework. G significantly
reduces the overall execution time cost by graph operations
in GNN training (from 80% down to 20% of the total execu-
tion time), and also improve the overall performance. Specif-
ically, G® can be 1.6x-101x faster than PyTorch and Ten-
sorflow on their CPU and GPU counterparts. GPU is not
fully utilized on Pubmed data set where G* shows only up to
7x speedup over PyTorch. G* shows significant speedup on
the large Reddit data set, while the other counterparts run
out of memory due to inefficient implementations of graph-
structured operations.

GENERATE GNN

S.  CONCLUSIONS

In this work, we introduce G® for efficient GNN train-
ing on GPUs by leveraging the graph native operations in
parallel graph processing systems on the GPU. This is an
initial but important step for bridging the gap in GNN train-
ing towards native graph optimizations. We are actively

"http://137.132.92.103:8000/
*http://137.132.92.103:8000/editor .html

g -
% [0 GraphSum [ SparseMul [ MatMul E& Others
E GCN fele] GCN sac
100 % o - ™ o8
S 3 sox |[H]HE Hgm i | 5 H"f'§$ F
I (] 3 sl <
a5 0% iIEHIEERE §§§H”H H
% | 4
g = %% i i “lllocolll*
— AU BEU® A [¢] e} AU B U® a [¢] )
H T Y g 0 L B0 L0
Ll Lol i | |
o 7 7 7
- S 3 S 3 3 =33 T 3
o) =} 3 < Q00 i~
o] &1 a1 1 1
2 0 0 0 0
w0
LOBUN AU @ LY BUN N O]
& HO ] o RO [

Figure 5: Performance evaluation of PyTorch (P), PyTorch-
GPU (PG), TensorFlow (T), TensorFlow-GPU (TG), and
G* on Pubmed data set. “OOM” means the training execu-
tion has out-of-memory errors.

maintaining G* and featuring Python interfaces for broader
adoptio
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