
Rank-Aware Dynamic Migrations and Adaptive
Demotions for DRAM Power Management

Yanchao Lu, Donghong Wu, Bingsheng He, Xueyan Tang, Senior Member, IEEE,

Jianliang Xu, Senior Member, IEEE, and Minyi Guo, Senior Member, IEEE

Abstract—Modern DRAM architectures allow a number of low-power states on individual memory ranks for advanced power

management. Many previous studies have taken advantage of demotions on low-power states for energy saving. However, most of the

demotion schemes are statically performed on a limited number of pre-selected low-power states, and are suboptimal for different

workloads and memory architectures. Even worse, the idle periods are often too short for effective power state transitions, especially

for memory intensive applications. Wrong decisions on power state transition incur significant energy and delay penalties. In this paper,

we propose a novel memory system design named RAMZzz with rank-aware energy saving optimizations including dynamic page

migrations and adaptive demotions. Specifically, we group the pages with similar access locality into the same rank with dynamic page

migrations. Ranks have their hotness: hot ranks are kept busy for high utilization and cold ranks can have more lengthy idle periods for

power state transitions. We further develop adaptive state demotions by considering all low-power states for each rank and a prediction

model to estimate the power-down timeout among states. We experimentally compare our algorithm with other energy saving policies

with cycle-accurate simulation. Experiments with benchmark workloads show that RAMZzz achieves significant improvement on

energy-delay2 and energy consumption over other energy saving techniques.

Index Terms—Demotion, energy consumption, main memory systems, in-memory processing, page migrations

Ç

1 INTRODUCTION

ENERGY consumption has become a major factor for the
design and implementation of computer systems.

Inside many computing systems, main memory (or
DRAM) is a critical component for the performance and
energy consumption. The hunger for main memory of
larger capacity makes the amount of energy consumed by
main memory approaching or even surpassing that con-
sumed by processors in many servers [1], [2]. For example,
it has been reported that main memory contributes to as
much as 40-46 percent of total energy consumption in
server applications [2], [3], [4]. For these reasons, this paper
studies the energy saving techniques of main memory.

Current main memory architectures allow power man-
agement on individual memory ranks. Individual ranks at
different power states consume different amounts of
energy. There have been various energy-saving techniques
on exploiting the power management capability of main
memory [5], [6], [7], [8]. The common theme of those
research studies is to exploit the transition of individual
memory ranks to low-power states (i.e., demotion) for energy
saving. Fan et al. concluded that immediate transitions on

Direct Rambus DRAM (RDRAM) to the low-power state
saved the most energy consumption for most single-appli-
cation workloads [9]. However, the decision can be wrong
for more memory intensive workloads such as multi-pro-
grammed executions, and for different memory architec-
tures. Existing techniques are suboptimal in the following
aspects: (1) they do not effectively extend the idle period,
either with static page placement [9], [10] or with heuristics-
based page migrations [5], [6]; (2) the prediction on the
power-down timeout (the amount of time spent since the begin-
ning of an idle period before transferring to a low-power state) for
a state transition is limited and static, either with heuristics
[5], [6] or regression-based model [9]; (3) most of the demo-
tion schemes are statically performed on a limited number
of pre-selected low-power states (e.g., Huang et al. [6]
selects two low-power states only, out of five in DDR3). The
static demotion scheme is suboptimal for different work-
loads and different memory architectures.

To address the aforementioned issues, we propose a
novel memory design named RAMZzz with rank-aware
power management techniques including dynamic page
migrations and adaptive demotions. Instead of having static
page placement, we develop dynamic page migration
mechanisms to exploit the access locality changes in the
workload. As a result, ranks are categorized into hot and
cold ones. The hot rank is highly utilized and has very short
idle periods. In contrast, the cold rank has a relatively small
number of long idle periods, which is good for power state
transitions for energy saving.

Instead of adopting static demotion schemes, we develop
adaptive demotions to exploit the power management capa-
bilities of all low-power states for individual ranks. The
decisions are guided by a prediction model to estimate the
idle period distribution. The prediction model is specifically

� Y. Lu, D. Wu, and M. Guo are with the Department of Computer Science
and Engineering, Shanghai Jiao Tong University, Shanghai 200240,
China. E-mail: {chzblych, donghong}@sjtu.edu.cn, guo-my@cs.sjtu.edu.cn.

� B. He and X. Tang are with the School of Computer Engineering, Nanyang
Technological University, Nanyang Ave, Singapore 639798.
E-mail: {bshe, asxytang}@ntu.edu.sg.

� J. Xu is with the Department of Computer Science, Hong Kong Baptist
University, Kowloon Tong, Hong Kong. E-mail: xujl@comp.hkbu.edu.hk.

Manuscript received 12 Mar. 2013; revised 31 Jan. 2015; accepted 15 Feb.
2015. Date of publication 8 Mar. 2015; date of current version 16 Dec. 2015.
Recommended for acceptance by C.Z. Xu.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2015.2409847

IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 1, JANUARY 2016 187

0018-9340� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

designed with the consideration of page migrations among
ranks. Based on the prediction model, RAMZzz is able to
optimize for different goals such as energy saving and
energy-delay2 (ED2). In this paper, we focus on the optimi-

zation goal of minimizing ED2 (or energy consumption) of
the memory system while keeping the program perfor-
mance penalty within a pre-defined performance slowdown
relative to the maximum performance without any power
management (e.g., 10 percent performance loss).

We evaluate our design using detailed simulations of dif-
ferent workloads including SPEC 2006 and PARSEC [11].
We evaluate RAMZzz in comparison with representative
power saving policies [6], [10], [12] and an ideal oracle
approach. Our experiments with the optimization goal of
ED2 (for a maximum acceptable performance degradation of
4 percent) on three different DRAM architectures show that
(1) both page migrations and adaptive demotions well adapt
to the workload; (2) with both page migrations and adaptive

demotions, RAMZzz achieves an average ED2 improvement
of 45.2-64.2 percent over the basic approach without power
management, and achieves only 3.7-5.7 percent on average

larger ED2 than the ideal oracle approach. The experiments
with the optimization goal of energy consumption have
demonstrated similar results.

Organization. The rest of the paper is organized as fol-
lows. We introduce the background on basic power man-
agement of DRAM and review related work in Section 2.
Section 3 gives an overview of RAMZzz design, followed
by detailed implementations in Section 4. The experimental
results are presented in Section 5. We conclude this paper in
Section 6.

2 BACKGROUND AND RELATED WORK

2.1 DRAM Power Management

In this paper, we use the terminology of DDR-series mem-
ory architectures (e.g., DDR2 and DDR3 etc) to describe
our approach. DDR is usually packaged as modules, or
DIMMs. Each DIMM contains multiple ranks. In power
management, a rank is the smallest physical unit that we
can control. Individual ranks can service memory requests
independently and also operate at different power states.
The power consumption of a memory rank can be divided
into two main categories: active power and background
power. Active power consists of the power that is
required to activate the banks and service memory reads
and writes. Background power is the power consumption
without any DRAM accesses. Background power is a
major component in the total DRAM power consumption,
and tends to be more significant in the future [6], [13]. For
example, Huang et al. [6] found that the background
power contributes to 52 percent of the total DRAM power
in their evaluation. Therefore, we focus on reducing the
background power consumption.

Depending on which hardware components are dis-
abled, modern memory architectures support a number
of power states with complicated transitions [14], [15].
Each state is characterized with its power consumption
and the time that it takes to transition back to the active
state (resynchronization time). Typically, the lower power
consumption the low-power state has, the higher the

resynchronization time is. Table 1 summarizes the major
power state transitions of three typical DRAM architec-
tures: DDR3, DDR2 and LPDDR2. For each state, we
show its dynamic power consumption (normalized to
that of ACT) and the resynchronization times back to
ACT. The power consumption values are calculated with
DRAM System Power Calculator [17]. The resynchroniza-
tion times are obtained from DRAM manufacturers’ data
sheets [14], [15], [16].

From Table 1, we have the following observations on
state demotions on different memory architectures.

First, on a specific memory architecture, power states
have quite different latency and energy penalties as well as
different power consumptions. Second, different memory
architectures have their own specifications on power states
as well as power state energy consumption and resynchroni-
zation time. First, different memory architectures may have
different sets of power states. For example, DDR3 has a spe-
cial low-power state, i.e., self-refresh with slow exit state
(SR_SLOW), whereas DDR2 and LPDDR2 do not have any
equivalent state. SR_SLOW has a very high resynchroniza-
tion time and consumes only 10 percent of the power of
ACT. Second, the energy consumption or the resynchroniza-
tion time of the same power state can vary for different mem-
ory architectures. Take self-refresh states (SR) as an example.
While SR consumes a similar normalized power consump-
tion for the three architectures (about 17-19 percent),
the resynchronization time varies significantly. The resynch-
ronization times on DDR3, DDR2, LPDDR2 are 768ns
(SR_FAST), 500ns (SR) and 100ns (SR), respectively.

The above-mentioned observations have significant
implications to DRAM power management design.

First, the above-mentioned observations clearly show the
deficiency of the static demotion schemes [5], [6], [7], [9].
The static demotion schemes are performed on the pre-
selected low-power states (even for all ranks in the same
architecture, and for different memory architectures). On a
specific memory architecture, the static decision loses the

TABLE 1
Power States for Three Typical DRAM Architectures

Power State Normalized Power Resynchronization
Time (ns)

DDR3 DRx4 at 1333 MHz [14]
ACT 1.0 0
ACT_PDN 0.612 6
PRE_PDN_FAST 0.520 18
PRE_PDN_SLOW 0.299 24
SR_FAST 0.170 768
SR_SLOW 0.104 6,768

DDR2 DRx8 at 800 MHz [15]
ACT 1.0 0
ACT_PDN_FAST 0.619 5
ACT_PDN_SLOW 0.325 18
PRE_PDN 0.237 25
SR 0.178 500

LPDDR2 DRx16 at 800 MHz [16]
ACT 1.0 0
ACT_PDN 0.523 8
PRE_PDN 0.303 26
SR 0.194 100

188 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 1, JANUARY 2016

opportunities for demoting to the most energy-effective
low-power state for different idle period lengths. Moreover,
with different memory architectures, the static decision
loses the opportunities for adapting to different memory
architectures.

Second, because the latency and energy penalty for
switching from deeper low-power states is substantially
higher than the penalty of switching from shallower states,
entering deep power-down states for short idle times could
in fact hurt energy efficiency because the power savings
might not be able to offset the high latency penalty of
switching back to the active state.

The design of RAMZzz are guided by the aforemen-
tioned two implications. It embraces dynamic migrations
and adaptive demotions, adapting to different workloads
and different memory architectures.

2.2 Related Work

Different power state transition approaches have been
developed for DRAM systems. Hur and Lin [18] devel-
oped adaptive history-based scheduling in the memory
controller (MC). Based on page migration, Huang et al.
[6] stored frequently-accessed pages into hot ranks and
left infrequently-used and unmapped pages on cold
ranks. Their decisions on page migrations are based on
heuristics. Lebeck et al. [12] studied different page alloca-
tion strategies. Their approach does not have any analyti-
cal model to guide the decision, or utilize both recency
and frequency to capture rank hotness. Our prediction
model offers a novel way of power management on guid-
ing page migrations and power state transitions. Fan
et al. [9] developed an analytic model on estimating the
idle time of Direct Rambus DRAM (RDRAM) chips using
an exponential distribution. Their model did not consider
page migrations. For demotions, they adopted a simple
approach that, when there is an idle period, immediate
transitions on RDRAM to the low-power state are made.
However, the decision can be wrong for memory inten-
sive workloads such as multi-programmed executions,
and for different memory architectures. Sudan et al. [19]
used a similar page migration mechanism between cold
and hot ranks, but always set cold ranks with a pre-
selected low-power state. Instead of relying on the pre-
sumed knowledge of distribution, our prediction model
combines the historical information on idle period distri-
bution and page access locality. More importantly, com-
pared with all previous studies that pre-define a number
of fixed states for all ranks [6], [9], [10], [12], [18], [19],
this paper develops adaptive demotions to exploit the
energy-saving capabilities of all power states, and the
adaptation is on the granularity of individual ranks for
different memory architectures.

DRAM power state transitions have been implemented
in operating systems and compilers. Delaluz et al. [7]
present an operating system based solution letting the
scheduler decide the power state transitions. This
approach requires the interfaces of exposing and control-
ling the power states. Huang et al. [5] proposed power-
aware virtual memory systems. For energy efficient
compilations, Delaluz et al. [20] proposed compiler opti-
mizations for memory energy consumption of array

allocations. They further combined the hardware-directed
approach and compiler-directed approaches [21] for more
energy saving.

There are other approaches for reducing the DRAM
power consumption. We review three representative cate-
gories. The first category is to reduce the active power con-
sumption. Fang et al. [22] suggested the subdivision of a
conventional DRAM rank into mini-ranks comprising of a
subset of DRAM devices to improve DRAM energy effi-
ciency. Anh et al. [23] proposed Virtual Memory Devices
(VMDs) comprising of a small number of DRAM chips.
Decoupled DIMMs [24] proposed the DRAM devices at a
lower frequency than the memory channel to reduce DRAM
power. The second category is to reduce the power con-
sumption of power state transitions. Bi et al. [25] took
advantage of the I/O handling routines in the OS kernel to
hide the delay incurred by memory power state transitions.
Balis and Jacob [26] proposed finer grained memory state
transition. The third category is to adjust the voltage and
frequency of DRAM. Memory voltage and frequency scal-
ing (DVFS) is a recent approach to reduce DRAM energy
consumption [27], [28]. Lu et al. [29] conducted a compre-
hensive study on the synergy between DVFS and demotion
on DRAM architectures. Those approaches are complemen-
tary to the state transition-based energy saving approaches.

Recently, different architectural designs of DRAM sys-
tems [13], [23], [30], [31] are explored on multi-core pro-
cessors for performance, energy, reliability and other
issues. Cache-centric optimizations (either cache-con-
scious [32] or cache-oblivious [33], [34]) reduce memory
access and create more opportunities for energy saving.
Besides optimizations targeting at general DRAM sys-
tems, some researchers have also proposed energy saving
techniques for specific applications such as databases [8],
[35] and video processing [35].

A preliminary version of RAMZzz has been presented in
a previous paper [36]. This paper goes beyond the prelimi-
nary version with two major improvements. First, we have
enhanced the cost model and the design of RAMZzz with
adaptive demotions. Adaptive demotions can exploit
energy-saving capabilities of all power states for different
memory architectures and different workloads, and the
adaptation is on the granularity of individual memory
ranks. Second, we have extended the evaluation to study
the effectiveness of RAMZzz on three DRAM architectures
(i.e., DDR2, DDR3 and LPDDR2), and demonstrated the
self-tuning feature of RAMZzz for different workloads
(SPEC 2006 and PARSEC) and different memory architec-
tures. Note, our preliminary version [36] evaluates only
SPEC 2006 on DDR3.

3 DESIGN OVERVIEW

In this section, we give an overview of the design rationales
and workflow of RAMZzz.

3.1 Motivations

Our goal is to reduce the background power of DRAM. Due
to the inherent power management mechanisms of DRAM,
there are three obstacles in the effectiveness of reducing the
background power.

LU ET AL.: RANK-AWARE DYNAMIC MIGRATIONS AND ADAPTIVE DEMOTIONS FOR DRAM POWER MANAGEMENT 189

First, due to the latency and power penalty of transiting
from low-power state to active state, it requires a minimum
length threshold for an idle period that is worthwhile to
make the state transition. Ideally, if the idle period is longer
than the threshold value, the rank should jump to the low-
power state at the beginning of the idle period; otherwise,
we should keep the rank in the active state. However, it is
not easy to predict the length of each idle period, due to
dynamic memory references.

Second, in memory intensive workloads, the number of
idle periods is large, and many of the idle periods are too
short to be exploited for power saving. It is desirable to
reshape the page references to different ranks so that the
idle periods become longer and the number of idle periods
is minimized.

Third, static demotion schemes cannot adapt to different
workloads and different memory architectures. With page
migrations, we further need adaptation for power manage-
ment on individual ranks (differentiating the rank hotness).

3.2 Workflow of RAMZzz

We propose a novel memory design RAMZzz with dynamic
migrations and adaptive demotions to address the afore-
mentioned obstacles. We develop a dynamic page place-
ment policy that is likely to create longer idle periods. The
policy takes advantage of recency and frequency of pages
stored in the ranks, and ranks are categorized into hot and
cold ones. The hot ranks tend to have very short idle peri-
ods, and the cold ranks with relatively long idle periods.
Page migrations are periodically performed to maintain the
rank hotness (the period is defined as epoch). With dynamic
page migrations, short idle periods are consolidated into
longer ones and the number of idle periods is reduced on
the cold ranks. On the other hand, the configuration for
adaptive demotions is determined periodically (the period
is called slot). For each slot, a demotion configuration (i.e.,
power-down timeouts for all power states) is used to guide
demotions within the slot.

We further develop an analytical model to periodically
estimate the idle period distribution of one slot. Our ana-
lytical model is based on the locality of memory pages and
the idle period distribution of the previous slot. Given an
optimization goal (such as minimizing energy consump-
tion or minimizing ED2), we use the prediction model to
determine the demotion configuration for the new slot.
Since the prediction has much lower overhead than the
page migration, a slot is designed to be smaller than an
epoch. In our design, an epoch consists of multiple slots.
Fig. 1 illustrates the relationship between slot and epoch.
RAMZzz performs demotion configuration and prediction
at the beginning of each slot and performs page migration
at the beginning of each epoch.

The overall workflow of RAMZzz is designed as shown
in Algorithm 1. RAMZzz maintains the performance model
by updating the data structures used in the prediction

model (Section 4.2). As the idle period length increases,
actions of the adaptive demotion scheme may be triggered.
At the beginning of each epoch, RAMZzz decides the page
migration schedule and starts to migrate the pages to the
destination ranks (Section 4.1). At the beginning of each
slot, RAMZzz performs prediction and determines the
demotion configuration for the new slot (Section 4.3). The
next section will describe the design and implementation
details of each component.

Algorithm 1.Workflow of RAMZzz

1: if any memory reference to rank r then
2: if rank r is in the low-power state then
3: Set r to be ACT;
4: Maintains the prediction model; /*Section 4.2*/
5: else
6: Update the current idle period of rank r;
7: Perform demotions (if necessary) according to the

demotion configuration of rank r; /*Section 4.3*/
8: if the current cycle is the beginning of an epoch then
9: Run page migration algorithm and schedule page

migrations; /*Section 4.1*/
10: if the current cycle is the beginning of a slot then
11: Determine the demotion configuration for the new slot;

/*Section 4.3*/

4 DESIGN AND IMPLEMENTATION DETAILS

After giving an overview on RAMZzz, we describe the
details for the following components in rank-aware power
management: dynamic page migration, prediction model
and adaptive demotions. Finally, we discuss some other
implementation issues in integrating RAMZzz into memory
systems.

4.1 Dynamic Page Migration

When an epoch starts, we first group the pages according to
their locality and each group maps to a rank in the DRAM.
Next, pages are migrated according to the mapping from
groups to ranks.

Rank-aware page grouping. We place the pages with simi-
lar hotness into the same rank. We adopt the MQ structure
[37] to capture the memory access locality. Ideally, RAMZzz
can work with other replacement algorithms. We use MQ
because it can well capture the recency and frequency of
data accesses, as shown in the previous studies [38]. We
briefly describe the idea of MQ, and refer the readers to the
original paper for more details. MQ has M LRU queues
numbered from 0 toM-1. We assumeM ¼ 16 following pre-
vious studies [37], [38]. Each queue stores the page descrip-
tor including the page ID, a frequency counter and a logical
expiration time. The queue with a larger ID stores the page
descriptors of those most frequently used pages. On the first
access, the page descriptor is placed to the head of queue
zero, with initialization on its expiration time. A page
descriptor in Queue i is promoted to Queue iþ 1 when its

frequency counter reaches 2iþ1. On the other hand, if a page
in Queue i is not accessed recently based on the expiration
time, its page descriptor will be demoted to Queue i� 1.
We use a modified MQ structure to group physical memory
pages [38]. The updates to the MQ structure are performed

Fig. 1. Overview of RAMZzz.

190 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 1, JANUARY 2016

by the memory controller, which is designed to be off the
critical path of memory accesses (more details can be found
in Section 4.4).

An observation in MQ is that MQ has clustered the pages
with similar access locality into the same queue [36], [38].
Moreover, unlike LRU, MQ considers both frequency and
recency in page accesses. As a result, we have a simple yet
effective approach to place the pages in the ranks. Suppose
each rank has a distinct hotness value. We assign the rank
that a page is placed in a manner such that: given any two
pages p and p0 with the descriptors in Queues q and q0, p and
p0 are stored in ranks r and r0 (r is hotter than r0) if and only
if q > q0 or if q ¼ q0 and p is ahead of p0 in the queue. That
means, the pages whose descriptors are stored in a higher
queue in MQ are stored in hotter ranks. Within the same
queue in MQ, the more recently accessed pages are stored
in hotter ranks. Algorithm 2 shows the process of grouping
the pages into R sets, and each set of pages is stored in a
memory rank. Each rank has a capacity of C pages.

Algorithm 2. Obtain R page groups in the increasing
hotness

1: initiate R empty sets, S0, S1, . . . ; SR�1;
2: curSet ¼ 0;
3: for Queue i ¼ M � 1,M � 2, . . . ; 0 in MQ do
4: for Page p from head to tail in Queue i do
5: Add p to ScurSet;
6: if jScurSetj ¼ C then
7: curSetþþ;

Fig. 2 illustrates an example of page placement onto the
ranks. There are four ranks in DRAM, and each rank can
hold two pages. At epoch i, we run Algorithm 2 on the MQ
structures, and obtain the page placement on the right. For
example, P6 and P7 belong to Q3, which are the hottest
pages, and they are placed into the hottest rank (here r0). At
epoch iþ 1, there are some changes in the MQ (the under-
lined page descriptors) and the update page placement is
shown on the right.

Page migrations. To update page placement at each epoch,
we first need to determine the mappings from groups to
ranks, i.e., which rank stores which set (or group) of pages
determined in Algorithm 2. According to the current page
placement among ranks, different mappings from groups to
ranks can result in different amounts of page migrations,
leading to different amounts of penalty in energy and latency.
We should find amapping tominimize pagemigrations.

We formulate this problem as finding a maximum
weighted matching on a balanced bipartite graph. The
bipartite graph is defined as Gwhose partition has the parts
U and V . Here, U and V are defined as the page placement
among ranks in the previous epoch and the page groups
obtained with Algorithm 2 in the current epoch respec-
tively. An edge between ri and Sj has a weight equaling to
the number of pages that exist in both rank ri and Sj. Since
jUj ¼ jV j, that is, the two subsets have equal cardinality, G
is a balanced bipartite graph. We find the maximum
weighted matching of such a balanced bipartite graph with
the classic Hopcroft-Karp algorithm. The maximum
weighted matching means the maximum number of pages
that are common in both sides, and equivalently the match-
ing minimizes the number of page migrations. Fig. 3a illus-
trates the calculation of the maximum matching for the
bipartite graph for the example in Fig. 2. In this example,
there are multiple possible matchings with the same maxi-
mum matching weight. The thick edges represent one of
such maximummatchings.

After the page mappings to individual ranks are deter-
mined, we know which pages should be migrated from one
rank to another. Then, we need to schedule the page migra-
tions in a manner to minimize the runtime overhead.
Inspired by the Eulerian cycle in graph theory, we develop
a novel approach to perform multiple page migrations in
parallel. We consider a labeled directed graph Gm where
each node represents a distinct rank. An edge from node ri
to node rj is labeled with a page descriptor, representing
the pages to be migrated from rank ri to rank rj.

Each strongly connected component of Gm has Eulerian
cycles. According to graph theory, a directed graph has a
Eulerian cycle if and only if every vertex has equal in degree
and out degree, and all of its vertices with nonzero degree
belong to a single strongly connected component. By defini-
tion, each strongly connected component of Gm satisfies
both properties, and thus we can find Eulerian cycles in Gm.
The page migration follows the Eulerian cycle. We divide
the Eulerian cycle into multiple segments so that each seg-
ment is a simple path or cycle. Then, the page migrations in
each segment can be performed concurrently. Fig. 3b illus-
trates one example of Eulerian cycle according to the maxi-
mum matching on the left. The three migrations form a
Eulerian cycle, and they are performed in one segment.

To facilitate concurrent page migrations according to the
Eulerian cycle, each rank is equipped with one extra row-
buffer for storing the incoming page. When migrating a
page, a rank first writes the outgoing page to the buffer of
the target rank, and then reads the incoming page from its
buffer (more details can be found in Section 4.4).

Fig. 2. An example of page placement on ranks.

Fig. 3. An example of page migrations: (a) calculate the maximum
matching on the bipartite graph; (b) calculate Eulerian cycle for page
migrations.

LU ET AL.: RANK-AWARE DYNAMIC MIGRATIONS AND ADAPTIVE DEMOTIONS FOR DRAM POWER MANAGEMENT 191

4.2 Prediction Model

When a new slot starts, we run a prediction model
against each rank. The model predicts the idle period dis-
tribution. Our estimation should be adapted to the poten-
tial changes in the page locality as well as the set of pages
in each rank.

We use the histogram to represent the idle period distri-
bution. Suppose the slot size is T cycles, and the histogram
has T buckets. We denote the histogram to be Hist½i�, i ¼ 0,
1, . . . ; T . The histogram means there are Hist½i� number of
idle periods with the length of i cycles each. One issue is the
storage overhead of the histogram. A basic approach is to
store the histogram into an array, and each bucket is repre-
sented as a 32-bit integer. However, the storage overhead of

this basic approach is too high. Consider a slot size of 108

cycles in our experiments. The basic approach consumes
around 400 MB per rank. In practice, the histogram is usu-

ally very sparse, and there are at most
ffiffiffiffi
T

p
idle periods lon-

ger than
ffiffiffiffi
T

p
cycles. Thus, we develop a simple approach to

store the short and the long idle periods separately. In par-
ticular, we maintain two small arrays: the histogram coun-

ters for the short idle periods no longer than
ffiffiffiffi
T

p
cycles, and

another array of
ffiffiffiffi
T

p
integers to store the actual lengths of

the long idle periods that are longer than
ffiffiffiffi
T

p
cycles. This

simple approach reduces the storage overhead to 2
ffiffiffiffi
T

p
inte-

gers. It takes only 80 KB per rank to support a slot size of

108 cycles. We calculate the histogram for idle periods lon-

ger than
ffiffiffiffi
T

p
cycles with just one scan on the array.

Our estimation specifically consider page migrations. If
the new slot is not the beginning of an epoch, there is no
page migration and we use the actual histogram in the pre-
vious slot, Hist0½i�, to be the prediction of the current slot,
i.e., Hist½i� ¼ Hist0½i� (0 � i � T). Otherwise, we need to
combine the access locality of the migrated pages with the
historical histogram.

Our estimation after page migration works as follows.
We model the references to the same page conforming to a
Poisson distribution. Suppose a page i is accessed with f
times in a slot. Under the Poisson distribution, the probabil-

ity of having one access to page i within a cycle is pi ¼ g�f
T ,

where g is the memory access latency. In our implementa-
tion, we take advantage of the frequency counter and the
expiration time in the MQ structure (as described in the pre-
vious section) to approximate pi. This already offers a suffi-
ciently accurate approximation in practice. Given a rank
consisting ofN pages (pages 0, 1, . . . ; N � 1), the probability
of an idle cycle in the rank is Q ¼ ð1� p0Þ� ð1� p1Þ . . . �
ð1� pN�1Þ. Based on Q, we can estimate the probability of
forming an idle period with length of k cycles (followed by
a busy cycle in ðkþ 1Þth cycle). That is, the probability of

having an idle period of k cycles isWk ¼ Qk � ð1�QÞ.
We denote the old values of those probability values in

the previous epoch to be W 0
k (k ¼ 0, 1, 2, . . . ; T). After page

migrations, we calculate Wk (k ¼ 0, 1, 2, . . . ; T) according to
the updated pages in the rank. Given the actual histogram
in the previous slot, Hist0½i�, we can estimate the histogram

of the new slot with the ratio Wi=W
0
i , that is, Histþ½i� ¼

Wi=W
0
i �Hist0½i�. Finally, we normalize the histogram so that

the histogram represents the total time length of a slot.

Denote s0 ¼ PT
i¼0ðHistþ½i� � ðiþ gÞÞ. We normalize the histo-

gram with the value of T
s0, i.e., Hist½i� ¼ Histþ½i� � T

s0. We use

Hist½i� as the prediction of idle period distribution for the
new slot.

Based on the prediction model, we will estimate the
power-down timeout for the new slot in the next section.

4.3 Adaptive Demotions

With the predicted idle period distribution, there are oppor-
tunities to avoid the state transitions upon those short idle
periods, and to have instant state transitions for long idle
periods. For example, if we know all the idle periods are
expected to be very long, we can set the power-down time-
out to be zero, thus performing instant state transitions.
Thus, we have developed a simple approach to reduce the
total penalty of state transitions. The basic idea is, for each
low-power state, we use one power-down timeout to deter-
mine the state transition within the entire slot. Suppose a
DDR-series memory architecture has M low-power states,
denoted as S1; . . . ; SM in the descending order of their
power consumptions. For each low-power state Si,
RAMZzz performs the state transition to Si after an idle
period threshold Di. If the idle period is shorter than Di,
RAMZzz does not make the state transition to Si.

Since we need to exploit all power states in order to
adapt to different workloads and different memory archi-
tectures, a naive approach is to consider all the possible
state transitions. However, the demotion configuration of
the naive approach is too complex to derive. Instead of con-
sidering all state transitions, we view multiple state transi-
tions as a chain of state transitions from higher-power states
to lower-power states. We will show that our adaptive
demotion scheme can identify the unnecessary power states
in a chain of states, and thus further simplify the demotion
scheme. We define the demotion configuration to be a vec-
tor of power-down timeouts ~D ¼ ðD1; . . . ;DMÞwhere Di rep-
resents the power-down timeout of low-power state Si,
i ¼ 1; . . . ;M. In the chain, when the idle period length is
longer than Di, we perform states transition from Si�1 to Si.

Given the estimated histogram on idle periods, we esti-
mate the demotion configuration of each rank for a given
optimization goal. We use energy consumption as the opti-
mization goal to illustrate our algorithm design on estimat-
ing the demotion configuration. One can similarly extend it
to other goals such as ED2. Since the choice on different
power-down timeouts does not affect the energy consump-
tion of memory reads and writes, our metric can be simpli-
fied as the total energy consumption of background power
and the state transition penalty.

We analyze the energy consumption on different
demotions over an idle period. Suppose the idle period
length is t cycles, and the power consumption of active
state ACT and a low-power state Si are PACT and PSi

(i ¼ 1; . . . ;M), respectively. Given a demotion configura-

tion ~D, if t � D1, there is no state transition to low-power
states. Otherwise, denote IðtÞ to be the maximum i such
that Di < t (i ¼ 1; . . . ;M). In the chain, there are at most
IðtÞ state transitions, from S1 to SIðtÞ. At the end of the

idle period, a memory access comes and the rank transits
from low-power state SIðtÞ back to ACT. Thus, the energy

192 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 1, JANUARY 2016

consumption of the idle period can be calculated as

Bð~D; tÞ in Eq. (1),

Bð~D; tÞ ¼ PACT � D1 þ
XIðtÞ�1

j¼1

ðPSj � ðDjþ1 � DjÞÞ

þ PSIðtÞ � ðt� DIðtÞÞ þ ESIðtÞ ;

(1)

where ESIðtÞ is resynchronization energy penalty from low-
power state SIðtÞ back to ACT.

Given the histogram Hist½t� (t ¼ 0; 1; . . . ; T), each Hist½t�
means there are Hist½t� idle periods with length t cycles. We
can calculate the total energy consumption for all the idle

periods, as Eð~DÞ in Eq. (2).

Eð~DÞ ¼
XD1

t¼0

ðPACT � t �Hist½t�Þ þ
XT

t¼D1þ1

ðBð~D; tÞ �Hist½t�Þ (2)

RAMZzz also allows users to specify a delay budget to limit
the delay penalty incurred by state resynchronization. We
calculate the total resynchronization delay as Dð~DÞ in
Eq. (3),

Dð~DÞ ¼
XT

t¼D1þ1

ðRSIðtÞ �Hist½t�Þ; (3)

where RSIðtÞ is resynchronization delay from low-power
state SIðtÞ back to ACT. Our goal is to determine the suitable

demotion configuration ~D so that Eð~DÞ is minimized. If a

delay budget is given, we choose the ~D value that minimizes

Eð~DÞ with the constraint that the total delay Dð~DÞ is no
larger than the given delay budget.

Algorithm 3. The greedy algorithm to find the suitable

demotion configuration ~D

Input: All low-power states set ~S ¼ ðS1; . . . ; SMÞ, and
associated power consumptions set ~P ¼ ðPS1 ; . . . ; PSM Þ;

Initialization: ~D ¼ f, ~Sselect ¼ f;
1: while j~Sselectj 6¼ M do
2: for all Si 2 ~S do
3: Add Si into ~Sselect;
4: for each possible Di value do
5: Calculate Eð~DÞ using Eq. (2) with selected

low-power states subset ~Sselect;
6: Find the suitable Di that has the best Eð~DÞ;
7: Remove Si from ~Sselect;
8: Find the low-power state Sk that has a best Eð~DÞ;
9: Add Dk into ~D;
10: Remove Sk from ~S;
Output: power-down timeout set ~D

We note that Eð~DÞ is neither concave nor monotonic.
Therefore, we have to iterate all the possible values for
Di ¼ 0, 1, . . . ; T (i ¼ 1; . . . ;M), and find the best combina-
tion of Di (i ¼ 1; . . . ;M). The complexity of this naive
approach of increases exponentially with the number of
low-power states in the DRAM architecture. In the fol-
lowing, we develop an efficient greedy algorithm to find
a reasonably good demotion configuration (illustrated in
Algorithm 3).

We start by assuming that only one low-power state is
used in the entire slot, and select the best suitable low-
power state and its power-down timeout which leads to a
smallest estimated Eð~DÞ among all M low-power states.
Then, we keep the estimated power-down timeout of the
selected low-power state unchanged, and select a new low-
power state and its power-down timeout from the rest
M � 1 low-power states, which results in a smallest esti-

mated Eð~DÞ. We repeat this process to add one more new
low-power state into the previous selected subset of low-
power states together with its power-down timeout in each
step. Algorithm 3 has much lower computational complex-
ity than the naive approach.

Algorithm 3 has a low runtime overhead in most cases.
First, it does not need to iterate through all values from 0
to T (T is the slot size). Instead, it only searches those val-
ues with non-zero frequencies in the predicted histogram.
This number is far smaller than T in practice. Second, as
more low-power states are selected during the process
(one state per step), the search space for rest low-power
states is further reduced since the power-down timeout of
Si is bounded by that of Si�1 and Siþ1, i.e., Di�1 �
Di � Diþ1. Moreover, we further optimize Algorithm 3 in
two ways. First, we adopt the branch-bound optimization
in order to further reduce the search space (That is, we try
possible values from the highest to the lowest until the
program performance penalty violates the given budget).
Second, we use an exponential search approach by iterat-

ing in the form of 2i (0 � i � log2T) for each power-down
timeout. On the current architectures, the greedy algo-
rithm has a low runtime overhead and provides near-opti-
mal demotion configurations, as shall be shown in our
evaluation (Section 5).

The adaptive demotion scheme is applied on each rank at
the beginning of a slot. The demotion configurations can be
different among different ranks and at different slots. This
is a distinct feature of adaptive demotion, in comparison
with the previous work on static demotion schemes [5], [6],
[7], [9].

4.4 Other Implementation Issues

RAMZzz can be implemented with a combination of mod-
est hardware and software supports. Following the previ-
ous study [38], RAMZzz extends a programmable
controller [39] by adding its own new components (shaded
in Fig. 4). Other functionalities including page grouping
and the prediction model are offloaded to operating systems
(like previous studies [5], [38]).

Fig. 4. Memory controller and operating system with RAMZzz’s new
modules highlighted.

LU ET AL.: RANK-AWARE DYNAMIC MIGRATIONS AND ADAPTIVE DEMOTIONS FOR DRAM POWER MANAGEMENT 193

Memory controller structure. The memory controller
receives read/write requests from the cache controller via
the CMD FIFOs. The Arbiter dequeues requests from those
FIFO queues, and the controller converts those requests into
the necessary instructions and sequences required to com-
municate with the memory. The Data path module handles
the flow of reads and writes between the memory devices.
The physical interface converts the controller instructions
into the actual timing relationships and signals required for
accessing the memory device. We assume the MC exploits
cache-block-level bank interleaving and page-level channel
interleaving following previous studies [28], [38]. This
address mapping scheme is a common cache-line interleav-
ing technique used in real systems. Our proposed mecha-
nism can also be applied to other address mapping schemes
(or interleaving schemes).

Four new modules including MQ, Migration, Remap and
Demotion are added into the memory controller for imple-
menting the functionality of page grouping, page migration,
page remapping and power state control in RAMZzz,
respectively. All the logics of the new modules are per-
formed by the memory controller, and are designed off the
critical path of memory accesses, giving the priority to the
memory accesses from applications. We add a flag bit to
indicate whether this request is from applications or new
modules. The total on-chip storage of new MC modules in
our design is 112 KB (as described in the following).

MQ module. To avoid performance degradation, MQ
module contains the small on-chip cache (64 KB with 4 K
entries) to store the MQ structure and a separate queue
(10 KB) for the updates to the MQ structure. To find the MQ
entry of a physical page, MC uses hashing with the corre-
sponding page number. Misses in the entry cache produce
requests to DRAM. MQ module’s logic snoops the CMD
FIFO queue, creating one update per new request. The
updates to the MQ structure are performed by the MC off
the critical path of memory accesses (via the aforemen-
tioned flag bit). The update queue is implemented as a small
circular buffer, where a new update precludes any currently
queued update to the same entry. In our design, each physi-
cal page descriptor in the MQ queues takes 124 bits. Each
descriptor contains the corresponding page number
(22 bits), the reference counter (14 bits), the queue number
in MQ (4 bits), the last-access time (27 bits), the pointers to
other descriptors (54 bits), and the reserved bit for flags
(3 bits). The space overhead of our design is low. For the
2 GB DRAM, the total space taken by the descriptors is
about 8 MB (only 0.4 percent of the total DRAM space).

Migration module. The Migration module contains the
queue of scheduled migrations. The migrations are
enqueued in a manner such that concurrent migrations of a
Eulerian cycle are put in consecutive positions. At the begin-
ning of each epoch, the OS accesses the current MQ struc-
ture to perform grouping and calculate the Eulerian cycle.
Then, the OS updates the queue of scheduled migrations
(10 KB) which is stored in the Migration module. Page
migrations start from the beginning of an epoch, and is
scheduled once there are idle periods. Priority is given to
longer segments because they involve more pages. Memory
requests are buffered until the migration is concluded. To
facilitate concurrent page migrations according to the

Eulerian cycle, each rank is equipped with one extra row-
buffer for storing the incoming page. When migrating a
page, a rank first writes the outgoing page to the buffer of
the target rank, and then reads the incoming page from its
buffer.

Remap module. Similar to the previous design [38], we
introduce a new layer of translation between physical
addresses assigned by the OS (and stored in the OS page
table) and those used by the MC to access DRAM devices.
Specifically, the MC maintains the Remapping Table, a hash
table for translating physical page addresses coming from
the LLC to actual remapped physical page addresses. The
OS can access the Remapping Table as well. After the migra-
tion is completed at the beginning of an epoch, the Remap-
ping Table is updated accordingly. Periodically or when the
table fills up (at which point the MC interrupts the CPU),
the OS commits the new translations to its page table and
invalidates the corresponding TLB entries. For example, if
the OS uses a hashed inverted page table, e.g., UltraSparc
and PowerPC architectures, it considerably simplifies the
commit operation. Then, the OS sets a flag in a memory-
mapped register in the MC to make sure that the MC pre-
vents from migrating pages during the commit process, and
clears the Remapping Table.

When a memory request (with physical address
assigned by the OS) arrives at the MC, it searches the
address in the Remapping Table. On a hit, the new physical
page address is used by the MC to issue the appropriate
commands to retrieve the data from its new location. Other-
wise, the original address is used. In terms of access latency,
the remapping operation happens when a request is added
to the MC queues and does not extend the critical path in
the common case because queuing delays at the MC are
substantial. For memory-intensive workloads, memory
requests usually wait in the MC queues for a long time
before being serviced. The above translation can begin
when the request is queued and the delay for translation
can be easily hidden behind the long waiting time. The
notion of introducing Remapping Table for the MC has been
widely used in the past [19], [38], [40].

The Remap module maintains the Remapping Table
(28 KB with 4 K entries) and the logic to remap target
addresses. At the end of migration, the Migration module
submits the migration information to the Remap module,
which creates new mappings in the Remapping Table. The
Remap module snoops the CMD queue to check if it is nec-
essary to remap its entries. We assume each Remapping Table
lookup and each remapping take 1 memory cycle. However,
these operations only delay a memory request if it finds the
CMD queue empty (which is not the common case). Note
that the migration and remapping of a segment blocks the
accesses to only the pages involved, and concurrent accesses
to other pages are still possible.

Demotion module. The Demotion module performs the
demotion to control the power state of each rank according
to its demotion configuration. The demotion configuration
of each rank is updated by the OS at the beginning of a slot.

OS modules. Two major new components Grouping and
Prediction Model are added to the memory management
sub-system in operating system. The Grouping module per-
forms grouping and calculates the Eulerian cycle according

194 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 1, JANUARY 2016

to the MQ structure at the beginning of an epoch. At the
beginning of each epoch, the OS accesses the current MQ
structure to perform grouping and calculate the Eulerian
cycle. Then, the OS updates the queue of scheduled migra-
tions which is stored in the Migration module. The Predic-
tion Model module runs the prediction model and obtains
the demotion configuration for memory controller at the
beginning of each slot.

5 EVALUATION

5.1 Methodology

Our evaluation is based on trace-driven simulations. In
the first step, we use cycle-accurate simulators to collect
memory access traces (last-level cache misses and write-
backs) from running benchmark workloads. In the second
step, we replay the traces using our detailed memory sys-
tem simulator. Our simulation models all the relevant
aspects of the OS, memory controller, and memory devi-
ces, including page replacements, memory channel and
bank contention, memory device power and timing, and
row buffer management. We evaluate workloads from
SPEC 2006 and PARSEC [11].

SPEC 2006 workloads. We use PTLSim [41] to collect
memory access traces of SPEC 2006 workloads. The main
architectural characteristics of the simulated machine are
listed in Table 2. We model and conduct the evaluation
with an in-order processor following previous studies
[28], [38]. More complex and recent processors are stud-
ied with Sniper-based simulations. We evaluate our tech-
niques with three different memory architectures, as
shown in Table 1 (Section 2.1). Those memory architec-
tures are used in different computing systems. We

simulate different capacities (1, 2 and 4 GB) and different
numbers of ranks (4, 8, 12 and 16) for the memory system.
All the ranks have the same configurations (DRAM
parameters) and capacities. By default, we assume a 2 GB
DRAM with eight ranks. We pick these small memory
sizes to match the footprint of the workloads’ simulation
points. We calculate the memory power consumption fol-
lowing Micron’s System Power Calculator [17], with the
power and delay illustrated in Table 1. The energy and
performance overheads caused by new MC and OS mod-
ules (e.g., remapping, migration and demotion) are
derived from our analysis in Section 4, which are consis-
tent with those of others [38], [40], [42].

We have used 19 applications from SPEC 2006 with the
ref inputs. These workloads have widely different memory
memory access rates, footprints and localities. Due to space
limitations, we do not present the results for single applica-
tions; instead, we report their geometric mean (GM), and
also four particular applications with different memory
intensiveness. They are omnetpp, cactusADM, mcf and
lbm (denoted as S1, S2, S3 and S4, respectively). To assess
our algorithm under the context of multi-core CPUs, we
study mixed workloads of four different applications from
SPEC 2006 (Table 3). The four workloads start at the same
time. The mixed workloads form multi-programmed exe-
cutions on a four-core CPU, ordered by the average number
of memory accesses (Mean). The standard deviation and
mean values are calculated based on memory access statis-

tics per 5� 108 CPU cycles. For each workload, we select

the simulation period of 15� 109 cycles in the original
PTLSim simulation, which represents a stable and suffi-
ciently long execution behavior.

PARSEC workloads. Since current PTLSim cannot support
PARSEC benchmarks, we use another simulator–Sniper [43]
to collect memory access traces of PARSEC. By default, we
use the simulated CPU architecture as shown in Table 4
(Intel’s Gainestown CPUs), which simulates a four-core pro-
cessor running at 2.66 GHz based on the Intel’s Nehalem
micro architecture. By default, we simulate a four-core CPU,
and 2 GB DRAMwith eight ranks. The memory architecture
has the same power consumption and performance configu-
rations as the PTLSim-based simulations. We also observe
similar results on simulated machines with larger number
of cores and memory capacities. Each PARSEC workload
runs with four threads, and each thread is assigned to one
core. We use the sim-medium inputs for PARSEC workloads,
and perform the measurement on the specified Region-of-
Interest (ROI) of PARSECworkloads [11].

Comparisons. In our previous study [36], we have already
demonstrated that the preliminary version of RAMZzz

TABLE 2
Architectural Configurations of PTLSim

Component Features

CPU In-order cores running at 2.66 GHz
Cores 4
TLB 64 entries
L1 I/D cache (per core) 48 KB
L2/L3 cache (shared) 256 KB/4MB
Cache line/OS page size 64 B/4KB

DRAM DDR3-1333, DDR2-800, LPDDR2-800
Channels 4
Ranks 4, 8, 12, 16
Capacity (GB) 1, 2, 4
Delay and Power see Table 1

The default setting is highlighted.

TABLE 3
Mixed Workload: Memory Footprint (FP), Memory Accesses Statistics per 5� 108 Cycles (Mean and Stdev

Mean)

Name FP (MB) Mean (106) Stdev
Mean

Applications

M1 661.3 0.6 1.02 gromacs, gobmk, hmmer, bzip
M2 1,477.4 1.7 1.11 bzip, soplex, sjeng, cactusADM
M3 626.6 2.9 0.59 soplex, sjeng, gcc, zeusmp
M4 537.8 3.5 0.47 zeusmp, gcc, leslie3d, omnetpp
M5 1,082.9 4.4 0.71 gcc, leslie3d, calculix, gemsFDTD
M6 988.2 7.8 0.40 libquantum, milc, mcf, lbm

LU ET AL.: RANK-AWARE DYNAMIC MIGRATIONS AND ADAPTIVE DEMOTIONS FOR DRAM POWER MANAGEMENT 195

outperforms other state-of-the-art power management tech-
niques [6], [9], [12] in terms of both ED2 and energy con-
sumption. For completeness, we show the comparison
between RAMZzz and other state-of-the-art power manage-
ment policies in Section 5.5. Overall, RAMZzz has signifi-
cantly outperformed the state-of-the-art approaches [6], [9],
[12], [36]. In this paper, we consider two RAMZzz variants
namely RZ-SP and RZ-SD to evaluate the impact of indi-
vidual techniques. They are the same as RAMZzz except
that RZ-SP uses the static page management scheme with-
out page migrations, whereas RZ-SD uses the static demo-
tion scheme. The static demotion scheme simply transits a
rank to a pre-selected low-power state according to the pre-
diction model.

In addition to RAMZzz variants, we also simulate the fol-
lowing techniques for comparison. All our experimental
results of RAMZzz and its variants have included the
energy and performance penalty caused by page migrations
and adaptive demotions. All the metrics reported in this paper
are normalized to those of BASE.

� No power management (BASE). No power manage-
ment technique is used, and ranks are kept active
even when they are idle.

� Ideal oracle approach (ORACLE). ORACLE is the same
as RAMZzz, except the power-down timeout in
ORACLE is determined with the future information,
instead of history. Specifically, at the beginning of
each slot, we perform an offline profiling on the cur-
rent slot, and get the real histogram of idle periods.
Based on the histogram, we calculate the optimal
power-down timeout.

RAMZzz allows users to specify the slot and epoch sizes

and delay budgets. In our simulation, we pre-set default

values for RAMZzz as a compromise between the predic-

tion overhead and the accuracy. By default, the slot size is

108 cycles and an epoch consists of ten slots (109 cycles), and
delay budget is set to be 4 percent of the slot size.

Idle period distribution. We study the distribution of idle
periods. Fig. 5 shows the histogram of idle period lengths of
the collected traces on Rank 0 on DDR3 under BASE
approach. Many idle periods are too short to be exploited
for state transitions, e.g., shorter than the threshold idle

period length for demoting to SR_FAST (2,500 cycles on
DDR3). We observe similar results on other ranks.

In the following sections, we first study the behavior of
RAMZzz, BASE, ORACLE, RZ–SP and RZ–SD to show the
effectiveness of RAMZzz on different memory architec-
tures, and the impact of individual techniques (Sections 5.2,
5.3, and 5.4). Next, we compare RAMZzz with other state-
of-the-art memory power management policies in
Section 5.5. We focus on the DRAM component. Our models
and optimizations are able to work for different goals such
as energy consumption and ED2. In this section, we focus

on the optimization goal of minimizing the ED2 while keep-
ing the performance penalty within a given budget. For the
optimization goal of minimizing energy consumption, we
find that RAMZzz also has a high potential of energy sav-

ing, which is consistent with our observations in the ED2

experiment. We have evaluated the individual impact of
RAMZzz (page migrations and adaptive demotions) by
comparing RAMZzz, RZ–SP and RZ–SD. The results show

that page migrations achieve an average ED2 improvement
of 17.1-23.3 percent over schemes without page migrations,

and adaptive demotions achieve an average ED2 improve-
ment of 22.4-36.4 percent over static demotions. Due to the
space constraint, we put those results in Appendix A of the
supplementary file, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TC.2015.2409847 available online.

5.2 Results on SPEC 2006 Workloads

We first compare the algorithms with the optimization goal
of ED2 on SPEC 2006 workloads, because ED2 is a widely
used metric for energy efficiency.

We study the overall impact of RAMZzz in comparison
with BASE and ORACLE. The comparison with BASE
shows the overall effectiveness of energy saving techniques
of RAMZzz, and the comparison with ORACLE shows the
effectiveness of our prediction model. Fig. 6 presents nor-
malized ED2 results for RAMZzz and ORACLE approaches
on three different DRAM architectures. If the normalized

ED2 of an approach is smaller than 1.0, the approach is
more energy efficient than BASE.

Thanks to the rank-aware power management, RAMZzz
is significantly more energy-efficient than BASE. Com-
pared with BASE, the reduction on ED2 is 64.2, 63.3 and
63.0 percent on average on DDR3, DDR2 and LPDDR2,
respectively. The reduction is more significant on the
workloads of single applications (e.g., S1-S4) than the
mixed workloads. There are two main reasons. First, since
the single-application workload has a smaller memory

Fig. 5. The histogram of idle periods with M2 on Rank 0.

TABLE 4
Architectural Configurations of Sniper

Component Features

CPU Out-order cores running at 2.66 GHz
Cores 4, 8, 16
DTLB/ITLB 64/128 entries
L1 I/D cache (per core) 32 KB/32 KB
L2 cache (per core) 256 KB
L3 cache (shared) 8 MB
Cache line/OS page size 64 B/4 KB

DRAM DDR3-1333
Channels 4
Ranks 8, 16
Capacity (GB) 2, 32, 64
Delay and Power see Table 1

The default setting is highlighted.

196 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 1, JANUARY 2016

footprint, the page migration has a smaller overhead and
the number of cold ranks is larger. The number of page
migrations becomes very small after the first few epochs.
In contrast, the execution process of the workloads with a
large memory footprint (such as M5 and M6) consistently
has a fair amount of page migrations at all epochs. Second,
on single-application workloads, there are more opportuni-
ties for saving background power using lower-power states
(such as SR_FAST and SR_SLOW in DDR3, SR in DDR2
and LPDDR2). Fig. 7 shows the breakdown of time stayed
in different power states for RAMZzz on DDR3, DDR2 and
LPDDR2. In Fig. 7, each power state represents the per-
centage of time when ranks are in this state during the
total simulation period. And Others represents the percent-
age of time that includes DRAM operations, page remap-
ping delay, page migration delay and resynchronization
delay. As the workload becomes more memory-intensive,
the portion of time that a rank is in lower-power states
becomes less significant, indicating that many idle periods
are too short and they are not worthwhile to perform
state transitions into lower-power states (even with page
migration).

We briefly present the results of the extra energy over-
head of RAMZzz on DDR3. The energy penalties of page
migrations and adaptive demotions (i.e., resynchronization
energy consumption) contribute to 0.4 and 0.8 percent of
the total energy consumption on average, respectively (less

than 1.4 and 1.6 percent on all workloads). The energy over-
head is much smaller than the energy saving gained by
RAMZzz (67 percent on average).

It can also be seen from Fig. 6 that RAMZzz achieves a
very close ED2 to ORACLE on all workloads and memory
architectures. RAMZzz achieves 5.7, 4.4 and 3.7 percent on

average larger ED2 than ORACLE on DDR3, DDR2 and
LPDDR2, respectively. This good result is because our histo-
gram-based prediction model is able to accurately estimate
the suitable power-down timeout for the sake of minimizing

ED2. Fig. 8 compares RAMZzz’s estimated power-down
timeouts to SR_FAST with ORACLE on ranks 0 and 2 of exe-
cuting M4 on DDR3. Our estimation is very close to the opti-
mal value on the two ranks. We observe similar results for
different ranks and different workloads and also for the
power-down timeouts of other low-power states and other
DRAM architectures. We also find that our model has high
accuracy in predicting rank idle period distribution. We
compare the predicted idle histogram to the actual idle his-
togram of RAMZzz on rank 0 of executing M4 on DDR3.
The predicted histogram is close to the actual histogram in
our evaluation in both cases: 1) the slot is not the beginning
of an epoch as shown in Fig. 9; 2) the slot is the beginning of
an epoch as shown in Fig. 10.

We have further made the following observations on
the result of breakdown in Fig. 7. First, on a specific mem-
ory architecture, the portion of time for different low-

Fig. 6. Comparing ED2 of RAMZzz and ORACLE with the optimization goal of ED2 on three memory architectures.

Fig. 7. The breakdown of time stayed in different power states for RAMZzz with the optimization goal of ED2.

Fig. 8. Power-down timeouts comparison. Fig. 9. The predicted idle histogram: Case 1.

LU ET AL.: RANK-AWARE DYNAMIC MIGRATIONS AND ADAPTIVE DEMOTIONS FOR DRAM POWER MANAGEMENT 197

power states varies significantly across different work-
loads. Different workloads have different choices on the
most energy-effective low-power state. For most single-
application workloads, RAMZzz makes the decision to
demote into SR_SLOW on DDR3 in most idle periods,
whereas the decision of demotion is to SR_FAST or PRE_-
PDN_SLOW for the mixed workloads. Second, on differ-
ent DRAM architectures, the portion of time for different
low-power states varies significantly, even for the same
workload. SR on LPDDR2 has a much higher significance
in all workloads than on DDR3 and DDR2. That is
because, as we have seen in Table 1, SR on LPDDR2 con-
sumes a similar normalized power consumption but a rel-
ative smaller resynchronization time when compared
with the other two DRAM architectures. These two obser-
vations have actually demonstrated the effectiveness of
adaptive demotions of RAMZzz for different workloads
and different memory architectures.

Figs. 11 and 12 show the breakdown of time stayed in dif-
ferent power states for BASE and ORACLE on DDR3,
respectively. Compared with Fig. 7a, RAMZzz has a very
similar power state distribution to ORACLE on all work-
loads, which again demonstrates the effectiveness of our
estimation. Compared to BASE, both RAMZzz and ORA-
CLE significantly reduce the percentage of time when ranks
are in the ACT state by the adaptive use of all available low-
power states. We observe similar results for other work-
loads and DRAM architectures.

Next, we study the performance delay in detail. Fig. 13
shows the breakdown of performance delay for RAMZzz

on DDR3. We divide the delay into three parts: resynchroni-
zation delay (caused by state transitions), migration delay
(caused by page migrations) and remapping delay (caused
by Remapping Table lookup and address remapping). The
performance delay of RAMZzz is well controlled under the
pre-defined penalty budget (i.e., 4 percent in this experi-
ment). The results demonstrate that our model is able to
limit the performance delay within the pre-defined thresh-
old. The resynchronization delay contributes the largest
portion of performance delay on most workloads (2 percent
on average).

As seen from Fig. 13, the migration delay is higher on the
workloads with a large memory footprint (such as S3, M5
and M6). To further study the migration delay, Fig. 14
presents the total migration delay of RAMZzz with/with-
out our graph-based optimizations on DDR3. Thanks to
our graph-based optimizations (as described in Section 4.1),
the total migration delay is significantly decreased, with
the reduction of 50.0 to 74.4 percent. Concurrent migrations
prevent significant performance degradation in all
workloads.

Finally, we discuss the overhead of calculating the demo-
tion configuration and the migration information (Eulerian
cycle). We find that the number of those values with non-
zero frequencies in the predicted histogram is far smaller
than the slot size (108) in practice. Thus, the search space of
Algorithm 3 is acceptable at runtime. The average time for
calculating of the demotion configuration is around several
milliseconds on current architectures. Such calculation is
performed only once per slot. Moreover, the average time
for calculating the migration information is around tens of
milliseconds on current architectures, which is much
smaller than our selected epoch size. Thus, their overheads
are low on current architectures.

5.3 Studies on Full System ED2

In this section, we evaluate the impact of RAMZzz on full-
system energy consumption and performance with SPEC
2006 workloads. We start by performing back-of-envelop

Fig. 10. The predicted idle histogram: Case 2.

Fig. 11. The breakdown of time for BASE.

Fig. 12. The breakdown of time for ORACLE.

Fig. 13. The breakdown of delay for RAMZzz.

Fig. 14. The optimization of page migration delay.

198 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 1, JANUARY 2016

calculations, following previous studies [28], [44]. We
assume that the average power consumption of memory
system accounts for 40 percent of the total system power in
the baseline policy (i.e., BASE), and calculate a fixed average
power estimate (i.e., the remaining 60 percent) for all other
components. Thus, the energy consumption of all other
components (i.e., non-memory system energy) is propor-
tional to the program execution time, which is usually con-
sistent with the real-world case [28], [44]. This ratio
(40 percent) has been chosen as the current contribution of
memory system to entire system power consumption [1],
[45], [46]. We also study the impact of varying this ratio in
this evaluation. Architectural characteristics and experi-
mental parameters are the same as those used in Section 5.2.

Fig. 15 presents full system ED2 of RAMZzz, RZ–SP and
RZ–SD (SR_FAST is used as the pre-selected low-power

state) when the optimization metric is set to ED2 on DDR3.
All three approaches still outperform BASE on all workloads

in terms of full system ED2. Compared with BASE, the

reduction in full system ED2 is 23.0, 18.0 and 17.8 percent on
average for RAMZzz, RZ–SP and RZ–SD, respectively.
RAMZzz outperforms both RZ–SP and RZ–SD in full-system

ED2, but leads to slightly higher performance degradations.
We observe that RAMZzz has an average reduction of
4.8 percent (from 1.6 to 17.9 percent) and 5.6 percent (from
1.7 to 8.6 percent) over RZ–SP and RZ–SD in full system

ED2, respectively. We observe similar results on other
DRAM architectures.

We further study the ratio of power consumption of the
memory subsystem to the overall power consumption of
the full system. Particularly, we vary the ratio from 30 to
50 percent. Fig. 16 shows that the fraction of memory power
has a significant effect on both full system ED2 and energy
consumption. Increasing the ratio from 30 to 50 percent (i.e.,
the power contribution of other components are reduced

from 70 to 50 percent), the normalized full-system ED2 and
energy consumption of RAMZzz decrease from 0.84 to 0.70
and 0.83 to 0.68, respectively.

5.4 Results on PARSEC Workloads

Fig. 17 shows the normalized ED2 results of RAMZzz and
ORACLE approaches on DDR3 architecture using PARSEC
workloads. We use the default experimental setting (e.g.,
the delay budget is 4 percent). RAMZzz is also significantly
more energy-efficient than BASE on PARSEC workloads,
with an average reduction of 45.2 percent. We observe simi-
lar results to those on the SPEC 2006 workloads. For exam-
ple, the reduction is more significant for the workloads with
less intensive memory accesses (such as blackscholes).

RAMZzz achieves a very close ED2 to ORACLE on PARSEC
workloads (as shown in Fig. 17). Furthermore, the compari-
sons between RAMZzz and RZ-SP/RZ-SD show that on

average, page migrations bring 16.2 percent ED2 saving,

and adaptive demotions bring 25.3 percent ED2 saving.
RAMZzz is consistently and significantly more energy-effi-
cient than other approaches on both PARSEC and SPEC
2006 benchmarks.

5.5 Comparisons with Other Approaches

For completeness, we show the comparison between
RAMZzz and two typical state-of-the-art memory power
management policies: the preliminary version of RAMZzz
[36] (namely RAMZzz’), and the approach developed in [9]
(namely IPD).

Comparison with RAMZzz’. Fig. 18 presents normalized
ED2 results for RAMZzz and RAMZzz’ approaches on
SPEC 2006 workloads for DDR3 memory architecture.
Architectural characteristics and experimental parameters
are the same as those used in Section 5.2. Note, RAMZzz’
only uses two pre-selected low-power states (PRE_-
PDN_FAST and SR_FAST) for demotions.

RAMZzz is vastly superior to the preliminary one pro-
posed in [36] (i.e., RAMZzz’), with an average reduction of
24 percent in ED2 on DDR3. Furthermore, RAMZzz’ cannot
work with other DRAM architectures without modifica-
tions, such as DDR2 and LPDDR2. Since RAMZzz’ only

Fig. 15. Comparing full-system ED2 on DDR3.

Fig. 16. The impact of memory power ratio.

Fig. 17. The overall results of PARSEC workloads.

Fig. 18. Comparison of RAMZzz’ and RAMZzz.

LU ET AL.: RANK-AWARE DYNAMIC MIGRATIONS AND ADAPTIVE DEMOTIONS FOR DRAM POWER MANAGEMENT 199

uses two pre-selected low-power states (PRE_PDN_FAST
and SR_FAST on DDR3) for demotions, it loses the opportu-
nities in exploiting the most energy-effective low-power
state for different workloads and different memory architec-
tures. This observation demonstrates the effectiveness of
adaptive demotions of RAMZzz.

Comparison with IPD. We conduct a detailed study on the
comparison between RAMZzz and IPD [9] with SPEC 2006
workloads on DDR3 memory architecture. To evaluate the
effectiveness of RAMZzz over IPD, we simulate the follow-
ing techniques:

� Immediate power-down (IPD): IPD is the approach
developed in [9]. We choose PRE_PDN_FAST as the
target low-power state when the optimization goal is
ED2.

� Predicted power-down (PP): PP arguments IPD by
using our histogram-based perdition on the idle
period distributions and finding the suitable power-
down timeout for state transitions.

� RZ–SP: RZ–SP arguments PP with adaptive
demotions.

Fig. 19 presents normalized ED2 comparison for these
energy saving approaches. Architectural characteristics and
experimental parameters are the same as those used in

Section 5.2. RAMZzz has much lower ED2 than other techni-
ques, on average 54, 40 and 23 percent lower than IPD, PP
and RZ–SP, respectively.

RAMZzz outperforms IPD with three main reasons: 1) a
histogram-based prediction model that estimates the idle
period distributions and the suitable power-down timeout
(which brings 23 percent ED2 saving on average); 2) an
adaptive demotion scheme that exploits energy saving capa-
bilities of all power states for different memory architectures

and different workloads (which brings 22 percent ED2 sav-
ing on average); 3) a page migration approach that consoli-
dates the idle periods among memory ranks (which brings

23 percent ED2 saving on average). The former two aspects
form the adaptive demotions technique developed in
RAMZzz. All these techniques are additive to the overall

ED2 improvement of RAMZzz. Particularly, the difference
between IPD and PP represents the saving from the histo-
gram-based power-down timeout prediction, the difference
between PP and RZ–SP represents the saving from the adap-
tive demotion scheme, and the difference between RZ–SP
and RAMZzz represents the saving from page migrations.

6 CONCLUSION

In this paper, we have proposed a novel memory design
RAMZzz to reduce the DRAM energy consumption. It

embraces two rank-aware power saving techniques to
address the major obstacles in state transition-based power
saving approaches: dynamic page migrations and adaptive
demotions. A cost model is developed to guide the optimi-
zations for different workloads and different memory archi-
tectures. We evaluate RAMZzz with SPEC 2006 and
PAESEC benchmarks in comparison with other power sav-
ing techniques on three main memory architectures includ-
ing DDR3, DDR2 and LPDDR2. Our simulation results
demonstrate significant improvement in ED2 and energy
consumption over other power saving techniques.

ACKNOWLEDGMENTS

The authors would like to thank anonymous reviewers for
their insightful comments. This work is supported by the
National Basic Research 973 Program of China (No.
2015CB352403). This work is partially supported by a MoE
AcRF Tier 2 grant (MOE2012-T2-1-126) in Singapore. This
work is also partly supported by the Program for Chang-
jiang Scholars and Innovative Research Team in University
(IRT1158, PCSIRT) China, the NSFC (No. 61261160502,
No. 61272099) and the Scientific Innovation Act of STCSM
(No. 13511504200). The work of Yanchao Lu and Donghong
Wu was done when they were visiting students in Nanyang
Technological University, Singapore. B. He is the
corresponding author.

REFERENCES

[1] U. Hoelzle and L. A. Barroso, The Datacenter as a Computer: An
Introduction to the Design of Warehouse-Scale Machines, 1st ed., San
Rafael, CA, USA: Morgan and Claypool Publishers, 2009.

[2] C. Lefurgy, K. Rajamani, F. Rawson, W. Felter, M. Kistler, and T.
W. Keller, “Energy management for commercial servers,” IEEE
Comput., vol. 36, no. 12, pp. 39–48, Dec. 2003.

[3] D. Meisner, B. T. Gold, and T. F. Wenisch, “Powernap: Eliminat-
ing server idle power,” in Proc. 4th Int. Conf. Archit. Support Pro-
gramm. Lang. Oper. Syst., 2009, pp. 205–216.

[4] M. Ware, K. Rajamani, M. Floyd, B. Brock, J. C. Rubio, F. Rawson,
and J. B. Carter, “Architecting for power management: The ibm
power7 approach,” in Proc. IEEE 16th Int. Symp. High Perform.
Comput. Archit., Jan. 2010, pp. 1–11.

[5] H. Huang, P. Pillai, and K. G. Shin, “Design and implementation
of power-aware virtual memory,” in Proc. Annu. Conf. USENIX
Annu. Tech, Conf., 2003, p. 5.

[6] H. Huang, K. G. Shin, C. Lefurgy, and T. Keller, “Improving
energy efficiency by making dram less randomly accessed,” in
Proc. Int. Symp. Low Power Electron. Des., 2005, pp. 393–398.

[7] V. Delaluz, A. Sivasubramaniam, M. Kandemir, N. Vijaykrishnan,
and M. J. Irwin, “Scheduler-based DRAM energy management,”
in Proc. 39th Annu. Des. Autom. Conf., 2002, pp. 697–702.

[8] C. Bae and T. Jamel, “Energy-aware memory management
through database buffer management,” in Proc. 3rd Workshop
Energy-Efficient Des., 2011, pp. 1–7.

[9] X. Fan, C. Ellis, and A. Lebeck, “Memory controller policies for
dram power management,” in Proc. Int. Symp. Low Power Electron.
Des., 2001, pp. 129–134.

[10] B. Diniz, D. Guedes, W. Meira, Jr, and R. Bianchini, “Limiting the
power consumption of main memory,” in Proc. 34th Annu. Int.
Symp. Comput. Archit., 2007, pp. 290–301.

[11] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. disser-
tation, Princeton University, Princeton, NJ, Jan. 2011.

[12] A. R. Lebeck, X. Fan, H. Zeng, and C. Ellis, “Power aware page
allocation,” in Proc. Int. Conf. Archit. Support Programm. Lang.
Oper. Syst., 2000, pp. 105–116.

[13] H. Zheng and Z. Zhu, “Power and performance trade-offs in con-
temporary dram system designs for multicore processors,” IEEE
Trans. Comput., vol. 59, no. 8, pp. 1033–1046, Aug. 2010.

[14] Micron Tech., Inc.,MT41J256M4JP-15E Datasheet, 2010.

Fig. 19. Comparison of IPD, PP, RZ–SP, RAMZzz.

200 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 1, JANUARY 2016

[15] Micron Tech., Inc.,MT47H128M8CF-25E Datasheet, 2007.
[16] Micron Tech., Inc.,MT42L128M32D1LF-25WT Datasheet, 2011.
[17] Micron Tech., Inc.. (2012), System Power Calculator. [Online]. Avail-

able: http://www.micron.com/products/support/power-calc
[18] I. Hur and C. Lin, “A comprehensive approach to DRAM power

management,” in Proc. IEEE 14th Int. Symp. High Perform. Comput.
Archit., 2008, pp. 305–316.

[19] K. Sudan, K. Rajamani, W. Huang, and J. Carter, “Tiered memory:
An iso-power memory architecture to address the memory power
wall,” IEEE Trans. Comput., vol. 61, no. 12, pp. 1697–1710, Dec.
2012.

[20] V. Delaluz, M. Kandemir, N. Vijaykrishnan, and M. J. Irwin,
“Energy-oriented compiler optimizations for partitioned memory
architectures,” in Proc. Int. Conf. Compilers, Archit. Synthesis Embed-
ded Syst., 2000, pp. 138–147.

[21] V. Delaluz, M. Kandemir, N. Vijaykrishnan, A. Sivasubramaniam,
and M. J. Irwin, “DRAM energy management using software and
hardware directed power mode control,” in Proc. 7th Int. Symp.
High-Perform. Comput. Archit., 2001, p. 159.

[22] K. Fang, H. Zheng, J. Lin, Z. Zhang, and Z. Zhu, “Mini-rank: A
power-efficient DDRX DRAM memory architecture,” IEEE Trans.
Comput., vol. 63, no. 6, pp. 1500–1512, Jun. 2014.

[23] J. H. Ahn, N. P. Jouppi, C. Kozyrakis, J. Leverich, and R. S.
Schreiber, “Future scaling of processor-memory interfaces,” in
Proc. Conf. High Perform. Comput. Netw., Storage Anal., 2009,
pp. 42:1–42:12.

[24] H. Zheng, J. Lin, Z. Zhang, and Z. Zhu, “Decoupled DIMM: Build-
ing high-bandwidth memory system using low-speed DRAM
devices,” in Proc. 36th Annu. Int. Symp. Comput. Archit., 2009,
pp. 255–266.

[25] M. Bi, R. Duan, and C. Gniady, “Delay-hiding energy manage-
ment mechanisms for DRAM,” in Proc. IEEE 16th Int. Symp. High
Perform. Comput. Archit., 2010, pp. 1–10.

[26] E. Cooper-Balis and B. Jacob, “Fine-grained activation for power
reduction in DRAM,” IEEE Micro, vol. 30, no. 3, pp. 34–47, May/
Jun. 2010.

[27] H. David, C. Fallin, E. Gorbatov, U. R. Hanebutte, and O. Mutlu,
“Memory power management via dynamic voltage/frequency
scaling,” in Proc. 8th ACM Int. Conf. Autonomic Comput., 2011,
pp. 31–40.

[28] Q. Deng, D. Meisner, L. Ramos, T. F. Wenisch, and R. Bianchini,
“Memscale: Active low-power modes for main memory,” in Proc.
16th Int. Conf. Archit. Support Programm. Lang. Operating Syst., 2011.

[29] Y. Lu, B. He, X. Tang, and M. Guo, “Synergy of dynamic
frequency scaling and demotion on dram power management:
Models and optimizations,” IEEE Trans. Comput., 2014,
Doi: 10.1109/TC.2014.2360534.

[30] Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter, “Atlas: A scal-
able and high-performance scheduling algorithm for multiple
memory controllers,” in Proc. IEEE 16th Int. Symp. High Perform.
Comput. Archit., 2010, pp. 1–12.

[31] A.N.Udipi, N.Muralimanohar,N.Chatterjee, R. Balasubramonian,
A. Davis, and N. P. Jouppi, “Rethinking DRAM design and organi-
zation for energy-constrained multi-cores,” in Proc. 37th Annu. Int.
Symp. Comput. Archit., 2010, pp. 175–186.

[32] B. He, Q. Luo, and B. Choi, “Cache-conscious automata for xml fil-
tering,” IEEE Trans. Knowl. Data Eng., vol. 18, no. 12, pp. 1629–
1644, Dec. 2006.

[33] B. He and Q. Luo, “Cache-oblivious databases: Limitations and
opportunities,” ACM Trans. Database Syst., vol. 33, no. 2, pp. 8:1–
8:42, 2008.

[34] B. He and Q. Luo, “Cache-oblivious query processing,” in Proc.
3rd Biennial Conf. Innovative Data Syst. Res., 2007, pp. 44–55.

[35] K. Kumar, K. Doshi, M. Dimitrov, and Y.-H. Lu, “Memory energy
management for an enterprise decision support system,” in Proc.
Int. Symp. Low Power Electron. Des., 2011, pp. 277–282.

[36] D. Wu, B. He, X. Tang, J. Xu, and M. Guo, “Ramzzz: Rank-aware
DRAM power management with dynamic migrations and
demotions,” in Proc. Int. Conf. High Perform. Comput., Netw., Stor-
age Anal., 2012, pp. 32:1–32:11.

[37] Y. Zhou, J. Philbin, and K. Li, “The multi-queue replacement algo-
rithm for second level buffer caches,” in Proc. USENIX Annu.
Tech. Conf., 2001, pp. 91–104.

[38] L. E. Ramos, E. Gorbatov, and R. Bianchini, “Page placement in
hybrid memory systems,” in Proc. Int. Conf. Supercomput., 2011,
pp. 85–95.

[39] Xilinx, Inc., Spartan-6 FPGA Memory Controller User Guide, 2010,
http://www.xilinx.com/support/documentation/user_guides/
ug388.pdf

[40] K. Sudan, N. Chatterjee, D. Nellans, M. Awasthi, R. Balasubramo-
nian, and A. Davis, “Micro-pages: Increasing DRAM efficiency
with locality-aware data placement,” in Proc. 15th Ed. ASPLOS
Archit. Support Programm. Lang. Operating Syst., 2010, pp. 219–230.

[41] M. T. Yourst, “Ptlsim: A cycle accurate full system x86-64 micro-
architectural simulator,” in Proc. IEEE Int. Symp. Perform. Anal.
Syst. Softw., 2007, pp. 23–34.

[42] X. Guo, E. Ipek, and T. Soyata, “Resistive computation: Avoiding
the power wall with low-leakage, stt-mram based computing,” in
Proc. 37th Annu. Int. Symp. Comput. Archit., 2010, pp. 371–382.

[43] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: Exploring
the level of abstraction for scalable and accurate parallel multi-
core simulations,” in Proc. Int. Conf. High Perform. Comput., Netw.,
Storage Anal., 2011, pp. 52:1–52:12.

[44] N. Chatterjee, M. Shevgoor, R. Balasubramonian, A. Davis, Z.
Fang, R. Illikkal, and R. Iyer, “Leveraging heterogeneity in DRAM
main memories to accelerate critical word access,” in Proc. 45th
Annu. IEEE/ACM Int. Symp. Microarchit., 2012, pp. 13–24.

[45] J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis, J. Leverich,
D. Mazi�eres, S. Mitra, A. Narayanan, G. Parulkar, M. Rosenblum,
S. M. Rumble, E. Stratmann, and R. Stutsman,“The case for RAM-
clouds: Scalable high-performance storage entirely in DRAM,”
SIGOPS Oper. Syst. Rev., vol. 43, no. 4, pp. 92–105, 2010.

[46] D. Tsirogiannis, S. Harizopoulos, and M. A. Shah, “Analyzing the
energy efficiency of a database server,” in Proc. SIGMOD Int. Conf.
Manage. Data, 2010, pp. 231–242.

Yanchao Lu received the BS degree in computer
science and technology from the Beijing Institute
of Technology, China, in 2010. He is currently a
fourth year PhD student at the Department of
Computer Science and Engineering, Shanghai
Jiao Tong University, China. His research inter-
ests include low-power system design, GPGPU,
parallel and distributed systems, and cloud
computing.

Donghong Wu received the bachelor degree in
computer science and engineering from Shang-
hai Jiao Tong University, China, in 2010. He is
currently working towards the masters degree at
the Department of Computer Science and Engi-
neering, Shanghai Jiao Tong University, China.
His research interests include memory process-
ing systems and high-performance computing.

Bingsheng He received the bachelor degree in
computer science from Shanghai Jiao Tong
University (1999-2003), and the PhD degree in
computer science from the Hong Kong University
of Science and Technology (2003-2008). He is
an assistant professor in the School of Computer
Engineering of Nanyang Technological Univer-
sity, Singapore. His research interests include
high-performance computing, distributed and
parallel systems, and database systems.

Xueyan Tang received the BEng degree in com-
puter science and engineering from Shanghai
Jiao Tong University in 1998, and the PhD degree
in computer science from the Hong Kong Univer-
sity of Science and Technology in 2003. He is cur-
rently an associate professor in the School of
Computer Engineering at Nanyang Technological
University, Singapore. His research interests
include distributed systems, mobile and pervasive
computing, and wireless sensor networks. He is a
senior member of the IEEE.

LU ET AL.: RANK-AWARE DYNAMIC MIGRATIONS AND ADAPTIVE DEMOTIONS FOR DRAM POWER MANAGEMENT 201

Jianliang Xu received the BEng degree in com-
puter science and engineering from Zhejiang
University, Hangzhou, China and the PhD
degree in computer science from the Hong
Kong University of Science and Technology.
He is a professor in the Department of Com-
puter Science, Hong Kong Baptist University.
He held a visiting positions at Pennsylvania
State University and Fudan University. His
research interests include data management,
mobile computing, wireless sensor networks,

and distributed systems. He is a senior member of the IEEE.

Minyi Guo received the BS and ME degrees in
computer science from Nanjing University, China,
in 1982 and 1986, respectively, and the PhD
degree in information science from the University
of Tsukuba, Japan, in 1998. From 1998 to 2000,
he had been a research associate of NEC Soft,
Ltd. Japan. He was a visiting professor at the
Department of Computer Science, Georgia Insti-
tute of Technology. He was a full professor at the
University of Aizu, Japan, and is the head of the
Department of Computer Science and Engineer-

ing at Shanghai Jiao Tong University, China. His research interests
include automatic parallelization and data-parallel languages, bioinfor-
matics, compiler optimization, high-performance computing, and perva-
sive computing. He is a senior member of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

202 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 1, JANUARY 2016

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

