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Abstract—We design and implement Mars, a MapReduce runtime system accelerated with graphics processing units (GPUs).
MapReduce is a simple and flexible parallel programming paradigm originally proposed by Google, for the ease of large-scale data
processing on thousands of CPUs. Compared with CPUs, GPUs have an order of magnitude higher computation power and memory
bandwidth. However, GPUs are designed as special-purpose coprocessors and their programming interfaces are less familiar than
those on the CPUs to MapReduce programmers. To harness GPUs’ power for MapReduce, we developed Mars to run on NVIDIA
GPUs, AMD GPUs as well as multicore CPUs. Furthermore, we integrated Mars into Hadoop, an open-source CPU-based
MapReduce system. Mars hides the programming complexity of GPUs behind the simple and familiar MapReduce interface, and
automatically manages task partitioning, data distribution, and parallelization on the processors. We have implemented six
representative applications on Mars and evaluated their performance on PCs equipped with GPUs as well as multicore CPUs. The
experimental results show that, the GPU-CPU coprocessing of Mars on an NVIDIA GTX280 GPU and an Intel quad-core CPU
outperformed Phoenix, the state-of-the-art MapReduce on the multicore CPU with a speedup of up to 72 times and 24 times on
average, depending on the applications. Additionally, integrating Mars into Hadoop enabled GPU acceleration for a network of PCs.

Index Terms—MapReduce, graphics processor, parallel computing, multicore processor, many-core architecture.
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1 INTRODUCTION

MAPREDUCE is a successful paradigm [15], originally
proposed by Google, for the ease of distributed data

processing on a large number of machines. In such a
system, users specify two functions: 1) a map function to
process an input key/value pair, and to generate a set of
intermediate key/value pairs; 2) a reduce function to merge
all intermediate key/value pairs associated with the same
key. The system will automatically distribute and execute
tasks on multiple machines [4], [15] or multiple CPUs in a
single machine [32]. Thus, this paradigm reduces the
programming complexity so that developers can easily
exploit the parallelism in the underlying computing
resources for complex tasks. Encouraged by the success of
CPU-based MapReduce systems, in particular, Phoenix [32],
we develop Mars, a MapReduce system accelerated with
graphics processors, or GPUs.

GPUs can be regarded as massively parallel processors
with an order of magnitude higher computation power (in
terms of number of floating point operations per second)
and memory bandwidth than CPUs [7]. Moreover, the
computational performance of GPUs is improving at a rate

higher than that of CPUs. However, it is a challenging task
to program GPUs for general-purpose computing applica-
tions, including those that MapReduce users are familiar
with. Specifically, GPUs are traditionally designed as
special-purpose coprocessors for dedicated graphics ren-
dering. As such, GPU cores are Single-Instruction-Multiple-
Data (SIMD), which discourages complex control flows.
Furthermore, GPU cores are virtualized, and threads are
managed by the hardware. Finally, GPUs manage their own
on-board device memory and require programmers to
explicitly transfer data between the GPU memory and the
main memory. Additionally, the architectural details of
GPUs vary by vendors as well as by product releases, and
programmer’s access to these details is limited. All these
factors make desirable a General Purpose Computation on
GPUs (GPGPUs) framework on which users can develop
correct and efficient GPU programs easily.

Recently, several GPGPU programming frameworks have
been introduced, such as NVIDIA CUDA [5] and AMD
Brook+ [1]. These frameworks significantly improve the
programmability of GPUs; nevertheless, their interfaces are
vendor-specific and their hardware abstractions may be
unsuitable for complex applications, such as those running on
MapReduce. Therefore, we propose Mars, a MapReduce
framework to ease the programming of such applications on
the GPU. Furthermore, the MapReduce framework of Mars
enables the integration of GPU-accelerated code to distrib-
uted environment, like Hadoop, with the least effort. Our
Mars system can run on multicore CPUs (MarsCPU), on
CUDA-enabled NVIDIA GPUs (MarsCUDA) or Brook+-
enabled AMD GPUs (MarsBrook), or on a combination of a
multicore CPU and a GPU on a single machine. We further
integrate Mars into Hadoop [4], an open-source CPU-based
MapReduce system on a network of machines, which results
in MarsHadoop, where each machine can utilize its GPU with
MarsCUDA or MarsBrook in addition to its CPU with the
original Hadoop. No matter what GPU and/or CPU Mars
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runs on, the Application Programming Interface (API) to the
user is the same and is similar to that of existing CPU-based
MapReduce systems.

Easing up GPU programming for MapReduce applica-
tions is the main goal of our work. However, a higher level
abstraction for programming, specifically MapReduce,
comes at a price of performance. In particular, we identify
the following three technical challenges in implementing
Mars on GPUs. First, since MapReduce divides up a task by
data, load imbalance is an inherent problem in utilizing the
massive thread parallelism on the GPU, especially because
GPU threads are managed by the hardware. Second, GPUs
lack efficient global synchronization mechanisms. Threads
in Map or Reduce tasks are likely to have write conflicts on
the output buffer. While atomic operations are enabled in
recent GPUs, the overhead of atomic operations would
harm the scalability of massive GPU threads [2]. We
consider a lock-free scheme to minimize the synchronization
overhead among GPU threads. Third, MapReduce applica-
tions are, in general, data intensive and their result sizes are
data dependent. These two characteristics pose the follow-
ing requirements on programming the GPU: 1) sufficient
thread parallelism to hide the high latency and to utilize the
high bandwidth of the device memory; and 2) preallocation
of output buffers in the device memory for bulk DMA
transfers, as GPU memory allocation is done through the
CPU before the GPU program starts.

With these challenges in mind, we develop Mars for GPUs
of two most common programming interfaces—CUDA and
Brook+. We focus on MarsCUDA, rather than MarsBrook,
because in our implementation and evaluation, CUDA was
more flexible and had a higher performance than Brook+ for
MapReduce applications.

In MarsCUDA, the massive thread parallelism on the
GPU is well utilized as each thread is automatically
assigned a key/value pair to work on. In Map, the system
evenly distributes key/value pairs to each thread. In Reduce,
we develop a simple but effective skew handling scheme to
redistribute data evenly across all reduce tasks. To avoid
write conflicts between threads, we adopt a lock-free
scheme that guarantees the correctness of parallel execution
with little synchronization overhead. Finally, we utilize the
GPU-accelerated prefix sum primitive to compute output
buffer sizes.

We evaluated the performance of Mars in comparison
with its CPU-based counterparts and the native implemen-
tation without MapReduce. Our results demonstrate the
effectiveness of our GPU-oriented optimization strategies.
On average, our MarsCUDA is 22 times faster than the
CPU-based MapReduce, Phoenix [32], and is less than three
times slower than the hand-tuned native CUDA imple-
mentation. Additionally, the applications developed with
Mars had a code size reduction up to seven times,
compared with hand-tuned native CUDA code.

In summary, this paper makes the following contribu-
tions, in comparison with our previous work on Mars [22]:

. We have extended our general design of Mars from a
GPU-only MapReduce framework to a MapReduce
system with GPU acceleration enabled. With this
extension, Mars components can work stand-alone
on a single platform, e.g., MarsCUDA on CUDA, as

well as to work together to utilize multiple proces-
sors, e.g., a CPU and a GPU on a single machine.

. We have implemented Mars for Brook+-based
GPUs, which enables MapReduce to take advantage
of another large group of GPUs in practice.

. We have developed simple but effective coproces-
sing schemes to utilize both the CPU and the GPU
on a single machine. We have also integrated Mars
into Hadoop to enable GPU-acceleration for indivi-
dual machines in a distributed environment.

1.1 Organization

The remainder of the paper is organized as follows: We give
a brief overview of GPUs, and review prior work on
GPGPU and MapReduce in Section 2. We present the
design and implementation details of Mars in Sections 3
and 4, respectively. We present the extension to multiple
machines in Section 5. In Section 6, we present our
experimental results. Finally, we conclude in Section 7.

2 PRELIMINARIES AND RELATED WORK

In this section, we first give a brief introduction on the GPU,
and then review the related work on GPGPU as well as on
MapReduce.

2.1 Graphics Processing Units (GPUs)

The GPU is an integral component of modern computers,
ranging from handheld devices to high-end servers. GPUs
are originally designed for gaming applications with fixed
hardware pipelines for rendering. Due to the high compu-
tation power and rapidly improving programmability, they
have recently become a powerful coprocessor for general
purpose computing [7].

As shown in Fig. 1, we model the GPU as a many-core
processor, which contains a number of SIMD multiproces-
sors. Such a many-core model is common to both AMD and
NVIDIA GPUs. On the GPU board, there is GRAM device
memory. The device memory has both a high bandwidth
and a high access latency. For example, the NVIDIA
GTX280 GPU has an access latency of 400-600 cycles, and
the peak memory bandwidth between the device memory
and the multiprocessors is around 140 GB/second.

Both NVIDIA CUDA and AMD Brook+ expose a parallel
programming model, which does not require programmers
to have knowledge of the graphics rendering pipeline. In this
model, the system consists of a host (a CPU), and one or more
devices (GPUs). GPUs are abstracted as massively data-
parallel coprocessors. CUDA and Brook+ programmers write
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code using C/C++ syntax with extended keywords for kernel
functions, which are GPU programs to be executed on devices.

Programming frameworks, such as CUDA and Brook+,
greatly improve the programmability of the GPU. However,
it is still a challenging task of developing efficient GPU
programs for complex applications, such as those with
MapReduce, because GPUs have a special-purpose copro-
cessor architecture and are vendor-specific on the program-
ming frameworks for complex applications. Although the
newly introduced OpenCL [6] is an industry standard
further hiding hardware details from users, Mars is at a
higher level of abstraction. OpenCL is a general-purpose
programming language, with which Mars or other MapRe-
duce frameworks can be developed.

2.2 GPGPU

General Purpose Computation on GPUs, or GPGPU, has
recently emerged in various applications, such as linear
algebra [26], [35], embedded system design [19], bioinfor-
matics [12], databases [20], [21], [25], [24], [16], machine
learning [13], data mining [17], [18], and distributed
computing projects including Folding@home and Seti@-
home. Recently, several GPGPU languages including AMD
Brook+ [1] (extended from Brook [10]) and NVIDIA CUDA
[5] have been proposed by GPU vendors. They usually
expose a general purpose, massively multithreaded com-
puting architecture and provide a programming environ-
ment similar to C/C++. High-level programming
frameworks, such as Accelerator [34] and RapidMind [29],
are also developed to better facilitate GPGPU program-
ming. These programming frameworks require program-
mers to have knowledge of specific programming models,
such as the stream programming model in Brook+ [10], or
even more, knowledge of the GPU hardware details. By
contrast, we propose to develop a MapReduce framework
accelerated with GPUs to ease the development of a more
complex class of data processing tasks. It provides a
uniform MapReduce interface no matter whether it runs
on the GPU, on the CPU, or both.

We now briefly survey recent work that developed
GPGPU primitives as building blocks for various applica-
tions, in particular, those not covered in the survey by
Owens et al. [31]. Sengupta et al. [33] proposed the
segmented scan primitive. He et al. [23] proposed a
multipass scheme to optimize the scatter and the gather
operations. He et al. [25] further developed a small set of
primitives such as prefix sum and split for relational
databases. Additionally, CUDPP [3], a CUDA library of
data parallel primitives, was released for GPGPU comput-
ing. These GPU-based primitives reduce the complexity of
GPU programming. However, even with the primitives,
programmers need to write complex GPU code for data
processing tasks. By contrast, our work further simplifies
GPU programming for MapReduce programmers by
providing them with a higher level and more familiar
interface than the primitives.

This paper focuses on accelerating MapReduce on the
GPU, and provides a GPU-based MapReduce framework to
developers. As in the original MapReduce, it is up to
developers’ choice to use MapReduce or not according to
their computational characteristics. Recent studies [27] have
used data analysis techniques to categorize the computa-
tional characteristics of different workloads on the GPU.

These techniques are helpful for developers to determine
whether their workloads are suitable for Mars in specific and
the GPU in general.

Our previous study on Mars [22] implemented the
MapReuduce framework on CUDA-enabled GPUs. This
work extends the previous work in two major aspects. First,
we extend the CUDA-only Mars to another large group of
GPUs, so that it can run on both NVIDIA and AMD GPUs.
Second, we use GPU-only Mars as a component to work
with CPU-based Mars on a single machine as well as with
Hadoop in a distributed environment.

2.3 MapReduce

The MapReduce framework [15] is based on two primitives,
Map and Reduce, from functional programming. The
general form is as follows:

Map: ðk1; v1Þ ! listðk2; v2Þ.
Reduce: ðk2; listðv2ÞÞ ! listðk3; v3Þ.

The Map function takes an input key/value pair ðk1; v1Þ
and outputs a list of intermediate key/value pairs ðk2; v2Þ.
The Reduce function takes all values associated with the
same key and produces a list of key/value pairs. Program-
mers implement the application logic inside the Map
function and the Reduce function. The MapReduce runtime
manages the parallel execution of these two functions.

The following pseudocode illustrates a program written
using MapReduce. This program counts the number of
occurrences of each word in a collection of documents [15].
In this program, Map and Reduce are implemented using
two system-provided APIs, EmitIntermediate and Emit,
respectively.

Map(void �doc) {

1: for each word w in doc

2: EmitIntermediate(w, 1); // count each word once

}

Reduce(void �word, Iterator values) {

1: int result = 0;

2: for each v in values

3: result þ¼ v;
4: Emit(word, result); // output word and its count

}

There have been several MapReduce implementations
since MapReduce was proposed [15]. Hadoop [4] is an
open-source MapReduce implementation on clusters. Based
on Hadoop, Yang et al. [36] added the merge operation to
MapReduce for the ease of relational databases operations.
Phoenix [32] is an efficient MapReduce runtime system on
multicore CPUs. Kruijf and Sankaralingam [14] developed
MapReduce on the Cell BE. Yeung et al. [37] implemented
an FPGA-based MapReduce system.

Let us briefly introduce the implementation of Phoenix
[32]. A key component in Phoenix is a scheduler, for buffer
management and task distribution. The scheduler starts the
Map stage by evenly dividing the input buffer into small
chunks, and assigns the chunks to map workers dynami-
cally. Each map worker runs in a CPU thread. The Reduce
stage does not start until all Map tasks are done. The
scheduler groups the intermediate output from the Map
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stage by key, and a Reduce worker processes values
associated with the same key. Reduce tasks are assigned
to workers dynamically. Each reduce worker maintains a
static array for outputting results and sorts this static array
using insertion sort. Finally, the scheduler merges all output
arrays of reduce workers into a single one. Because the
output data size is not known in advance, the scheduler first
allocates buffers with a default small size, and then resizes
the buffer as needed.

Our previous work on Mars implemented MapReduce
on CUDA-enabled GPUs [22]. Catanzaro et al. [11] devel-
oped another MapReduce system on the GPU, but it
required programmers to be aware of GPU hardware
details, such as thread configuration and memory hierar-
chy. Finally, the Merge framework [28], focused on
dynamically scheduling MapReduce tasks among multiple
processors, dedicated to Intel products. By contrast, our
current extensions on Mars hide hardware details from
programmers and work on heterogeneous GPUs, a combi-
nation of CPU and GPU on a single machine, as well as a
distributed system of multiple machines.

3 DESIGN OF MARS

In this section, we present our design for Mars, with
emphasis on the GPU-based component. Our design is
guided by the following three goals:

1. Programmability. Ease of programming encourages
programmers to use the GPU for their tasks.

2. Flexibility. The design should be applicable to
various multi-/many-core processors, e.g., multicore
CPUs and AMD GPUs, and should be as expressive
as the underlying runtime, e.g., NVIDIA CUDA,
AMD Brook+, or pthreads, so that the system will
work for a wide range of hardware and applications.

3. High Performance. The overall performance should be
accelerated by the GPU effectively.

3.1 Overview

By examining the Phoenix design, we see that there are
three potential sources of overhead. First, the tight coupling
of the Map and Reduce stages makes every application go
through both stages, no matter whether they need both
stages or not. Second, a dynamic thread scheduler for task
assignment heavily relies on locking to implement synchro-
nization. Third, each reduce worker may require frequent
data movement for sorting the static output array, and the
data movement can become a bottleneck for the overall
performance. The latest paper about Phoenix also points out
this problem [38].

In the Mars design, we decide to separate a MapReduce
workflow into three loosely coupled stages—Map, Group,
and Reduce. The Group stage is designed to group Map
output by key, which is the format for Reduce input. Our
observation is that some applications need only the Map
stage, some need both Map and Group, and some need all of
the three stages. The Group stage is the same as running
Reduce with the identity function in the original MapRe-
duce system [15]. Our purpose of providing an explicit
Group stage is to allow a MapReduce application with high

flexibility to customize its workflow, and to avoid the
overhead of entering unnecessary stages. No matter what
configuration of the three stages is for an application, the
MapReduce interface of Mars is unchanged—users write
Map and/or Reduce functions when necessary.

Moreover, we decide to use a lock-free scheme for
synchronization and to perform in-advance buffer alloca-
tion. One reason is to avoid heavy overheads of locking and
buffer reallocation. The other reason is that current GPUs
do not support locking or in-flight buffer reallocation. In
our design, we statically distribute tasks to a massive
number of GPU threads, so that we can fully utilize the
parallelism of the GPU. We adopt a two-phase, lock-free
scheme for result output. The basic idea is that, in the first
phase, we calculate histograms on the size of output results
for each thread, followed by a prefix sum operation on the
histograms, so that we obtain both the exact output buffer
size and the deterministic write position for each thread; in
the second phase, we perform the actual computation and
output. We will detail this strategy in Section 3.4.

3.2 Data Structure

Data structures in Mars affect the workflow, memory access
patterns, and the expressiveness of the system.

Since the GPU does not support dynamic memory
allocation on the device memory during the execution of
the GPU code, this limitation rules out dynamic data
structures, such as queues and linked lists, as used in other
MapReduce implementations. Instead, we use plain arrays
as the main data structure in Mars. The Map stage takes input
records in the key/value form and outputs intermediate
result records, which are in turn the input of the Group stage.
The output of the Group stage is the input of the Reduce stage,
and Reduce produces final output records. Each of the three
sets—the input records, the intermediate records, and the
output records—is stored in three arrays, i.e., the key array,
the value array, and the directory index array. The directory
index consists of an entry of <key offset, key size, value
offset, value size> for each key/value pair. Given a directory
index entry, we fetch the key or the value at the correspond-
ing offset in the key array or the value array.

Variable-sized types, such as strings, are supported with
the directory index, since current GPUs have no such build-
in types yet. If two key/value pairs need to be swapped, we
swap their corresponding entries in the directory index
without modifying the key and the value arrays.

Some applications perform chained MapReduce proce-
dures, where the output of one MapReduce procedure is the
input of another one. Since the sets of input records,
intermediate records, and output records are all in the
three-array structure uniformly, chained MapReduce is
supported gracefully in Mars.

3.3 Mars Workflow

Fig. 2 illustrates the workflow of Mars, assuming the data
resides in the disk at the beginning. The Mars scheduler
runs on the CPU and schedules tasks to the GPU. Mars has
three stages, Map, Group, and Reduce.

Before the Map stage, Mars preprocesses on the CPU the
input data from disk, transforming the input data to key/
value pairs (input records) in main memory. After that, it
transfers input records from the main memory to the GPU
device memory.
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In the Map stage, Map Split dispatches input records to
GPU threads, such that the workload for all threads is even.
Each thread executes the user-defined MapCount function
to compute a local histogram on the number and the total
size of intermediate records that Map will output. Then, the
runtime performs a GPU-based Prefix Sum on the local
histograms to obtain the output size and the write position
for each thread. Finally, after the CPU allocates the output
buffer in the device memory, each GPU thread executes the
user-defined Map function and outputs results. Since the
write position for each thread is precomputed and has no
conflict with any other threads, there will be no write
conflict between concurrent threads. This lock-free scheme
of MapCount, Prefix Sum, and Map is adapted from our
previous work [25].

In the Group stage, both sort-based and hash-based
approaches are available for grouping records by key.
However, we adopt the sort-based, because some applica-
tions require to sort all output records, and the hash-based
approach has to perform additional sort within each hash
bucket.

In the Reduce stage, Reduce Split dispatches each group of
records with the same key to a GPU thread. However, it
may cause load imbalance between threads, since the
number of records of different groups may vary widely.
We adopt a skew handling scheme to alleviate the load
imbalance problem (Section 3.6). The Reduce stage then
works in a lock-free scheme, similar to that in Map, to obtain
the result size and the write location for each thread.
Finally, all Reduce workers output results to a single buffer.

Because these three stages are loosely coupled and not
every application requires all stages, Mars allows users to
customize the following workflows in their applications:

. MAP_ONLY. Mars executes the Map stage only and
does not executes the Group or Reduce stage.

. MAP_GROUP. Mars executes the Map and Group
stages and does not executes the Reduce stage.

. MAP_GROUP_REDUCE. Mars executes all three
stages—Map, Group, and Reduce stages.

Because usually applications need a Map to transform
input records, and a Group to prepare for the intermediate
records to feed to Reduce, we exclude the other workflow
configurations that skip either Map or Group in the
presence of Reduce.

3.4 Lock-Free Scheme

With the array structure, we allocate the space on the device
memory for the input data as well as for the result output
before executing the GPU program. However, the sizes of
the output from the Map and the Reduce stages are
unknown. Moreover, write conflicts occur when multiple
threads write results to the shared output array. To address
these two problems, we adopt a previous lock-free output
scheme for relational joins [25]. Since the output scheme for
the Map stage is similar to that for the Reduce stage, we
present the scheme for the Map stage only.

First, each MapCount invocation on a thread outputs
three counts, i.e., the number of intermediate results, the
total size of intermediate keys (in bytes), and the total size of
intermediate values (in bytes). Based on intermediate key
sizes (or value sizes), Mars computes a prefix sum on these
sizes and produces an array of write locations. A write
location is the start location in the output array for a map
task to write. Based on the number of intermediate results,
Mars computes a prefix sum and produces an array of start
locations in the output directory index. Through these
prefix sums, we also know the sizes of the arrays for the
intermediate results. Finally, Mars allocates arrays in the
device memory with the exact sizes for storing the
intermediate results.

Second, each Map invocation on a thread outputs the
intermediate key/value pairs to the output array. Since each
Map has its deterministic and nonoverlapping positions to
write to, the write conflicts are avoided.

The lock-free scheme is suitable for the massive thread
parallelism on the GPU, even though it performs a
MapCount in addition to a Map. The overhead of executing
MapCount is application dependent and is usually small.
For example, this overhead is negligible in the matrix
multiplication in our study, since MapCount simply emits
the size without performing the actual multiplication.

3.5 Rapid Group

The Group stage requires to sort intermediate records.
However, we observe that some applications inherently
have their intermediate records grouped after the Map
phase, and each group has the same number of records. For
example, [A,A,A,B,B,B,C,C,C] shows three groups with A, B,
and C as the key, respectively, and each group is with the
same size 3. For such applications, Mars provides a
configuration parameter for users to whether the intermedi-
ate data are already grouped. The runtime automatically
skips the time consuming sorting, and then dispatches each
group of intermediate records with the same group size to
Reduce workers. We name this strategy as “Rapid Group”.

3.6 Skew Handling

We design a skew handling scheme to distribute workloads
evenly across reduce workers, where the user-defined
Reduce operation is commutative and associative. This
scheme iteratively performs the Reduce stage in the
following two steps. First, we divide the data into M
equal-sized chunks. Second, we perform a reduction on
each chunk. In this step, each of the M threads applies the
reduce function on groups of records in a single chunk.
Note, in each iteration, we perform reduction on the
intermediate results with the same keys only.
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3.7 Mars APIs

Mars provides a small set of APIs. Similar to the existing
MapReduce frameworks, Mars has two kinds of APIs, the
user-implemented APIs, which the users should implement
by themselves, and the system-provided APIs, which the
users can use as library calls. The definitions of these APIs
are in Table 1.

4 SINGLE-MACHINE IMPLEMENTATIONS

In this section, we present the implementation details of
Mars on a single machine. The current Mars system consists
of four modules (Table 2). All these four modules share the
common design of Mars and provide the same MapReduce
interface to the user. They can run on different hardware
platforms: MarsCUDA on an NVIDIA GPU, MarsBrook on
an AMD GPU, MarsCPU on a multicore CPU, and the
GPU/CPU coprocessing module on both the CPU and the
GPU through combining the aforementioned modules.
Different modules in Mars allow programmers to take
advantage of different processors on a single machine.
Because our machines cannot host a multi-GPU configura-
tion due to limited extension slots, we have not explored
multi-GPU coprocessing.

4.1 MarsCUDA

We implemented MarsCUDA using NVIDIA CUDA. We
used the GPU Prefix Sum routine from CUDPP [3] to
implement the lock-free scheme, and the GPU Bitonic Sort
routine for the Group phase. CUDA exposes sufficient
hardware details of NVIDIA GPUs, so that we can apply
some optimizations in MarsCUDA runtime.

4.1.1 Memory Access

Coalesced access. We utilize the NVIDIA GPU feature of
coalesced access to improve the memory performance. In
CUDA, simultaneous device memory accesses by threads in
a half-warp (warp is an NVIDIA term for a group of 32
threads for scheduling) can be coalesced into a single
memory transaction, which significantly reduces the num-
ber of device memory accesses. We implement the access to
the directory index arrays as coalesced.

Local memory. NVIDIA GPUs provide the program-
mable on-chip local memory (or shared memory [30]), for

sharing data among threads running on the same multi-
processor. It is important to fully utilize the local memory to
reduce the costly accesses to the GPU memory. In Mars,
data sharing or communication only happens in the Group
stage. MarsCUDA runtime automatically uses a GPU-based
bitonic sort [22] to exploit this memory hierarchy in the
Group stage. Mars does not expose the local memory to the
user-defined functions in the Map and the Reduce stages.
Since local memory is programmer-controlled fast memory,
it introduces complexity and needs the effort from the
programmer. This is a trade-off between performance and
programmability. Nevertheless, users who are aware of the
GPU memory hierarchy and need such data sharing can
exploit the local memory in implementing the Map (or
Reduce) function.

Built-in vector types. Data accesses in the GPU device
memory should be aligned to make sure the correctness and
achieve high memory bandwidth. Fortunately, GPUs
support built-in vector types [30], including float4 and
int4. The alignment requirement is automatically fulfilled
for built-in types. In addition, the GPU is able to issue a
single load instruction to read data of built-in type, of size
up to 16 bytes. Compared with reading an array one float or
int at a time, the number of compiler-generated instructions
for reading float4 or int4 is greatly reduced and the overall
performance is improved.

Page-locked host memory. CUDA supports page-locked
host memory (a.k.a pinned), which prevents the operating
system for paging the locked memory buffer, yielding high
transfer bandwidth between the device memory and the
host memory [30]. The MarsCUDA runtime utilizes the
page-locked host memory mechanism, in order to reduce
the data transfer overhead. Our test demonstrated that
page-locked memory can double the memory transfer rate
through PCI-E bus than pageable memory.

4.1.2 Parallelism

Since CUDA exposes the thread configuration, we utilize
the parallelism by assigning the tasks to a large number of
threads. The thread configuration, i.e., the number of thread
blocks and the number of threads per thread block, is
related to both hardware and software factors: 1) the
hardware configuration such as the number of multi-
processors and the on-chip computation resources such as
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Mars APIs

TABLE 2
Modules in the Mars System



the number of registers on each multiprocessor, and 2) the
characteristics of the map and the reduce tasks, e.g., the
degree of memory- or computation-intensiveness.

Since the map and the reduce functions are implemented
by the developer, and their costs are unknown to the
runtime system, it is difficult to find the optimal setting for
the thread configuration at run time. CUDA provides an
offline calculator1 for computing the multiprocessor occu-
pancy given a CUDA program. For the program (either the
map task or the reduce task), the calculator takes the
number of threads per thread block and the number of
registers used per thread as input, and outputs the
occupancy and the number of active thread blocks per
multiprocessor. The number of registers used per thread is
obtained using the NVCC compiler of CUDA.

With the calculator, we iterate the number of threads per
block in multiples of 32 (the schedule unit size) ranging
from 32 to 512 (the maximum number of threads per thread
block), until the occupancy is higher than a predefined
threshold. Thus, we get the number of threads per thread
block and the number of thread blocks. In practice, we set
the occupancy threshold to be 2/3, so that the GPU is
sufficiently busy, and each thread block receives adequate
computation resources.

4.2 MarsBrook

We implement MarsBrook on AMD GPUs using the stream
programming model Brook+ [1]. Due to the limitation of
Brook+, MarsBrook is less advanced than MarsCUDA in
both expressivity and performance. Nevertheless, as pro-
gramming support of Brook+ improves, MarsBrook can
demonstrate a higher flexibility and performance.

MarsBrook requires users to specify the data types of
keys and values statically, and each record is of a fixed size.
Type conversion is not allowed in Brook+. Unlike CUDA,
Brook+ does not allow the developer to access data in GPU
memory by arbitrary address. Instead, data in GPU memory
are accessed using a stream, which is essentially a sequen-
tially accessed array of fixed-sized elements. Random access
in a stream is achieved by providing another predefined
stream, consisting of indexes of target elements to access.
Although the Mars APIs are the same on CUDA and on
Brook+, as listed in Table 1, using Mars on CUDA is more
flexible than using that on Brook+, when the Mars user
develops a user-defined function.

Moreover, MarsBrook has relatively limited room for
performance optimization. The reason is that Brook+ does
not expose detailed hardware features, e.g., fast on-chip
local memory, coalesced memory access, or GPU thread
configuration.

4.3 MarsCPU

We implement MarsCPU using the pthreads library on
linux for multithreading. Instead of adopting lock-based
task scheduling as in Phoenix, MarsCPU inherits the lock-
free design of GPU-based Mars, which we expect to scale to
hundreds of cores for future many-core CPUs. MarsCPU
deploys CPU threads to perform Map and Reduce tasks. If

there are N Map (or Reduce) tasks and T CPU threads,
where N is usually much larger than T , then a thread
processes dN=Te tasks. We implement a CPU multi-
threaded parallel mergesort for the Group stage.

4.4 GPU/CPU Coprocessing

The workflow of GPU/CPU coprocessing is shown in Fig. 3.
There are also mainly three stages, Map, Group, and Reduce.
In the Map stage, the scheduler divides the input data into
multiple chunks. The number of chunks is equal to the total
number of CPUs and GPUs in the machine. The chunk sizes
are determined based on the performance comparison
between the CPU and the GPU. Suppose the speedup of
the GPU worker over the CPU worker is S, where the
speedup is defined to be the ratio of the execution time on the
CPU to that on the GPU for the same amount of input data.
Given the total input size of I bytes, we assign data chunks
of SI

1þS and I
1þS bytes to the GPU and the CPU workers,

respectively. The speedup S can be obtained by either
calibration or predictive model [27].

When a processor finishes a Map task, it performs a local
Group on intermediate results. The runtime merges all
intermediate results. When all the processors finish their
tasks, the Map stage ends.

The Reduce stage takes the intermediate results from the
Group stage as input. Similar to the Map stage, the
coprocessing scheduler statically assigns the data chunks
to the processors. When all the processors finish their tasks,
the runtime merges all local results.

Mars dispatches workload between the GPU worker and
the CPU worker only if the following conditions are
satisfied. First, the Map and Reduce stages take up high
proportion of the entire running time on the CPU worker. If
components other than the Map and Reduce stages
contribute to a large portion of running time, the GPU
worker is not able to make large performance acceleration.
Second, the GPU worker and the CPU worker have
comparable performance. The benefit of using the CPU
worker diminishes as the speedup of the GPU worker over
the CPU worker becomes higher.

With the GPU/CPU coprocessing module, Mars can
harness the computation power of NVIDIA GPUs, AMD
GPUs, and multicore CPUs on the same machine by
integrating MarsCUDA, MarsBrook, and MarsCPU mod-
ules as components.

5 MULTIMACHINE IMPLEMENTATIONS

In this section, we present the integration of Mars into a CPU-
based distributed MapReduce system, specifically Hadoop
in our implementation. This integration benefits from both
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1. http://developer.download.nvidia.com/compute/cuda/CUDA_
Occupancy_calculator.xls.

Fig. 3. The workflow of GPU/CPU coprocessing.



worlds: Hadoop utilizes CPUs on multiple machines and
provides fault tolerance and other features of a distributed
system; Mars utilizes the GPU to accelerate local computa-
tion. We denote Mars-enabled Hadoop as MarsHadoop.

We use the Hadoop Streaming technology2 to integrate
Mars into Hadoop. Hadoop Streaming enables the developers
to use their own custom Map or Reduce implementation in
Hadoop. In our implementation, we use the Mars executable
to read the input from stdin and to emit the output to stdout.
Thus, the Map and the Reduce tasks can be performed on
the GPU, and other tasks, such as task scheduling and
failure handling, are performed by Hadoop. Finally, since
current GPUs do not support multitasking, we configure
MarsHadoop to run GPU-based tasks sequentially.

Fig. 4 illustrates the workflow of MarsHadoop. A Map
Worker/Reduce Worker in MarsHadoop is the same as a
Map Worker/Reduce Worker shown in Fig. 3; in other
words, it can be from MarsCUDA, MarsBrook, or MarsC-
PU, depending on the underlying processor. In the
configuration of Fig. 4, Node 1 simultaneously runs two
Map Workers, on a GPU and a CPU, respectively.

6 EXPERIMENTAL EVALUATION

In this section, we evaluate Mars on a single machine using
a microbenchmark of six applications in comparison with
their CPU-based counterparts and native GPU-based
implementations. We also evaluate the performance of
MarsHadoop on two connected machines.

6.1 Experimental Setup

Our experiments were performed on three PCs, A, B, and C.
Table 3 shows their hardware configuration. Both PCs A
and B run 32-bit CentOS 5.1 Linux with kernel 2.6.18,
NVIDIA CUDA 2.2, and the GPU driver 185.18.14. PC C
runs 32-bit Windows XP Pro SP3, with Brook+ 1.01.0 beta,
and the GPU driver 8.561. All hard drives on these PCs are

SATA magnetic hard disks with 7,200 rpm. On all PCs, the
main memory and the device memory are connected by
PCI-E bus with a theoretical bandwidth of 4 GB/second.

6.2 Microbenchmark

We have implemented the following six real-world applica-
tions for evaluating the MapReduce framework.

String Match (SM): Each Map task searches a portion of
the input file to check whether the target string is in the
portion. Neither the Group nor the Reduce stage is needed.

Matrix Multiplication (MM): Matrix multiplication is
used intensively in analyzing the relationship of two
documents. Given two matrices M and N , each Map task
computes multiplication for a row from M and a column
from N . It outputs the pair of the row ID and the column ID
as the key and the corresponding result as the value.
Neither the Group nor the Reduce stage is needed.

Black-Scholes (BS): Black-Scholes model [8] is used for
calculating the price for European options according to a
partial differential equation. For each option, a Map task
computes the prices for the call and put prices of an option,
and emits a structure containing the price of the option call
and the price of the option put as the key, and the option id
as the value. The Group stage is to rank the price of option
calls. No Reduce stage is needed.

Similarity Score (SS): It is used in web document
clustering. The characteristics of a document are repre-
sented using a feature vector of floating point numbers.
Given two document features, ~a and ~b, the similarity score
between these two documents is defined to be ~a�~b

j~aj�j~bj . SS
computes the pair-wise similarity score for a set of
documents. Each Map task computes the similarity score
for two documents. It outputs the intermediate pair with
the score as the key and the pair of the two document IDs as
the value. The Group stage is required to rank the pair-wise
similarity scores and no Reduce stage is required.

Principal component analysis (PCA): This application
computes the mean vector and the covariance matrix of a
set of points in the first two steps in PCA. The input data are
stored in a matrix. The whole process contains two
MapReduce invocations in a chain. The first MapReduce
procedure is to find the mean for each row in the matrix,
and the second is to calculate the covariance matrix. Neither
Group nor Reduce stage is needed in the first MapReduce
invocation. A Map task computes the mean for a row. In the
second invocation, each Map task is to calculate the
covariance of two rows. The Group stage is required to
sort the row pairs by row IDs. No Reduce phase is needed.

Monte Carlo (MC): Monte Carlo [9] is used to compute
option pricing in financial engineering. The Monte Carlo
numeric integration is to mathematically estimate the
expectation of the price of option call. Each Map task is to
compute the expected value of a random sample for an
option, and to emit the option ID as the key, while the
expected value of the random sample as the value. The
Group stage and the Reduce stage are required to calculate
the mean of all the samples for each option. In this
application, all the options have the same number of
samples, and the intermediate results are ordered by option
ID already. Mars does not need to perform sorting in the
Group stage.
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2. http://hadoop.apache.org/common/docs/r0.15.2/streaming.html.

Fig. 4. MarsHadoop. Some Map and Reduce tasks are performed on the

GPU, and others are on the CPU.



The above applications are commonly used in bench-
marking MapReduce implementations in the previous
studies [32], [13]. SM, MM, and PCA are adopted from the
Phoenix suite [32], SS is a common component in web
applications, while BS and MC are prevalent in financial
engineering and are adopted from CUDA SDK. In parti-
cular, the workflow of these applications differ: SM and MM
only have the Map stage; BS, SS, and PCA have Map and
Group stages; and MC has all the three stages. PCA has a
chain of multiple MapReduce procedures, whereas other
applications have only one MapReduce invocation each.

Within a single machine, we used three data sets for each
application (S, M and L) to evaluate the scalability of the
MapReduce framework. The input for SM is textual data
and is adopted from Phoenix [32]; The input for all the other
applications contains randomly generated real numbers,
ranging from zero to one. All these input data are stored as
files in the hard disk. We summarize the size of input data
for each application in Table 4.

With the microbenchmarks, we have compared the
performance and programmability of the MapReduce
frameworks between the CPU and the GPU. The third
party MapReduce on the CPU is the latest release of
Phoenix in version 2.0.0. As for native implementation,
we have implemented the applications directly on CUDA
and pthreads.

Metrics. The wall time is the major metric for the
performance evaluation. We measure the elapsed time of
each application from reading data from the disk till
generating results in the main memory. We ran each
experiment five times and report the average value. The
variation of elapsed time between runs is negligible. The
performance speedup on A over B is defined as the running
time of B divided by the running time of A. The
performance slowdown on A over B is defined as the
running time of A divided by the running time of B.

We use the number of code lines written by the user as
the metric for comparing the programmability of different
MapReduce implementations as well as the native imple-
mentation with CUDA and Brook+. Note that we exclude
comments and empty lines from the code size counting.

6.3 Results on a Single Machine

On a single machine, we have compared the performance
and programmability of the MapReduce frameworks
between the CPU and the GPU. We have implemented
the six applications on MarsCUDA, MarsCPU, and the
latest release of Phoenix in version 2.0.0. We have also
implemented the applications directly on CUDA and
pthreads, respectively, including thread configuration, data
distribution, task execution, buffer management, and
various memory optimizations.

We present the results on the NVIDIA GPU in detail, and
briefly present the results on the AMD GPU, mainly
demonstrating the feasibility.

6.3.1 Results on MarsCUDA and MarsCPU

Programmability. Table 5 shows the comparison of user
code size, for implementing the microbenchmark with
MarsCUDA, MarsCPU, Phoenix, and CUDA. By design,
the code sizes with MarsCUDA are the same as those with
MarsCPU. In general, the applications with MarsCPU have
a similar code size to those with Phoenix. If the Group stage
is required, applications like SS with MarsCUDA have a
much smaller code size than when manually written using
CUDA, due to an optimized but lengthy group function on
CUDA. The user code size of MarsCUDA is up to seven
times smaller than that of the native implementation with
CUDA, which demonstrates the ease of GPU programming
using Mars.
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Overall performance on MapReduce. We conducted the
performance evaluation of MarsCUDA and MarsCPU on
PC A by comparing with Phoenix. Fig. 5 shows the overall
performance comparison. Both MarsCUDA and MarsCPU
outperform Phoenix for the six applications due to the
general lock-free design of Mars.

The overall performance of MarsCPU is generally better
than that of Phoenix, achieving a speedup of up to 25.9x.
Applications written using Phoenix always have a Reduce
stage, whereas using ours they may not have. Phoenix
maintains a global 2D array of pointers to keys array. Each
keys array is in essence a contiguous buffer as a bucket for
hashing and is sorted by insertion sort when a new key
arrives. Such design incurs two serious performance bottle-
necks. First, lock-based synchronization is needed. Second,
lots of memory buffer movements (calling memmove()) are
required for insertion sort in the static array. In contrast, the
design of Mars is lock free and each Map task or Reduce
task has deterministic output buffer size and writing
positions, so neither lock nor memory management over-
head would be introduced. In particular, BS and SS that
require to rank distinct real numbers are over 10x slower on
Phoenix than on MarsCPU. That is because Phoenix has to
deploy millions of identity reduce tasks for these two
applications. Our profiling results obtained from Intel
VTune show that over 99 percent of the total execution
time of BS and SS on Phoenix is contributed to the
memmove() operations in the Reduce stage.

As shown in Fig. 5c, MarsCUDA utilizes the GPU
hardware to accelerate the Map and Reduce stages for the
six applications and outperforms MarsCPU in the two stages
by 21x on average, and up to 40.9x. Please note that, this
speedup is obtained without specific performance tuning on

the GPU code, e.g., exploiting local memory. When it turns to
the overall performance, MarsCUDA has a 10x speedup over
MarsCPU for MM, and 6x for MC, but not so impressive
speedup for the other applications (Fig. 5b). In order to figure
out the source of slowdown in overall speedup, we further
investigate the time breakdown of each application on the
large data set for both MarsCUDA and MarsCPU.

We divide the total execution time into four components,
including the time for 1) preprocessing input data (“Pre-
process”), including input file I/O, generating key/value
pairs, and transfering data from main memory to device
memory, 2) the Map stage (“Map”), 3) the Group stage
(“Group”), and 4) the Reduce stage (“Reduce”). MarsCPU
totally runs on multicore CPUs, and thus, the PCI-E I/O
time in Fig. 6b is always zero. MarsCUDA generally has a
larger portion of preprocess time, involving key/value pair
preparation and PCI-E I/O. In addition, the GPU-based
Group stage has limited speedup over the CPU-based. We
use Amdahl’s law to explain this speedup involving
parallel and sequential executions. Take SM for example.
Although the GPU accelerates the Map phase by 20 times,
the Map only takes up some 25 percent in MarsCPU.
According to Amdahl’s law, the theoretical speedup of
MarsCUDA over MarsCPU is at most 1.3. Our measure-
ment is close to this theoretical speedup.

Scaling. We used the clock rate scaling tool NVClock3 to
vary the NVIDIA GPU’s core clock rate and memory clock
rate, in order to evaluate the impact of hardware capability
on MarsCUDA. Figs. 7a and 7b show the performance
result of the six applications running on MarsCUDA with
the large data set.
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Fig. 5. Performance evaluation for MarsCPU and MarsCUDA on the microbenchmark. (a) Performance speedup on MarsCPU over Phoenix.

(b) Performance speedup on MarsCUDA over MarsCPU (The entire MapReduce). (c) Performance speedup on MarsCUDA over MarsCPU (Map

and Reduce stages only).

Fig. 6. Time breakdown of MarsCUDA and MarsCPU on the microbenchmark. (a) Time breakdown of MarsCUDA. (b) Time breakdown of MarsCPU.

3. http://www.linuxhardware.org/nvclock/.



In general, most applications (except for SM) on
MarsCUDA are sensitive to both core clock rate and
memory clock rate. This result indicates that MarsCUDA
can scale well as the GPU evolves. SM is not sensitive to the
hardware scaling, since its GPU computation time is
relatively small (as shown in Fig. 6a).

Comparison with native implementation. Fig. 8a shows
the performance slowdown of the six applications on
MarsCUDA over the native implementation, with large
data set. Overall, the implementation of applications based
on MarsCUDA has roughly the same performance as on
CUDA. However, MM and MC performs much poorer on
MarsCUDA, mainly due to two reasons. One reason is
rooted at the potential deficiency of MapReduce compared
with a native implementation, as a previous study has
already demonstrated [32]. The other reason is that
MarsCUDA does not automatically exploit the local
memory to improve the temporal locality due to the lack
of knowledge about specific applications. Similarly, Fig. 8b
illustrates that applications on MarsCPU has roughly the
same performance as on pthreads.

6.3.2 Results on MarsBrook

Due to the limitation of Brook+, we have developed only
two numerical applications (i.e., MM and SS) on Mars-
Brook. Table 6 shows the code size of applications written in
MarsBrook compared with the native implementation in
Brook+. The result is consistent with the comparison
between MarsCUDA and the native CUDA implementa-
tion. For example, the native implementation of SS has a

much larger code size than that on MarsBrook, since SS

requires a Group stage.
Fig. 8c shows the performance slowdown of two

applications by using MarsBrook over the native imple-

mentation. The implementation on top of MarsBrook is up

to twice slower than the native implementation, which is

the price to pay for ease of programming.
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Fig. 7. Varying clock rates on GTX 280. (a) Baseline: running at 100 MHz core clock rate. Memory clock rate: fixed to 1,100 MHz. (b) Baseline:

running at 200 MHz memory clock rate. Core clock rate: fixed to 600 MHz.

Fig. 8. The performance slowdown of Mars over native implementations. (a) MarsCUDA over CUDA. (b) MarsCPU over pthreads. (c) MarsBrook

over Brook+.

TABLE 6
Code Size of MM and SS between MarsBrook and Brook+

Fig. 9. Performance speedup of GPU/CPU coprocessing module over

MarsCUDA, MarsCPU, and Phoenix.3. http://www.linuxhardware.org/nvclock/.



6.3.3 Results on GPU/CPU Coprocessing of Mars

We used MarsCUDA and MarsCPU as two components in
the coprocessing. Fig. 9 shows the performance speedup of
the GPU/CPU coprocessing module over MarsCUDA,
MarsCPU, and Phoenix, on the large data set. Overall,
coprocessing utilizes the computation power of both the
CPU and the GPU, and yields a considerable performance
improvement over using MarsCPU or Phoenix on a CPU.
However, the speedup of using coprocessing over using
stand-alone MarsCUDA is limited.

The workload dispatching between MarsCUDA and
MarsCPU in coprocessing mainly depends on the perfor-
mance comparison between the CPU processing and the
GPU processing. The theoretical speedup of coprocessing
over MarsCUDA would be ðS þ 1Þ=S, where S is the
speedup of using MarsCUDA over using MarsCPU. For
example, if the speedup S is 10, then using coprocessing
would only outperform using stand-alone MarsCUDA by a
factor of 10þ1

10 ¼ 1:1. Therefore, for compute-intensive appli-
cations MM, BS, SS, MC, and PCA, using coprocessing
cannot boost the performance considerably over using the
stand-alone MarsCUDA. For SM that spends most time in
preprocessing, using coprocessing can hardly achieve the
theoretical speedup 1þ1

1 ¼ 2. Nevertheless, applications
using coprocessing of MarsCUDA and MarsCPU still
outperform Phoenix with a speedup of 24 times on average,
and 72 times at maximum.

6.4 Results on MarsHadoop

We experimented MM on MarsHadoop. We configured
Hadoop on PCs A and B: PC A as the master node, while
PC A itself and PC B as slave nodes.

Fig. 10a shows the performance speedup of MarsHadoop
over the native Hadoop implementation on MM. As the
matrix size varied, MarsHadoop is up to 2.8 times faster
than the native Hadoop implementation. We further
examine the time breakdown in the slave node, and the
results are shown in Fig. 10b. As the matrix size increases,
the ratio for the computation time grows, indicating that
Mars starts to help. The disk I/O is mainly due to the extra
I/O caused by Hadoop streaming.

7 CONCLUSION

Graphics processors have become an efficient accelerator
for high-performance computing. This paper proposes

Mars, which harnesses the GPU computation power and
high memory bandwidth to accelerate MapReduce frame-
works. Mars is applicable to run on NVIDIA GPUs, AMD
GPUs, multicore CPUs, and Hadoop-based distributed
systems. Our empirical studies show that Mars improves
the programmability of both the NVIDIA and the AMD
GPUs, and the GPU acceleration with an NVIDIA GTX280
achieved a speedup of an order of magnitude over a quad-
core CPU. Utilizing both the GPU and the CPU further
improved GPU-only performance by 40 percent for some
applications. Additionally, integrating Mars into Hadoop
enabled GPU acceleration for a network of PCs.

The code and documentation of Mars can be found at
http://www.cse.ust.hk/gpuqp/.
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