Oz—A Programming Language for Multi-Agent Systems*

Martin Henz, Gert Smolka, Jorg Wiirtz

German Research Center for Artificial Intelligence (DFKI)
Stuhlsatzenhausweg 3
D-6600 Saarbriicken
Germany
E-mail: {henz, smolka, wuertz}@dfki.uni-sb.de

Abstract

Oz is an experimental higher-order concurrent
constraint programming system under develop-
ment at DFKI. It combines ideas from logic and
concurrent programming in a simple yet expres-
sive language. From logic programming Oz in-
herits logic variables and logic data structures,
which provide for a programming style where
partial information about the values of vari-
ables is imposed concurrently and incremen-
tally. A novel feature of Oz is that it accommo-
dates higher-order programming without sacri-
ficing that denotation and equality of variables
are captured by first-order logic. Another new
feature of Oz is constraint communication, a
new form of asynchronous communication ex-
ploiting logic variables. Constraint communi-
cation avoids the problems of stream communi-
cation, the conventional communication mech-
anism employed in concurrent logic program-
ming. Constraint communication can be seen
as providing a minimal form of state fully com-
patible with logic data structures.

Based on constraint communication and
higher-order programming, Oz readily supports
a variety of object-oriented programming styles
including multiple inheritance.

1 Introduction

Oz is an attempt to create a high-level concurrent pro-
gramming language bringing together the merits of logic
and object-oriented programming in a unified language.

Our natural starting point was concurrent constraint
programming [Saraswat and Rinard, 1990], which brings
together ideas from constraint and concurrent logic pro-
gramming. Constraint logic programming [Jaffar and
Lassez, 1987, Colmerauer and Benhamou, 1993], on the
one hand, originated with Prolog IT [Colmerauer et al.,
1983] and was prompted by the need to integrate num-
bers and data structures in an operationally efficient,
yet logically sound manner. Concurrent logic program-
ming [Shapiro, 1989], on the other hand, originated with
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the Relational Language [Clark and Gregory, 1981] and
was promoted by the Japanese Fifth Generation Project,
where logic programming was conceived as the basic sys-
tem programming language and thus had to account for
concurrency, synchronization and indeterminism. For
this purpose, the conventional SLD-resolution scheme
had to be replaced with a new computation model based
on the notion of committed choice. At first, the new
model developed as an ad hoc construction, but finally
Maher [Maher, 1987] realized that commitment of agents
can be captured logically as constraint entailment. A
major landmark in the new field of concurrent constraint
programming is AKL [Janson and Haridi, 1991], the first
implemented concurrent constraint language accommo-
dating search and deep guards.

Saraswat’s concurrent constraint model [Saraswat and
Rinard, 1990] can accommodate object-oriented pro-
gramming along the lines of Shapiro’s stream-based
model for Concurrent Prolog [Shapiro and Takeuchi,
1983]. However, this model is intolerably low-level due
to the clumsiness of stream communication and the lack
of higher-order programming facilities. This becomes
fully apparent when the model is extended to provide
for inheritance [Goldberg et al., 1992].

Thus the two essential innovations Oz has to provide
to be well-suited for object-oriented programming are
better communication and a facility for higher-order pro-
gramming. Both innovations require stepping outside of
established semantical foundations. The semantics of Oz
is thus specified by a new mathematical model, called the
Oz Calculus, whose technical set-up was inspired by the
m-calculus [Milner, 1991], a recent foundationally moti-
vated model of concurrency.

The way Oz provides for higher-order programming is
unique in that denotation and equality of variables are
captured by first-order logic only. In fact, denotation
of variables and the facility for higher-order program-
ming are completely orthogonal concepts in Oz. This is
in contrast to existing approaches to higher-order logic
programming [Nadathur and Miller, 1988, Chen et al.,
1993].

Constraint communication is asynchronous and inde-
terministic. A communication event replaces two com-
plementary communication tokens with an equation link-
ing the partners of the communication. Constraint com-
munication introduces a minimal form of state that



is fully compatible with logic data structures. Effi-
cient implementation of fair constraint communication
is straightforward.

The paper is organized as follows. The next section
outlines a simplified version of the Oz Calculus. Sec-
tion 3 shows how Oz accommodates records as a logic
data structure. The remaining sections present one pos-
sible style of concurrent object-oriented programming
featuring multiple inheritance.

2 The Oz Calculus

The operational semantics of Oz is defined by a mathe-
matical model called the Oz Calculus [Smolka, 1993]. In
this section we outline a simplified version sufficing for
the purposes of this paper.

The basic notion of Oz is that of a computation space.
A computation space consists of a number of agents con-
nected to a blackboard (see Fig. 1). Each agent reads
the blackboard and reduces once the blackboard contains
the information it is waiting for. The information on the
blackboard increases monotonically. When an agent re-
duces, it may put new information on the blackboard
and create new agents. Agents themselves may have one
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Figure 1: Computation Model

or several local computation spaces. Hence the entire
computation system is a tree-like structure of computa-
tion spaces (see Fig. 1).

The agents of a computation space are agents at the
micro-level. They are used to program agents at the
macro-level. One interesting form of macro-agents are
the objects we will introduce in a later section of this
paper.

Formally, a computation state is an expression ac-
cording to Fig. 2. (If £ is a syntactic category, & de-
notes a possibly empty sequence £...£.) Constraints,
abstractions and communication tokens reside on the
blackboard. Applications and conditionals are agents.
Composition and quantification are the glue assembling
agents and blackboard items into a computation space.
Quantification introduces local variables. Abstractions
may be seen as procedure definitions and applications as
procedure calls.

The clauses of a conditional are unordered. Their
guards, i.e., o in 3% (0 then 7), constitute local com-
putation spaces. Note that any expression can be taken
as a guard; one speaks of a flat guard if the guard is a
constraint.

There are two variable binders: quantification Jzo
binds = with scope o and abstraction z:7/o binds the

variables in § with scope o. Free variables of an expres-
sion are defined accordingly.

T,Y,2 variables

O, Ty b =
¢ constraint
x:y/o abstraction
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if wy ... wy else o conditional
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Figure 2: Expressions of the Oz Calculus

Computation is defined as reduction (i.e., rewriting)
of expressions. A reduction step is performed by ap-
plying a reduction rule to a subexpression satisfying the
application conditions of the rule. There is no backtrack-
ing. Control is provided by the provision that reduction
rules must not be applied to mute subexpressions, i.e.,
subexpressions that occur within bodies of clauses, else
parts of conditionals, or bodies of abstractions. It is up
to the implementation which non-mute subexpression is
rewritten with which applicable rule.

Reduction “o — 7”7 is defined modulo structural con-
gruence “oc = 7”7 of expressions, that is, satisfies the
inference rule

! !

o =1 =7
c—T

g=0

Structural congruence is an abstract equality for compu-
tation states turning them from purely syntactic objects
into semantical objects. Structural congruence provides
for associativity and commutativity of composition, re-
naming of bound variables, quantifier mobility

o AT=Tz(0 AT) if z does not occur free in T,

constraint simplification, and information propagation
from global blackboards to local blackboards.

2.1 Constraints

Constraints (¢,1 in Figure 2) are formulas of first-order
predicate logic providing for data structures. Logical
conjunction of constraints coincides with composition
of expressions. Constraints express partial information
about the values of variables. The semantics of con-
straints is defined logically by a first-order theory A and
imposed with the congruence law

b= fAEG

This law closes the blackboard under entailed constraints
(since A = ¢ — ¢ iff A = ¢ > ¢ Atp). The congruence



law

r=yAo = z=yAoly/z] if y is free for = in o

imposes equalities on the blackboard to the rest of the
computation space (o[y/z] is obtained from o by replac-
ing every free occurrence of z with y). Equality of vari-
ables is strictly first-order: Two variables z, y are equal if
the constraints on the blackboard entail z =y, and differ-
ent if the constraints on the blackboard entail —(x =y).
Of course, the information on the blackboard may be in-
sufficient to determine whether two variables are equal or
different. Moreover, an inconsistent blackboard entails
both z=y and —(z=y).
The Anullation Law

I Aga) =T

if Al=3%¢ and §y C L(T, ¢), where
L(Z,p) = {yeT|V2: pEAY=2= 2 €T}

provides for the deletion of quantified constraints and
abstractions not affecting visible variables.

2.2 Application

An application agent zy waits until an abstraction for
its link = appears on the blackboard and then reduces as
follows:

2y A :Zf/o = FZ(Z=YAo) N z:Z/o
if T and ¥ are disjoint and of equal length.

Note that the blackboard y:Z/o A z =y contains an ab-
straction for x due to the congruence laws stated above.
Since the link x of an abstraction x:7/o is a variable
like any other, abstractions can easily express higher-
order procedures. Note that an abstraction z:7/o does
not impose any constraints (e.g., equalities) on its link
T.

2.3 Constraint Communication

The semantics of the two communication tokens is de-
fined by the Communication Rule:

xlyAz?y - z=z.

Application of this rule amounts to an indeterministic
transition of the blackboard replacing two complemen-
tary communication tokens with an equality constraint.
The Communication Rule is the only rule deleting items
from the blackboard. Since agents read only constraints
and abstractions, the information visible to agents nev-
ertheless increases monotonically.

2.4 Conditional

It remains to explain the semantics of a conditional agent

if 37 (oy then 1) --- 3%, (0, then 7,,) else p.

The guards o; of the clauses are local computation
spaces reducing concurrently. For the local computa-
tions to be meaningful it is essential that information
from global blackboards is visible on local blackboards.

This is achieved with the Propagation Law (recall that
the clauses are unordered):

7w A if 3% (0 then 7) © else p

© A if 3T (r Ao then 7) W else i

if m is a constraint or abstraction and
no variable in T appears free in 7.

Read from left to right, the law provides for copying in-
formation from global blackboards to local blackboards.
Read from right to left, the law provides for deletion of
local information that is present globally. An example
verified by employing the Propagation Law in both di-
rections (as well as constraint simplification) is

x=1 A if (z=1then o) (=2 then 7) else u
z=1 A if (T then o) (L then 7) else p.

The example assumes that the constraint theory entails
that 1 and 2 are different.

Operationally, the constraint simplification and prop-
agation laws can be realized with a so-called relative sim-
plification procedure. Relative simplification for the con-
straint system underlying Oz is investigated in [Smolka
and Treinen, 1992].

There are two distinguished forms a guard of a clause
may eventually reduce to, called satisfied and failed. If a
guard of a clause is satisfied, the conditional can reduce
by committing to this clause:

ifdzo=T.
Reduction puts the guard on the global blackboard and
releases the body of the clause.

A guard is failed if the constraints on its blackboard
are unsatisfiable. If the guard of a clause is failed, the
clause is simply discarded:

if 37 (o then 7) Welse p — 3T (oAT)

if 37 (L Ao then 1) Welse uy — if @ else p.

Thus a conditional may end up with no clauses at all, in
which case it reduces to its else part:

ifelse p — p.
The reduction
z=1 A if (z=1then o) (z=2 then 7) else u
- x=1ANo0o
is an example for the application of the first rule, and
z=3 A if (z=1then o) (=2 then 7) else p
=" x=3 A u
is an example employing the other two reduction rules.
2.5 Logical Semantics

The subcalculus obtained by disallowing communication
tokens and conditionals with more than one clause en-
joys a logical semantics by translating expressions into
formulas of first-order predicate logic as follows (compo-
sition is interpreted as conjunction, and quantification is
interpreted as existential quantification):
v:y/c = Vy(apply(zy) < o)
gy = apply(zy)
if 3T (o thent)elsey = JT(cAT) V (-3To A p).



Under this translation, reduction is an equivalence trans-
formation, that is, if 0 — 7 or 0 = 7, then A E o0 < 7.
Moreover, negation can be expressed since —o is equiva-
lent to if o then | else T.

2.6 Unique Names

A problem closely related to equality and of great impor-
tance for concurrent programming is the dynamic cre-
ation of new and unique names. Roughly, one would like
a construct gensym(x) such that

gensym(x) A gensym(y)

is congruent to a constraint entailing =(z =y). For this
purpose we assume that there are infinitely many dis-
tinguished constant symbols called names such that the
constraint theory A satisfies:

1. A E —~(a=b) for every two distinct names a, b

2. A= S + S[a/b] for every logical sentence S and
every two names a, b (S[a/b] is obtained from S
by replacing every occurrence of b with a).

Now gensym(x) is modeled as a generalized quantification
Jda(z = a), where the quantified name a is subject to a-
renaming. With that and the quantifier mobility stated
above we in fact obtain a constraint in which z and y
are different:

Ja(z=a) AJa(ly=a) = Ja(z=a)A I(y=D)

JaFb(z=a Ay=bh).

3 Records

The constraint system underlying Oz provides a domain
that is closed under record construction [Smolka and
Treinen, 1992]. We now outline its constraint theory
as far as is needed for the rest of this paper. We will
be very liberal as it comes to syntax. The reader may
consult [Smolka and Treinen, 1992] for details.

Records are obtained with respect to an alphabet of
constant symbols, called atoms, and denoted by a, b, f, g.
Records are constructed and decomposed by constraints
of the form

= flar:@y...an:xy,)
where f is the label, aq,...,a, are the field names, and
Z1,...,T, are the corresponding values of record x. The

order of the fields a;: z; is not significant. The semantics
of the above constraint is fixed by two axiom schemes

f@z) = f(@y)
f@m) = g(b:7) if f# g or[a]# 0]
where [@] is the set of elements of the sequence a.

Field selection z.y is a partial function on records de-
fined by the axiom schemes

fl@zby).b =y
fl@z). b=y —» L

& T=y
- L

if b ¢ [al.
The function label(z) is defined on records by the scheme

label(f(--)) = f.

Finally, record adjunction “adjoinAt(z,y, 2)” is defined
by the schemes:

adjoinAt(f(a:T b:y), b, z) = f(a:Tb:z)
adjoinAt(f(a:Z), b, z) = f(G:Tb:z) if b¢al.
We write f(z;...x,) as a short hand for

f(l:zy ... n:xy). Thus we obtain Prolog terms as a spe-
cial case of records.

4 Synchronous Communication

Constraint communication is asynchronous. The follow-
ing program shows how synchronous comunication can
be expressed using constraint communication. Com-
putation only proceeds after communication has taken
place (signaled by an acknowledgement).

proc {Producer}
exists Ack in
item (' yellow brick’ Ack 1) ! Channel
if Ack = 1 then {Producer} fi

end

proc {Consumer}
exists X Ack in
item(X 1 Ack) ? Channel
if Ack =1
then {AddToRoad X} {Consumer} fi

end

We have now switched to the concrete syntax of Oz:
pred {z §} o end stands for : /o A Ja(x=a), {z 7y}
for zy, and juxtaposition for composition. Moreover,
nesting is allowed and is eliminated by conjunction and
quantification; e.g. item(X 1 Ack)? Channel expands to
exists Y in Y=item(X 1 Ack) Y7 Channel. Finally,
the default for a missing else part of a conditional is
else true.

5 Objects

An object has a static aspect, its method table, and a
dynamic aspect, its state. Methods are functions

method : state X message — state.

A method table is a mapping from method names to
methods, represented as a record whose field names act
as method names. A message is a record, whose label is
the name of the method and whose fields are arguments.
It turns out that we can represent an object O
by the procedure that sends the message. This rep-
resentation gives a unique identity to the object since
proc {z y} 0 end stands for z:7/oc A Ja(z=a).

proc {O Message}
if MethodName Method in
MethodName={ label Message}
Method=MethodTable.MethodName
then exists State in
State 7 C
if { label State}=state
then {Method State Message} ! C fi
fi
end




Observe that nested application makes programs more
concise: {Method State Message} ! C stands for

exists NState in
{Method State Message NState} NState ! C

When a message is received by the object O, the method
associated with the method name is retrieved using the
method table of the object (i.e., late binding). Then the
state of the object is replaced by the state obtained by
applying the method.

The following procedure provides a generic scheme for
creating objects from a method table and an initial mes-
sage.

proc {Create IMessage MethodTable O}
exists IMethod C in
IMethod= MethodTable.{ Label IMessage}
{IMethod state(self:0) IMessage} ! C
proc {O Message} ... end

end

Observe that the notion of “self” is provided in a natu-
ral way by starting with the initial state state(self:O).
Object initialization is provided by applying an initial
message to that state. The resulting state is written
on the blackboard. Now, the object is ready to receive
messages. We abbreviate message sending of the form
{O M} by O ~M. Note that quantification of the com-
munication link C hides the state and provides for data
encapsulation.

6 Methods

Assume that we want to model a counter as an object.
First, we fix the methods to be stored in the method
table. To initialize the counter we use the method

proc {Init InS X OutS}
if Yin X = init(Y)
then OutS = { adjoinAt InS val Y} fi

end

Observe that Init will add the attribute val if it is not
present in the state InS (see the semantics of adjoinAt in
Section 3). To ease the treatment of the state and to get
a more elegant notation we abbreviate this abstraction
by

‘ meth (Init init(Y))) val + Y end ‘

Incrementing and retrieving is achieved by

proc {Inc InS X OutS}

if X = inc

then OutS = { adjoinAt InS val InS.val + 1} fi
end

proc {Get InS X OutS}

if Yin X = get(Y)

then OutS =InS Y = InS.val fi
end

which is abbreviated to

meth (Inc inc)) val + @Qval+ 1 end
meth (Get get(Y))) Y = @val end

A counter is created by

MT = mt(init:Init inc:Inc get:Get)
{Create init(0) MT Counter}

7 Inheritance

In our framework, inheritance amounts to using the
method tables of other objects to build the method table
of a new object. We modify the procedure Create to
provide for inheritance.

proc {Create Ancestors IMessage
NewMethods O}
exists IMethodName IMethod C
AllMethods Send in

AllMethods =
{AdjoinAll Ancestors NewMethods}
O = object(methods:AllMethods

send:Send)
proc {Send Message} ... end
end
The procedure AdjoinAll (not shown) adjoins the

method tables of Ancestors and NewMethods from
left to right: For any method name, the rightmost
method definition is taken (cf. adjoinAt in Section 3).

To make the methods of objects accessible, an ob-
ject is now represented as a record containing the meth-
ods and the send procedure. Therefore, message send-
ing changes slightly: Counter “inc stands now for
{Counter.send inc}.

A counter that is displayed in a window (the object
VisibleObject is defined in Section 9) and that can ad-
ditionally decrement its value can be created by

meth {(Dec dec)) val < @val — 1 end
DecCounter =
{Create Counter|VisibleObject|nil
init(0) mt(dec:Dec)}

for which we introduce the following syntactic sugar.

create DecCounter
from Counter VisibleObject
with init
meth dec val < @val — 1 end
end

8 Method Application

Some languages providing for inheritance support the
concept of super to address methods overwritten due
to the inheritance priority. Oz provides a more general
scheme in that an object can apply to its state methods
of any other object (regardless of inheritance).

Assume an already defined object Rectangle. A square
can inherit from a rectangle but needs for initialization
only its length but not its width.



create Square from Rectangle with init(10)
meth init(X)
{ (Rectangle.methods).init init(X X) )
end

end“

where the method expands to

proc {Init InS X OutS}
if Yin X = init(Y)
then OutS = {Rectangle.methods.init
InSinit(YY)} £
end

Note that (@self.methods m)) differs from @self"m in
that the former tranforms the local state immediately,
whereas other messages can be taken before the latter is
eventually executed.

9 Meta Object Protocol

Now, we modify the object system such that the essen-
tials of object creation and message sending can be in-
herited, providing the object-system with a meta object
protocol like in [Kiczales et al., 1991] for CLOS. The new
definition of Create uses the meta-method create to
describe the object’s behavior.

proc {Create Ancestors IMessage NewMethods O}
exists AllMethods in
AllMethods =
{AdjoinAll Ancestors NewMethods}
{AllMethods. create
- create( AllMethods IMessage O) _}
end

The underscore “_” denotes an anonymous variable oc-
curring only once.

Like an organism, an object can inherit the way it
and its heirs are created, and the basic structure how it
communicates with its environment.

We can further modularize the object protocol such
that, e.g., each method call is performed by a call to
the meta-method methodCall. Assume that the meta-
methods create and methodCall are defined in the
object MetaObject. In this case, a VisibleObject
that sends a message containing its current state to a
Display whenever it executes a method, can be created
as follows:

create VisibleObject from MetaObject
meth methodCall(InS Meth Mess OutS)
{Meth InS Mess OutS}
Display = show (OutS)
end
end
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