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Abstract

Concurrent constraint programming (ccp) languages allow to

express concurrency on a clean semantic base. Since objects are

an attractive abstraction for describing concurrent activity, it

was the goal of several ccp languages to provide object-oriented

programming (oop). The traditional way to express the notion

of objects in ccp languages is by describing an object as the

consumer of a communication medium, e.g. a message stream,

bag, channel, or port.

We propose a new model for objects in higher-order ccp lan-

guages like Oz: Objects are (dynamically created) procedures

that take messages as arguments. While in previous proposals

for objects in Oz a communication medium was still involved,

we show in this paper that the right notion of concurrent state

su�ces to express oop in ccp. In contrast to the traditional

approach, where communication, synchronization and bu�ering

messages are all provided by the communication medium, the

new model expresses them by orthogonal language constructs, al-

lowing for a cleaner and more exible conceptual base for objects,

and a more e�cient implementation in the case of light-weight

objects.

Keywords Concurrent constraint programming, higher-order program-

ming, object-oriented programming, state, Oz.

1 Introduction

In this section, we give a brief overview of previous approaches to objects in

concurrent logic and ccp languages. A more comprehensive overview provide

Haridi, Janson and Montelius in [5].

Since the �rst time when objects were expressed in a concurrent logic

programming language by Shapiro and Takeuchi [10], research concentrates
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on �nding the right communication medium. In this seminal paper, lists,

also called streams in this context, serve as medium. Messages are sent by

incrementally instantiating a stream. The receiver reads the next message

from the stream, computes a new state with which it calls itself recursively

using the tail of the stream. For example, a counter object is expressed by

the following Concurrent Prolog program:

counter( [clearjS ] ,State)  

counter(S,0) .

counter( [ incjS ] ,State)  

plus(State,1,NewState) ,counter(S?,NewState?) .

counter( [get(State) jS ] ,State)  

counter(S,State) .

counter( ,State) .

A key question in all attempts towards objects in such languages is how

to express many-to-1 communication. In the case of streams, there are two

options:

� Each sender has its private stream to the receiver. All streams to an

object are merged together into one stream which is consumed by the

receiver.

� Languages with atomic test-and-unify allow multiple writers to a single

stream.

Both approaches su�er e�ciency problems as pointed out in [5]. At-

tempts to overcome these insu�ciencies include mutual references [9], chan-

nels [15], and bags [6].

For the ccp language AKL [4], which combines Prolog-style search-

oriented nondeterministic computation with process-oriented committed-

choice and ccp, Haridi, Janson and Montelius [5] propose the concept of

ports. A port is a connection between a bag of messages which serves as the

object identity for the sender and a stream that provides the receiver with

the access to the received messages.

Common to all approaches is the emphasis on the communication medi-

um, which serves three orthogonal purposes:

� communication and identi�cation: The medium links the sender and

receiver and provides the sender with a unique identity of the receiver.

� synchronization: Many-to-1 communication is enabled by allowing the

receiver to nondeterministically choose one of the incoming messages

while leaving the others waiting in the medium.

� bu�ering: Messages are stored in the medium until the receiver, re-

siding in a di�erent branch of concurrent computation in form of a

suspending clause, is ready to pick them up. This incurs an inevitable

memory overhead, and may cause a run-time penalty due to context

switching in sequential implementations.
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In the new model for oop in Oz, the ubiquitous concept of de�ning and

calling procedures serves the �rst purpose by encoding object creation by

procedure de�nition and message sending by procedure call.

For the second purpose, we introduce the concept of a concurrent memory

cell. This is a signi�cant simpli�cation over previous proposals for objects

in Oz in [12] and [3].

The third purpose becomes obsolete since messages that cannot be served

are represented by suspending applications of the object. Sequential object-

oriented programming can be supported especially e�ciently, since in this

case no such suspensions occur.

After introducing a sublanguage of Oz in Section 2, and a couple of ex-

amples in Section 3, we will show in Section 4 that, with the additional

notion of a concurrent memory cell, object-oriented programming includ-

ing multiple inheritance, self, late method binding, private methods and

attributes, encapsulation and object identity can be expressed by the means

of the underlying language Oz.

2 A Sublanguage of Oz

This section gives an informal presentation of the basic computation model

underlying a sublanguage of Oz that su�ces for the purpose of this paper

1

(see [11] for a formal presentation). The full language and programming

system of Oz is described in [2].

2.1 The Computation Space

Oz generalizes the model of ccp [7] by providing for higher-order program-

ming. Central to the computation model of Oz is the notion of the compu-

tation space. It consists of a number of actors
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connected to a blackboard.

A

A

A

�

�

�

Blackboard

Actor Actor...

The actors read the blackboard and reduce once the blackboard contains

su�cient information. When an actor reduces, it may put new information

on the blackboard and create new actors. As long as an actor does not

reduce, it does not have an outside e�ect. The actors of the computation

space are short-lived: once they reduce they disappear.

The blackboard stores a constraint (constraints are closed under conjunc-

tion, hence one constraint su�ces) and a number of named abstractions (to

1

We omit deep guard computation, disjunction, encapsulated search, and �nite domain

constraints.

2

Oz's actors are di�erent from Hewitt's actors. We reserve the term agent for longer-

lived computational activities enjoying persistent and �rst-class identity.
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be explained later). Constraints are formulae of �rst-order predicate logic

with equality that are interpreted in a �xed �rst-order structure called the

universe. The universe provides rational trees as in Prolog II and records

(see Section 2.3). The constraint on the blackboard is always satis�able in

the universe and becomes monotonically stronger over time. We say that a

blackboard entails a constraint  if the implication � !  is valid in the

universe, where � is the constraint stored on the blackboard. We say that

a blackboard is consistent with a constraint  if the conjunction � ^  is

satis�able in the universe, where � is the constraint stored on the black-

board. Since the constraint on the blackboard can only be observed through

entailment and consistency testing, it su�ces to represent it modulo logical

equivalence.

2.2 Elaboration of Expressions

There are several kinds of actors. This section will introduce elaborators

and conditionals.

An elaborator is an actor executing an expression. The expressions we

will consider in this section are de�ned as follows:

E; F ::= � j E F j local x in E end

j proc fx y

1

: : : y

n

g E end j fx y

1

: : :y

n

g

j if C

1

: : : C

n

else E �

C ::= x

1

: : :x

n

in � then E

Elaboration of a constraint � checks whether � is consistent with

the blackboard. If this is the case, � is conjoined to the constraint on the

blackboard; otherwise, an error is reported. Elaboration of a constraint

corresponds to the eventual tell operation of ccp.

Elaboration of a concurrent composition E F creates two separate

elaborators for E and F .

Elaboration of a variable declaration local x in E end creates a

new variable (local to the computation space) and an elaborator for the

expression E. Within the expression E the new variable is referred to by x.

Every computation space maintains a �nite set of local variables.

Elaboration of a procedure de�nition proc fx y

1

: : : y

n

g E end choos-

es a fresh name a, writes the named abstraction a: y

1

: : : y

n

=E on the black-

board, and creates an elaborator for the constraint x = a. Names are con-

stants denoting pairwise distinct elements of the universe; there are in�nitely

many of them. Since abstractions are associated with fresh names when they

are written on the blackboard, a name cannot refer to more than one ab-

straction.

Elaboration of a procedure application fx y

1

: : : y

n

g waits until the

blackboard entails x = a and contains a named abstraction a: x

1

: : :x

n

=E,

for some name a. When this is the case, an elaborator for the expres-

sion E[y

1

=x

1

: : : y

n

=x

n

] is created (E[y

1

=x

1

: : : y

n

=x

n

] is obtained from E
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by replacing the formal arguments x

1

; : : : ; x

n

with the actual arguments

y

1

; : : : ; y

n

).

This simple treatment of procedures provides for all higher-order pro-

gramming techniques. By making variables denote names rather than

higher-order values, we obtain a smooth combination of �rst-order con-

straints with higher-order programming.

Elaboration of a conditional expression of the form

if x

1

in �

1

then E

1

: : : x

n

in �

n

then E

n

else F � creates a conditional actor,

which waits until the blackboard either entails one of 9x

i

�

i

, in which case the

other clauses are discarded and conditional actor reduces to an elaborator

for local x

i

�

i

E

i

end, or all �

i

are disentailed, in which case the conditional

actor reduces to an elaborator for F .

2.3 Records as Logical Data Structure

Records are the congenial data structure for object-oriented programming.

Oz provides records with a set of constraints operating on records [13] [1].

A constraint of the form

X = a(a

1

: t

1

: : :a

n

: t

n

)

means that X a record labeled by the constant a (called its label), whose n

�elds containing terms t

i

are accessible through the features a

i

, i � n. In

the sequel, we use three additional constraints

3

to compute with records:

� R.F=X is true, if the record R contains the term X in the �eld with de-

scriptor F. For example, the constraint Y=point(x:1 y:2).y is equivalent

to Y=2.

� fAdjoin R1 R2 R3g is true if R3 is equal to the record R1, except

that for equal features the �eld of R2 overrides the �eld of R1

and for disjoint features the �eld is added. For example, the

constraint fAdjoin point(x:1 y:2) point(x:3 color:red) Zg is equivalent to

Z=point(x:3 y:2 color:red).

� fAdjoinAt R1 F X R2g is true if R2 is equal to R1, except that

R2 has the �eld X in feature F. For example, the constraint

fAdjoinAt point(x:1 y:2) y:5 Zg is equivalent to Z=point(x:1 y:5).

3 Examples

The following example program shows the interplay of procedure de�nitions,

applications and conditionals.

3

Strictly speaking, they are not constraints but actors that wait for the �rst two argu-

ments to become determined.
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declare Length in

proc fLength Xs Ng

if Xs=nil then N=0

X Xr M in Xs=XjXr then N=s(M) fLength Xr Mg

else false �

end

The declare expression is a variant of the local expression whose scope extends

to expressions the programmer enters later. Elaboration of the procedure

de�nition chooses a new name a, writes the named abstraction a: Xs N / if...�

on the blackboard and binds Length to a.

The expression

declare Xs Xr N in Xs= jXr fLength Xs Ng

is elaborated as follows. The constraint Xs= jXr is put on the

blackboard

4

and the application is replaced by the body of the proce-

dure. This conditional will reduce to its second clause since the constraint

9 X Xr M Xs=XjXr is entailed by the current blackboard. Thus, the expression

local X Xr M in Xs=XjXr N=s(M) fLength Xr Mg end will be elaborated. After

one further unfolding of the procedure Length the resulting conditional actor

will suspend for lack of information on Xr. At this point, the variable N is

constrained to s(M) with no information on M. Only after Xs becomes a list

of known length for example by

Xr=1j jnil

the length of the list N can be computed to s(s(s(0) ) ).

The next example shows how procedures are dynamically created. Con-

sider the expression

declare MakeAdder in

proc fMakeAdder N Adderg

proc fAdder Y Zg

Z=N + Y

end

end

Elaboration of

declare A in

local A4 in fMakeAdder 4 Adder4g fAdder4 1 Ag end

results in unfolding the procedure MakeAdder. Elaboration of the procedure

de�nition of Adder chooses a new name a, writes the named abstraction

a:Y Z / Z=N + Y on the blackboard and binds Adder4 to a. The application

fAdder4 1 Ag can then be unfolded as usual, binding A to 5.

4

Like in Prolog, the symbol denotes a new and anonymous variable.

6



4 Objects in Oz

4.1 The Traditional Way

Before we introduce the new approach in Section 4.4, we present in Pro-

gram 4.1, how stream-based communication is achieved in Oz.

Note that the Oz compiler is able to expand functional notation; for

example the expression fMethodTable.fLabel Messageg State Message NewStateg

expands to

local X Y in

fLabel Message Xg

MethodTable.X=Y

fY State Message NewStateg

end

The application fLabel Message Xg binds X to the label of the tree or record

Message. For example, fLabel get(Y) Xg binds X to get and fLabel inc Xg binds

X to inc.

Program 4.1 Stream-based Object in Oz

declare MethodTable Feed in

MethodTable=

methods(clear: proc f$ InState clear OutStateg

OutState=fAdjoinAt InState val 0g

end

inc: proc f$ InState inc OutStateg

OutState=fAdjoinAt InState val InState.val + 1g

end

get: proc f$ InState get(X) OutStateg

OutState=InState

X=InState.val

end

)

proc fFeed Stream Stateg

if Message NewStream in

Stream=MessagejNewStream

then

local NewState in

fMethodTable.fLabel Messageg State Message NewStateg

fFeed NewStream NewStateg

end

�

end

The variable MethodTable is bound to a record in which the methods

(procedures) are stored that the object applies when it receives a message.

The procedure Feed represents the object protocol. When it is called like in
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declare S in fFeed S state(val:0)g

it suspends until the stream S becomes constrained to MessagejNewStream.

Suppose this is done by

declare S1 in S=incjS1

Then the method table is accessed using the label of the message, in this

case the atom inc, resulting in the inc procedure. This procedure is applied to

state(val:0) and inc and NewState, resulting in binding NewState to state(val:1).

The protocol Feed is called recursively with S1 and NewState.

4.2 Discussion

Common to all proposed solution mentioned in the introduction is the medi-

um linking the sender with the receiver, exempli�ed by the variable Stream.

The sender leaves its message on the stream and proceeds. This incurs an

inevitable memory overhead, in this case a list construction. Furthermore,

for the receiver to deal with the message, a context switch is necessary in

sequential implementations. Clearly, for light-weight objects, such as win-

dow components, one would prefer to execute the appropriate method on the

sender's side without suspension or context switch. Our goal is to e�ciently

support light-weight objects and switch to a communication medium like

ports only for heavy weight (distributed) objects where it is often cheaper to

transfer the message to the receiver than the method including the object's

state to the sender.

Already in previous proposals for objects in Oz [12] and [3], methods were

executed on the sender's side. However, there was still a communication

medium involved. With an appropriate notion of concurrent state described

in the next section, we can signi�cantly simplify the model.

4.3 The Concurrent Memory Cell

In this section, we describe the concept of concurrent memory cells that is

used for objects in the next section. There are two primitive operations to

support memory cells. The �rst operation

fNewCell C Xg

creates a new cell C with content X. Like in procedure de�nition, a new

name a is chosen and the constraint C=a becomes elaborated. The named

memory cell a:X is written on the blackboard.

The second operation allows to simultaneously to read and write the cell.

fExchangeCell C OldValue NewValueg

waits until the blackboard entails C=a and contains a named memory cell

a:X. When this is the case, the constraint OldValue=X becomes elaborated

and the memory cell is replaced by a:NewValue. This is an atomic operation.

For example, in
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declare C in

local Value in fNewCell C 1g fExchangeCell C Value 2g end

the variable Value will be bound to 1 and when the cell is accessed a second

time like in

local SecondValue in fExchangeCell C SecondValue 2g end

the variable SecondValue will be bound to 2.

4.4 Objects with Memory Cells

Program 4.2 shows an implementation of the counter object based on mem-

ory cells.

Program 4.2 Cell-based Object in Oz

declare Counter in

local C in

fNewCell C state(val:0)g

proc fCounter Messageg

local State NewState in

fExchangeCell C State NewStateg

fMethodTable.fLabel Messageg State NewStateg

end

end

end

The object identity is provided by the procedure Counter, represented by

a named abstraction on the blackboard. The state of the object is stored in

the cell C which initially contains the record state(val:0). Communication is

provided by application. For example the message sending

fCounter incg

results in exchanging the state by a new variable NewState. Now, the appro-

priate method is applied resulting in binding NewState to state(val:1).

The computation resulting from message sending is performed on the

sender's side. If the state is available (e.g. because it resides on the same

node), the method can be directrly applied in the style of sequential object-

oriented programming.

4.5 Light-weight vs. Distributed Objects

Light weight objects like window components can be implemented e�ciently

using memory cells.

In parallel and distributed programming, objects residing on di�erent

nodes of a network may communicate. Clearly, it could be disadvantagous

to transfer both the receiver's state and the appropriate method to the sender

instead of transferring the message to the receiver as is the case in the

traditional model.
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For these cases, we switch to the communication medium of ports. Pro-

gram 4.3 show how ports can be implemented using memory cells. The

Program 4.3 Implementing Ports with Cells

proc fMakePort O ?Pg

local

Stream Cell

in

Cell = fNewCell Streamg

proc fP Xg

local Tail in fExchangeCell Cell XjTail Tailg end

end

fForAll Stream Og

end

end

procedure MakePort creates a port for a procedure O in form of the proce-

dure P. If P is called, its argument X is entered in the port by instantiating

the current content of the cell Cell to a list with X as �rst element. The

new content of Cell is the tail of the list. The procedure O is called on every

element of the thereby growing stream.

For example, declare LocalCounter in fMakePort Counter LocalCounterg cre-

ates a local \worker" for the object Counter. The computation triggered

by a message sending like fLocalCounter incg is performed where the port was

made, and not where the message was sent.

4.6 Garbage Collection

In [5], a main issue is the garbage collection of the communication medium.

Since in Oz, the communication medium is provided by the general mech-

anism of de�ning and calling procedures, there is no memory overhead for

communication. Like any other procedure, an object is garbage-collected

when there is no reference to it anymore. Objects can also be explicitly

closed which allows to garbage-collect the object's state even if there are

still references to the object. Further messages to a closed object are ig-

nored.

4.7 Self and Multiple Inheritance

The concept of self is provided by adding a further argument to the methods

as in the following fragment of a method table

inc2:proc f$ InState inc2 Self OutStateg

fSelf incg

fSelf incg

end

10



The object protocol ensures that methods are always called with the receiv-

ing object as third argument.

Object de�nition by multiple inheritance is performed by adjoining the

method tables of parent objects, overriding methods using a precedence,

de�ned by the algorithm of class precedence lists of CLOS [14].

In Oz, some syntactic sugar is provided to allow to express oop more

elegantly. The Counter object in Program 4.2 can be written as

create Counter from UrObject

attr val:0

meth clear val  0 end

meth inc val  @val + 1 end

meth get(X) X=@val end

end

An object Counter2 that contains additionally the method inc2 above can be

created by inheritance as in

create Counter2 from Counter

meth inc2 fself incg fself incg end

end

Details of the expansion of this syntax can be found in [2].

5 Conclusion

We showed that the overhead of a communication medium for oop in ccp

languages for light-weight objects can be overcome in the higher-order ccp

language Oz by introducing the concept of a concurrent memory cell.

For distributed applications, we can switch to ports which can be e�-

ciently implemented using concurrent memory cells.

In the resulting concept of objects in Oz, objects can be embedded in

arbitrary data structures, including messages and the state of other objects.

Since objects and methods are procedures, they can be created within other

objects and procedures and can, vice versa, create objects and procedures

themselves. Since messages are terms, they can contain logical variables and

provide objects with the full range of constraint programming techniques

such as incomplete messages.
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