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Abstract—Write-optimized data structures like Log-Structured
Merge-tree (LSM-tree) and its variants are widely used in
key-value storage systems like BigTable and Cassandra. Due
to deferral and batching, the LSM-tree based storage systems
need background compactions to merge key-value entries and
keep them sorted for future queries and scans. Background
compactions play a key role on the performance of the LSM-tree
based storage systems. Existing studies about the background
compaction focus on decreasing the compaction frequency, re-
ducing I/Os or confining compactions on hot data key-ranges.
They do not pay much attention to the computation time in
background compactions. However, the computation time is no
longer negligible, and even the computation takes more than
60% of the total compaction time in storage systems using flash-
based SSDs. Therefore, an alternative method to speedup the
compaction is to make good use of the parallelism of underlying
hardware including CPUs and I/O devices.

In this paper, we analyze the compaction procedure, rec-
ognize the performance bottleneck, and propose the Pipelined
Compaction Procedure (PCP) to better utilize the parallelism of
CPUs and I/O devices. Theoretical analysis proves that PCP
can improve the compaction bandwidth. Furthermore, we im-
plement PCP in real system and conduct extensive experiments.
The experimental results show that the pipelined compaction
procedure can increase the compaction bandwidth and storage
system throughput by 77% and 62% respectively.

Index Terms—storage system; LSM-tree; compaction; pipeline

I. INTRODUCTION

The massive Internet services, like cloud computing, cloud
storage, search engine, social networking and so on, generate
more and more data over the time. Storage systems must
scale out to support the above applications. Key-value storage
systems known for scalability and ease of use, including
distributed key-value stores, such as BigTable [2], Dynamo
[11] and PNUTS [12], and local key-value stores, like Lev-
elDB [10] and Berkeley DB [13], are widely used to support
the network service workloads. Since distributed key-value
stores comprise many individual local key-value stores, the
performance of local key-value stores plays a significant role
on the performance of distributed key-value stores. This paper
focuses on the performance improvements of the local key-
value store.

Many applications have stringent latency requirements. Ac-
cording to the study [1] of Yahoo!, the ratio of writes is
increasing in comparison with that of reads. Write-optimized
data structures are widely used in storage systems to reduce
the write latency, because most read requests are absorbed
by multi-level caches [21], implemented by Web browser’s
cache, CDN, Redis [14], Memcached [15] [16] [17] and OS

page cache, and modified data must be written to persistent
storage devices, such as HDDs and SSDs (flash-based Solid
State Disk), to ensure data persistence. LSM-tree [4] and its
variants are the most commonly used write-optimized data
structures. For example, LSM-tree, COLA [6] and SAMT [7]
are used in LevelDB, Hadoop HBase [9] and Cassandra [18]
respectively.

LSM-tree has one memory buffer component and multiple
disk resident components. When memory buffer is full, the
buffer data is dumped into a SSTable [2] on disks, whose
key range may overlap with those of existing SSTables. To
bound the latency of upcoming point queries and scans,
background compactions are needed to compact SSTables and
keep key-value entries sorted. Background compactions move
data downwards from upper components to lower components.
Slow data movements incur write pauses. That is, the storage
system can not serve updates any more until the background
compaction completes. So, background compactions play an
important role on the LSM-tree based storage systems perfor-
mance.

Some researches have been done to improve the LSM-tree
based storage system performance. VT-tree [5] uses the stitch-
ing technique to avoid unnecessary data movement. bLSM
[1] uses the replacement-selection sort algorithm to reduce
the compaction frequency. PE [19] and bLSM partition the
key range to confine compactions in hot key ranges. COLA
and FD-tree [8] use forward pointers to improve the lookup
performance. bLSM uses bloom filters to avoid unnecessary
I/Os. While GTSSL [7] uses the reclamation and re-insert tech-
niques to put data at upper components to expedite lookups,
it also uses SSDs as the upper components’ storage media
and read data cache. However, all these researches ignore
the computation time in the compaction procedure and do
not exploit the parallelism between the I/O resource and the
computation resource.

In storage systems, data compression and checksum are
always used to reduce the amount of I/Os and verify data
integrity, which account for a lot of additional computation
cycles. Besides, new types of storage devices like flash-based
SSDs have been widely used for their high bandwidth and
lower latency, which decrease the I/O time. As a result, the
computation time is no longer negligible in comparison with
the I/O time. In practice, the computation may take more than
60% of the total compaction time in storage systems using
flash-based SSDs.

Each compaction merges the key-value pairs from the
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(a) LSM-tree data structure
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Fig. 1. The basic LSM-tree data structure and SSTable layout.

adjacent two components in a specified key range. There
are multiple data blocks in the key range. In the existing
compaction procedure, the data blocks are scheduled in an
ordered manner, and the steps of the compaction procedure of
each data block are executed sequentially. We name the above
compaction procedure as Sequential Compaction Procedure
(SCP).

There exists two types of resources in storage system, i.e.,
the computation resource and the I/O resource. Some steps in
one data block’s compaction procedure utilize the computation
resource, and the other steps utilize the I/O resource. Due
to the ordered scheduling of data blocks in SCP, either the
computation resource or the I/O resource is utilized over
a period, which results in the underutilization of both the
computation resource and the I/O resource. Motivated by
the fact that there is no data dependency among the data
blocks in the same component and the steps of each data
block can be scheduled on different hardware components, we
propose the Pipelined Compaction Procedure (PCP). In PCP,
we partition the compaction key range into multiple sub-key
ranges and each sub-key range comprises one or more data
blocks. Thus the compaction is divided into multiple sub-
tasks. Each sub-task is in charge of merging the key-value
entries in one sub-key range. We exploit the parallelism of
the computation resource and the I/O resource to parallelize
sub-tasks to further improve the compaction bandwidth. To
the best of our knowledge, this is the first paper to exploit the
parallelism of the I/O resource and the computation resource
to improve the compaction bandwidth.

The compaction bandwidth of the PCP depends on the
bottleneck stage, which has the smallest bandwidth in all
stages. In the pipelined compaction procedure, either the CPU
or the storage device may be the bottleneck. For the above
two cases, we propose two parallel variants of PCP, named
Computation-Parallel Pipelined Compaction Procedure (C-
PPCP) and Storage-Parallel Pipelined Compaction Procedure

(S-PPCP). When the CPU is the bottleneck, C-PPCP can be
used for background compactions. Otherwise, S-PPCP is used.
The I/O-bound cases can be transformed to CPU-bound cases
when excessive storage devices are used for reads and writes,
and the CPU-bound cases can be transformed to I/O-bound
cases when excessive CPUs are used for computation.

We implemented the pipelined compaction procedure on
LevelDB, which is a representative LSM-tree implementation.
Compared with LevelDB, the pipelined compaction procedure
increases the compaction bandwidth by 77%, and improves
the throughput by 62%. The parallel pipelined compaction
procedure improves the compaction bandwidth and throughput
by 89% and 64% respectively.

The rest of this paper is organized as follows. Background
and motivation are presented in Section II. Section III analyzes
the SCP and use the (Parallel) Pipelined Compaction Proce-
dure to improve the compaction bandwidth. Implementation
and performance evaluation through extensive experiments
appear in Section IV. Related work is discussed in Section
V. Section VI concludes the paper.

II. BACKGROUND AND MOTIVATION

A. Background

LSM-tree is a disk-based data structure designed to provide
indexing for the workloads that have a high rate of records in-
serts (updates, and deletes) over an extended period. LSM-tree
is composed of a memory buffer component C0 and multiple
disk components, C1, . . . , and Ck. Each component size is
limited to a predefined threshold, which grows exponentially.
Figure 1(a) illustrates one basic LSM-tree data structure. LSM-
tree supports inserts, updates, deletes, point queries and scans.
LSM-tree uses an algorithm that defers and batches index
updates, cascading the changes from a memory buffer through
many disk components. The algorithm gathers random, small
I/Os into sequential, large I/Os.
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Fig. 2. The compaction procedure.

Each disk component consists of multiple SSTables, whose
key ranges do not overlap with each other except those in C1.
Figure 1(b) presents the layout of the SSTable. Each SSTable
contains multiple data blocks and one index block. The data
blocks contain the sorted key-value pairs. The index block
indexes all the data blocks, containing the start key, the end
key and the offset of each data block in the SSTable.

As more key-value entries are inserted into memtable, the
memtable is filled up and the buffer data is dumped into one
C1 SSTable onto disk. For example, the new built SSTable is
T12 in Figure 1(a). The key range of T12 may overlap the key
range of the existing T11. When Ci exceeds its threshold size,
the compaction procedure for Ci is triggered. The key-value
pairs in a specific key range from the corresponding SSTables
in Ci and Ci+1 are merged into multiple size-limited SSTables
in Ci+1. Through this way, the data flows downwards from Ci

to Ci+1. For example, when C2 exceeds its threshold size, the
compaction procedure for C2 is triggered. The compaction
procedure picks T22 in C2 and T32 and T33 in C3 whose key
ranges overlap with the key range of T22. Then, T22, T32 and
T33 are compacted into T35, T36 and T37 in C3. As a result,
the data in T22 flows downwards from C2 to C3.

One compaction merges the key-value pairs in a specific key
range, which consists of multiple data blocks. In the existing
compaction procedure, the data blocks are scheduled orderly.
The compaction procedure of each data block comprises seven
steps, illustrated as Figure 2. And the steps of one data block
are executed sequentially for data dependency. The compaction
procedure iterates the following steps for each data block until
the last data block has been compacted.

1) Step 1(S1): READ. Read one data block along with its
checksum from disk into memory.

2) Step 2(S2): CHECKSUM. Calculate the checksum of the
data block, and compare it with the original checksum
which is read from disk in Step 1 to verify the integrity
of the data block.

3) Step 3(S3): DECOMPRESS. Decompress the data block
and restore the original key-value pairs.

4) Step 4(S4): SORT. Merge the key-value pairs from the
two components and build new data block.

5) Step 5(S5): COMPRESS. Compress the new built data
block to improve the future read and write performance.

6) Step 6(S6): RE-CHECKSUM. Calculate the checksum
of each compressed data block for future integrity check

in Step 2.
7) Step 7(S7): WRITE. Write the compressed data block

along with its checksum which is calculated in Step 6
to the disk.

B. Motivation

In the existing compaction procedure, the data blocks are
scheduled in an ordered manner, and the steps of the com-
paction procedure of each data block are executed sequentially
for the data dependency. Step 1 and Step 7 utilize the I/O
resource, and all the other steps utilize the computation
resource. Due to the ordered scheduling of data blocks, only
one type of resource, either the computation resource or the
I/O resource, is used over a period, which results in the
severe underutilization of both the computation resource and
the I/O resource. Because the key ranges of different data
blocks in the same component do not overlap, there is no data
dependency among them. So it’s not necessary to schedule
the data blocks in an ordered manner. Motivated by the fact
that there is no data dependency among different data blocks
and the steps of each data block can be scheduled on different
hardware components, we propose the Pipelined Compaction
Procedure (PCP). In PCP, we partition the compaction key
range into multiple sub-key ranges, thus the compaction is
divided into multiple sub-tasks. Each sub-task compacts one
or more data blocks. PCP exploits the parallelism of the
computation resource and the I/O resource to parallelize the
sub-tasks to improve the compaction bandwidth.

III. DESIGN

This section discusses the design of the Pipelined Com-
paction Procedure. First, we analyze the existing Sequential
Compaction Procedure (SCP), and point out its inefficiency.
Then we improve the SCP with pipeline model, and pro-
pose the Pipelined Compaction Procedure (PCP). For dif-
ferent hardware configurations, PCP suffers different bottle-
neck stages, maybe I/O-bound or CPU-bound. Furthermore,
we propose two parallel variants of PCP, Storage-Parallel
Pipelined Compaction Procedure (S-PPCP) and Computation-
Parallel Pipelined Compaction Procedure (C-PPCP), to allevi-
ate the I/O bottleneck and CPU bottleneck. When excessive
storage devices are used for I/Os, the I/O-bound cases can
be transformed to CPU-bound cases, and when excessive
CPUs are used for computation, the CPU-bound cases can
be transformed to I/O-bound cases.

A. Sequential Compaction Procedure (SCP)

As described in Section II-A, one compaction compacts
multiple data blocks and the compaction procedure of each
data block comprises seven steps. In existing conventional
compaction procedure, the data blocks are scheduled orderly
as Figure 3(a).

Step 1 and Step 7 utilize the I/O resource, i.e., HDD or SSD.
All the other steps utilize computation resource, i.e., CPU
or GPU. Suppose that the storage resource and computation
resource in the storage system are HDD and CPU. The
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Fig. 3. The execution process and utilization of CPU and Disk of the Sequential Compaction Procedure.
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utilization of resources in Sequential Compaction Procedure
is depicted as Figure 3(b).

As one data block is processed on disk and CPUs orderly,
when the HDD transfers data from disk to memory in Step 1
or in the reverse direction in Step 7 through direct memory
access, the CPU is idle. When the CPU does the computation
Step 2 ∼ Step 6 including integrity verifying, decompressing,
compressing and merging, the HDD is idle. The HDD and
CPU do work sequentially and wait for each other for input.
Over a period, only one type of resource is used, which results
in severe underutilization of both the I/O resource and the
computation resource.

In this paper, we use compaction bandwidth as the metric
to evaluate the performance of compaction procedure. Com-
paction bandwidth indicates the amount of data compacted in
one time unit. l represents the length of one data block. tSi

represents the execution time of Step i for one data block. We
can get the compaction bandwidth of SCP as Equation 1.

Bscp =
l

7∑
i=1

tSi

(1)

B. Pipelined Compaction Procedure

A naive approach to improve the compaction bandwidth
for SCP is to parallelize the steps of one data block. For
example, one can do the Step 1 and Step 2 simultaneously
to reduce the execution time. However, the steps of one data

block can not be parallelized due to data dependency. The good
news is that although there are many dependencies within the
steps of one data block, there are no data dependencies across
subsequent data blocks in the same component due to that
their key ranges do not overlap. Motivated by the fact that
there are no data dependencies among different data blocks
in the same component and the steps of each data block can
be scheduled on different hardware components, we exploit
the pipeline model to SCP and propose the Pipelined Com-
paction Procedure (PCP). Hence our approach is to exploit
the inter-data block parallelism to overlap the I/O time and
the computation time of one data block with that of other data
blocks. PCP partitions the compaction key range into multiple
sub-key ranges. Each sub-key range consists of one or more
data blocks. PCP exploit the parallelism between the disk and
CPU.

A natural question is that how many stages the Pipelined
Compaction Procedure should be divided into. A straightfor-
ward way is that Step 1 and Step 7 are two individual stages,
and the other steps are partitioned into multiple stages evenly
according to the execution time. That is, Step2 ∼ Step6 are
partitioned into multiple stages. Different stages are executed
on different CPUs. Unfortunately, the above method has the
following disadvantages. Firstly, it is difficult to divide the
adjacent compaction steps evenly, because the execution times
of different steps differ significantly. And it is meaningless to
make nonadjacent steps into a stage. Secondly, this results
in low dcache performance. Data blocks must flows through
multiple processors. The processors may not share the dcache,
or the data blocks are evicted from dcache when they are
waiting for processing. Besides, if nonadjacent stages are
assigned to one processor, this worsen the dcache performance
further. Thirdly, it will result in load imbalance. Lastly, the
above method does not scale well. So, we do not divide
Step2 ∼ Step6 further and let them as one stage. Thus the
pipelined compaction procedure is divided into three stages,
i.e., stage read, stage compute, and stage write.

We schedule Step 1 and Step 7 on disk, and the other
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Fig. 5. The execution time breakdown of sequential compaction procedure into three parts.
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Fig. 6. The practical Pipelined Compaction Procedure on HDD and SSD

steps on CPU. However, the difference with SCP is that the
compaction procedures of adjacent sub-tasks are parallelized,
as Figure 4.

For PCP, we can get the compaction bandwidth as Equation
2 when one sub-task consists of only one data block.

Bpcp =
l

max{tS1 ,
6∑

i=2

tSi , tS7}
(2)

From Equation 1 and Equation 2, we get the ideal per-
formance speedup of PCP as Equation 3. Equation 3 shows
that in comparison with SCP, PCP improves the compaction
throughput obviously.

Bpcp

Bscp
=

7∑
i=1

tSi

max{tS1
,

6∑
i=2

tSi
, tS7
}

(3)

Suppose that Step 1 and Step 7 are scheduled on HDDs. The
bandwidth of HDD is two order of magnitude smaller than
DRAM, and becomes even worse for random I/Os. Although
Step 2 ∼ Step 6 are scheduled on CPU, CPU may also wait
for the HDD. For HDD, one data transfer may consume more
than ten milliseconds, due to mechanical disk head seek and
rotation latency. Besides, Step 1 and Step 7 are scheduled
on HDD, and the read and write requests contend to the
same disk, which aggravates the randomness. We profile the
sequential compaction procedure on HDD and break down the
compaction time into three parts as Figure 5(a). The Step 1
takes more than 40% of the compaction time, step 7 takes less
than 20% and all the computation steps take about 40%. So
read is the bottleneck operation. The Step 1 and Step 7 take
about 60% of the compaction time, so HDD is the bottleneck.

So, the pipelined compaction procedure resembles Figure 6(a).
Under this scenario, the pipelined compaction procedure is
I/O-bound.

Suppose that Step 1 and Step 7 are scheduled on flash-based
solid state drives, which are known for high throughput and
low latency in comparison with hard disk drives. Because there
are no mechanical parts in flash-based SSDs, the bandwidth of
SSD may be over five times larger than HDD, especially for
random I/Os. We profile the sequential compaction procedure
on SSD and break down the compaction time into three parts
as Figure 5(b). The computation steps take more than 60%
of the compaction time. Both Step 1 and Step 7 take less
than 40% of the compaction time totally. Obviously, the CPU
becomes the bottleneck, as Figure 6(b). Under this scenario,
the pipelined compaction procedure is CPU-bound.

C. Parallel Pipelined Compaction Procedure (PPCP)
In this section, we propose two parallel variants of PCP to

remove the performance bottleneck. Present data center nodes
are always equipped with multi-core processors or multiple
processors and multiple disks, including HDDs and SSDs. In
the PCP, for the I/O-bound case, we exploit the parallelism
of multiple storage devices to improve the I/O bandwidth to
alleviate the I/O performance bottleneck, which is named as
Storage-Parallel Pipelined Compaction Procedure (S-PPCP).
For the CPU-bound case, we exploit the parallelism of multiple
cores or processors to improve the computation bandwidth
to alleviate the computing performance bottleneck, which is
named as Computation-Parallel Pipelined Compaction Proce-
dure (C-PPCP).

1) S-PPCP: In S-PPCP, we use multiple disks for Step
1 and Step 7. Step 1 and Step 7 of different sub-tasks are
scheduled on different disks. For example, we use 2 disks to
do the I/Os, as Figure 7(a). Step 1 of sub-task 1 is scheduled
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Fig. 7. Parallel Pipelined Compaction Procedure

on disk 1 and Step 1 of sub-task 2 is scheduled on disk 2.
Thus I/Os of different sub-tasks parallelize.

Suppose that there are k disks for Step 1 and Step 7 and one
sub-task consists of one data block, we can get the compaction
bandwidth of S-PPCP as Equation 4.

Bs−ppcp =
l

max{ tS1

k ,
6∑

i=2

tSi
,
tS7

k }
(4)

When k <
max{tS1

,tS7
}

6∑
i=2

tSi

, the pipelined compaction proce-

dure is still I/O-bound. When k >
max{tS1

,tS7
}

6∑
i=2

tSi

, the pipelined

compaction procedure becomes CPU-bound. For the latter
case, even if we use more storage devices, the compaction
bandwidth doesn’t increase any more. Note that when using
excessive storage devices in the pipelined compaction proce-
dure, the pipelined compaction procedure may become CPU-
bound.

From Equation 2 and Equation 4, we can get the ideal
performance speedup of S-PPCP as Equation 5. The ideal
speedup is at most min{k, max{tS1

,tS7
}

6∑
i=2

tSi

}.

Bs−ppcp

Bpcp
=

max{tS1
,

6∑
i=2

tSi
, tS7
}

max{ tS1

k ,
6∑

i=2

tSi ,
tS7

k }
(5)

2) C-PPCP: For the CPU-bound case, we don’t increase
the pipeline depth to increase the parallelism as described in
Section III-B. Instead we schedule the computation steps of
different sub-tasks on different cores or processors. That is,
multiple sub-tasks are processed at the same time, but the
computation steps of one sub-task are done on the same pro-
cessor. For example, there are two cores to do the computation,
as Figure 7(b). Then S2 ∼ S6 of sub-task 1 are scheduled on
core 1 and S2 ∼ S6 of sub-task 2 are scheduled on core 2.

Suppose that there are k cores to do the computation
and each sub-task consists of one data block. We get the
compaction bandwidth of C-PPCP as Equation 6.

Bc−ppcp =
l

max{tS1
,

6∑
i=2

tSi

k , tS7
}

(6)

When k <

6∑
i=2

tSi

max{tS1
,tS7
} , the CPU is still the performance

bottleneck. When k >

6∑
i=2

tSi

max{tS1
,tS7
} , the storage device be-

comes the performance bottleneck. For the latter case, even
if we use more processors, the compaction bandwidth can’t
increase any more. The pipelined compaction procedure be-
comes I/O-bound.

From Equation 2 and Equation 6, we can get the ideal
performance speedup of C-PPCP as Equation 7. The ideal

speedup can not exceed min{k,
6∑

i=2
tSi

max{tS1
,tS7
}}.

Bc−ppcp

Bpcp
=

max{tS1
,

6∑
i=2

tSi
, tS7
}

max{tS1 ,

6∑
i=2

tSi

k , tS7}

(7)

IV. EVALUATION

In this section, we present the experimental methodology
and workload. Then, we analyze the profiling result for the
sequential compaction procedure to claim the necessity of
pipelined compaction procedure. Thirdly, we evaluate the per-
formance improvement of the pipelined compaction procedure
and the impacts of sub-task size and sub-task count on the
compaction bandwidth. Last, we evaluate the performance
improvement of the parallel pipelined compaction procedure,
and present that I/O-bound and CPU-bound cases of Pipelined
Compaction Procedure may be transformed.

A. Experimental Setup

Implementation Details. The pipelined compaction proce-
dure is implemented based on LevelDB, which is a represen-
tative LSM-tree implementation. We leave out the details of
LevelDB, and instead focus on components specific to our
optimization.

We use multiple threads to execute the pipelined compaction
procedure. In current implementation, the pipeline depth is
three, i.e., stage read, stage compute and stage write. For PCP,
we assign one thread for each stage. For S-PPCP, we use
multiple disks with the md driver to build RAID0 and create
multiple threads for I/Os. For C-PPCP, we create multiple
additional threads for the computation stage, and assign one
thread for each sub-task. Between the adjacent stages, we
create a queue for data communication.
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Fig. 8. The execution time breakdown of sequential compaction procedure for different key-value sizes.
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Fig. 9. The execution time breakdown of sequential compaction procedure for different sub-task sizes.

Measurement Methodology. We conducted experiments
on one machine running Linux CentOS 6.0 final with kernel
2.6.32. The machine includes a two-socket Intel Xeon E5645
(6 cores with hyper-threading, 2.4GHz, 12MB L3 cache).
The machine has 16GB of DRAM. To test out of DRAM
performance, we booted it with 512MB. The machine has 11
1TB 7200RPM SATA III disks, one as the system disk and
ten as data disks. Besides, it also has a 240GB SATA III 2.5in
Intel X25-M Solid State Drive.

Except that we claim explicitly, we used the following pa-
rameter values for all experiments. That is, the memtable size
is 4MB, the SSTable size is 2MB, the data block size is 4KB
and the compression algorithm is snappy. In all experiments,
we use insert-only workloads to do the compaction profiling
and evaluate the compaction bandwidth improvements. The
key and value size is 16B and 100B respectively. The number
of key-value pairs is fifty million.

B. Sequential Compaction Procedure Profiling
In this section, we profile the compaction procedure to

evaluate the execution time of the seven compaction steps.
Figure 8 depicts the breakdown of the execution time for
different key-value sizes from 64B to 1024B. Figure 9 depicts
the execution time for different sub-task sizes from 64KB to
4MB. To avoid the impact of page cache, we use direct I/O
for reads and writes.

As depicted in Figure 8(a) and Figure 9(a), the step read
takes more than 40% of the compaction time. Firstly, due to

the mechanical characteristics of hard disk drives, one data
transfer may consume more than 10ms. Secondly, the SSTables
are dynamically allocated. As a result, the data can not be
placed on disk sequentially. Although the I/O size in the
compaction is large, the disk arm may suffer seeks, due to
that there are multiple sub-tasks in one compaction. Thirdly,
the step write contends to use the same disk. However, the
write bandwidth is better than step read as the write request
is considered completed after the data has been written into
the disk write buffer rather than the disk. Besides, the read
requests and write requests interleave, which gives the disk a
chance to write back the buffer data to disk. With the addition
of the step write, the input and output of the compaction take
more than 60% of the compaction time, which illustrates that
the HDD is the performance bottleneck.

As depicted in Figure 8(b) and Figure 9(b), the step write
takes more time than step read, which is due to the write-
after-erase feature of flash-based solid stage disks. All the
computation steps take about 60% of the time. Obviously, the
CPU may be the performance bottleneck in storage systems
using flash-based SSDs.

As the key-value size increases, step sort takes less time due
to the decreasing amount of key-value entries. The execution
time of step write decreases as the sub-task size increases
because of that larger I/O size can exploit the internal paral-
lelism of SSD and increase the bandwidth of HDD. No matter
on SSD or HDD, either step crc or step re-crc takes less than
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Fig. 10. The performance of Sequential Compaction Procedure and Pipelined Compaction Procedure on HDD and SSD.

5% of the compaction time, and step decomp takes the least
amount of time. In all the computational steps, step comp is
almost the most costly.

C. Pipelined Compaction Procedure
In this section, we evaluate the performance improvement

of the pipelined compaction procedure. We increase the size of
working set from ten million to eighty million entries as Figure
10. Figure 10(a) and Figure 10(d) show that when the data set
size increases, the throughput of both Sequential Compaction
Procedure and Pipelined Compaction Procedure on HDD and
SSD decreases. As more key-value entries are inserted into
LSM-tree based storage system, there are more components
in the storage system. Thus key-value entries flow downwards
through more components, which results in lower throughput.

Figure 10(b) and Figure 10(e) depict the compaction band-
width. Figure 10(b) presents that as more entries are inserted,
the compaction bandwidth deceases slightly on HDD. Because
the data set size increases on HDD, the seek cost increases.
However, as there are no mechanical parts in solid state drives,
the compaction bandwidth on SSD does not decrease in Figure
10(e).

We normalize the IOPS and compaction bandwidth speedup
of Pipelined Compaction Procedure against Sequential Com-
paction Procedure as Figure 10(c) and 10(f). PCP improves
the throughput at least by 25% on HDD in Figure 10(c)
and 45% on SSD in Figure 10(f). PCP improves the com-
paction bandwidth at least by 45% on HDD and 65% on
SSD. Compared with the ideal compaction bandwidth speedup
which is calculated using the values in section IV-B, the
practical compaction bandwidth speedup is lower by about

10%. This is due to the overhead of the pipeline compaction
procedure filling and draining. The throughput speedup is
lower than the speedup of the compaction bandwidth by
20% approximatively. Because in the storage system, there
are other operations, including database consistence maintain-
ing, garbage collecting, and other operations, which are not
pipelined by now.

Besides, we also evaluate the performance improvement of
Pipelined Compaction Procedure for different sub-task sizes
and for different compaction sizes on SSD. As depicted in
Figure 11(a), the sub-task size increases from 64KB to 4MB
with fixed compaction size, in which the input size of upper
component is 4MB. While the sub-task size increases, the
compaction bandwidth of Sequential Compaction Procedure
increases. Due to that the I/O size is equal to the sub-task
size, large I/O size can exploit the internal parallelism of SSDs
and improve the bandwidth of SSDs. However, the compaction
bandwidth of Pipelined Compaction Procedure first increase
and then decrease. Because too small I/O size can not exploit
the internal parallelism of SSDs. Too large I/O size decreases
the sub-task count, which decreases the efficiency of PCP. The
compaction bandwidth of PCP using 512KB sub-task size is
the highest. In Figure 11(b), we increase the input size of upper
component from 1MB to 10MB while the sub-task size is set
1MB. For Sequential Compaction Procedure, the compaction
bandwidth does not increase as the compaction size increase.
The compaction bandwidth of PCP keeps on increasing until
the sub-task count reach 6. Large compaction size increase the
efficiency of PCP. Figure 11 shows that Pipelined Compaction
Procedure can improve the compaction bandwidth for all sub-
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Fig. 11. Compaction bandwidth with different subtask sizes and
compaction sizes.

task sizes and compaction sizes.

D. Parallel Pipelined Compaction Procedure

In this section, we evaluate the performance of Parallel
Pipelined Compaction Procedure. Figure 12 presents the per-
formance improvement on throughput, compaction bandwidth,
and the corresponding speedup. For S-PPCP, we increase the
number of disks to alleviate the disk bottleneck. The multiple
disks are built into RAID0. As depicted in Figure 12(a), the
throughput increases when more disks are used for input and
output. The throughput does not increase any more when
the disk count reaches 5 since the CPU becomes the perfor-
mance bottleneck, and then Pipelined Compaction Procedure
becomes CPU-bound. For C-PPCP, we increase the number
of threads to do the computation work. As depicted in Figure
12(d), the throughput increases when another thread is added
to do the computation work. After that, the Pipelined Com-
paction Procedure becomes I/O-bound. When more threads
are added to do the computation work, the throughput and the
compaction bandwidth decrease. This is due to the overhead
of creation and synchronization of multiple threads.

V. RELATED WORK

Improve the lookup performance. COLA [6] and FD-tree
[8] exploit fractional cascading technique [20] to confine the
search data extent. COLA puts the every eighth element of the
(k + 1)

st array in the kth array as the forward pointer. FD-tree
puts the first element of every page of the (k + 1)

st array in
the kth array as the search fence. Thus, in each level, point
queries just do one I/O. bLSM [1] uses bloom filter to avoid
disk I/Os for the level which does not contain the sought-after

key. GTSSL [7] uses the reclamation and re-insert techniques
to put key-value pairs in upper levels to decrease the count
of levels that point queries go through. bLSM [1] and the
partitioned exponential file [19] partition the key range into
multiple sub-key ranges, and then point queries just search
one smaller sub-key range.

Improve the compaction performance. bLSM [1] uses
the replacement-selection sort algorithm in the compaction
procedure of component C0 to increase the length of sorted
key-value pairs, which decreases the frequency of compactions
for all the components. VT-tree [5] uses the stitching technique
to avoid unnecessary disk I/Os for sorted and non-overlap key
range. But the stitching technique may incur fragmentation
which degrades the performance of scans and compactions.
bLSM [1] and PE [19] partition the key range into multiple
sub-key range and confine compactions in hot data key ranges,
which accelerate the data flow.

Exploit flash-based SSDs. GTSSL [7] targets hybrid HDD-
SSD systems and uses SSDs as the storage media of lower
components and the cache of hot data. Based on the observa-
tion that random writes with good locality have performance
similar to sequential writes on flash-based SSDs, FD-tree [8]
uses SSDs as the storage media.

In theory, the pipelined compaction procedure is orthogonal
to existing studies.

VI. CONCLUSION

Background compactions play an important role on the
performance of LSM-tree based storage systems. The existing
studies on background compactions focus on decreasing com-
paction frequency, reducing I/Os, or confining compactions on
hot key-ranges to improve compaction performance. However,
they ignore computation time and don’t exploit the parallelism
of I/O resource and computation resource. In practice, the
compaction may be CPU-bound and the computation takes
more than 60% of the total compaction time in storage systems
using faster storage devices like flash-based SSDs. In this
paper, we analyze the compaction procedure and recognize
the performance bottleneck. Then we propose the pipelined
compaction procedure. For one compaction, we divide it into
multiple sub-tasks and exploit the parallelism of I/O resource
and CPU resource to parallelize multiple sub-tasks. Further-
more, we improve the pipelined compaction procedure with
multiple storage devices or CPUs to alleviate the performance
bottleneck. Theoretical analysis proves that the pipelined com-
paction procedure can improve the compaction bandwidth. Ex-
tensive experimental results show that the (parallel) pipelined
compaction procedure improves the compaction performance
significantly.
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