Object-Oriented

Concurrent Constraint Programming in Oz*

Martin Henz, Gert Smolka, and Jorg Wirtz

1.1 Abstract

Oz is a higher-order concurrent constraint programming system under
development at DFKI. It combines ideas from logic and concurrent pro-
gramming in a simple yet expressive language. From logic programming
Oz inherits logic variables and logic data structures, which provide for
a programming style where partial information about the values of vari-
ables 1s imposed concurrently and incrementally. A novel feature of
Oz is the support of higher-order programming without sacrificing that
denotation and equality of variables are captured by first-order logic.
Another new feature of Oz are cells, a concurrent construct providing a
minimal form of state fully compatible with logic data structures. These
two features allow to express objects as procedures with state, avoiding
the problems of stream communication, the conventional communication
mechanism employed in concurrent logic programming.

Based on cells and higher-order programming, Oz readily supports
concurrent object-oriented programming including object identity, late
method binding, multiple inheritance, “self”, “super”, batches, syn-
chronous and asynchronous communication.

1.2 Introduction

Oz [6, 21, 20, 17, 16, 7] is an attempt to create a high-level concurrent
programming language bringing together the merits of logic and object-
oriented programming.

Our starting point was concurrent constraint programming [14], which
brings together ideas from constraint and concurrent logic programming.
Constraint logic programming [8, 1], on the one hand, originated with
Prolog 1T [4] and was prompted by the need to integrate numbers and

*appeared in:
P. van Hentenryck and V. Saraswat (eds.), Principles and Practice of Constraint
Programming, Chapter 2, pp. 29-48, The MIT Press, Cambridge, Mass.
Previous versions appeared as DFKI Research Report RR-93-16, April 1993, in the
1993 Conference on Programacién Declarativa, in the 1993 Fachtagung fiir Kiinstliche
Intelligenz, and as Oz - A Programming Language for Multi-Agent Systems” in the
1993 International Joint Conference on Artificial Intelligence.

2 Chapter 1

data structures in an operationally efficient, yet logically sound man-
ner. Concurrent logic programming [18], on the other hand, originated
with the Relational Language [3] and was promoted by the Japanese
Fifth Generation Project, where logic programming was conceived as
the basic system programming language and thus had to account for
concurrency, synchronization and indeterminism. For this purpose, the
conventional SLD-resolution scheme had to be replaced with a new com-
putation model based on the notion of committed choice. At first, the
new model was an ad hoc construction, but finally Maher [11] realized
that commitment of agents can be captured logically as constraint en-
tailment. A major landmark in the new field of concurrent constraint
programming is AKL [9], the first implemented concurrent constraint
language combining encapsulated search with committed choice.

The concurrent constraint model [14] can accommodate object-
oriented programming along the lines of Shapiro and Takeuchi’s stream-
based model for Concurrent Prolog [19, 10]. Unfortunately, this model is
intolerably low-level, which becomes fully apparent when one considers
inheritance [5]. Vulcan, Polka, and A’UM are attempts to create high-
level object-oriented languages on top of concurrent logic languages (see
[10] for references). Due to the wide gap these languages have to bridge,
they however lose the simplicity and flexibility of the underlying base
languages.

Oz avoids these difficulties by extending the concurrent constraint
model with the features needed for a high-level object model: a higher-
order programming facility and a primitive to express concurrent state.
With these extensions the need for a separate object-oriented language
disappears, since the base language itself can express objects and inher-
itance in a concise and elegant way.

The way Oz provides for higher-order programming is unique in that
denotation and equality of variables are nevertheless captured by first-
order logic only. In fact, denotation of variables and the facility for
higher-order programming are completely orthogonal concepts in Oz.
This is in contrast to existing approaches to higher-order logic program-
ming [13, 2].

Cells are a concurrent construct providing a minimal form of state fully
compatible with constraints. They simply model a mutable binding of a
name to a value, which can be changed by an atomic operation combining
reading and writing.

Object-Oriented Concurrent Constraint Programming in Oz* 3

Oz is based on a formal computation model accommodating concur-
rent computation as rewriting of a class of expressions modulo a struc-
tural congruence. This setup is known from a recent version of Milner’s
m-calculus [12]. Tt proves particularly useful for concurrent constraint
computation since the structural congruence can elegantly model prop-
agation and simplification of constraints.

Oz 1s fully implemented including garbage collection, incremen-
tal compilation and a window system based on Tecl/Tk. In
terms of efficiency, 1t i1s competitive with emulated Sicstus Pro-
log. The Oz System and its documentation can be obtained
via ftp from ps-ftp.dfki.uni-sb.de or through WWW from
http://ps-www.dfki.uni-sb.de/.

A novel feature of Oz not treated in this paper is a higher-order combi-
nator providing for encapsulated search [16, 17]. The search combinator
allows to program different search strategies, including depth first and
best solution (branch and bound) search.

The paper is organized as follows. Section 1.3 shows how the con-
straint system of Oz accommodates records. Section 1.4 gives an in-
formal account of the computation model underlying Oz. Section 1.5
introduces the concrete language. Section 1.6 shows how objects can be
modeled in Oz.

1.3 The Oz Universe

This section describes a fragment of the Oz Universe that suffices for
the purpose of this paper.

The Oz Universe is a mathematical model of the data structures
Oz computes with. It 1s defined as a structure of first-order predicate
logic with equality. All variables in Oz range over the elements of the
Oz Universe, called values. First-order formulas over its signature are
called constraints. The value we consider are records and integers.

We describe the semantics of records informally; the mathematical
details of the underlying construction are given in [22].

Records are composed using literals, denoted by [. A literal is either
an atom or a name. An atom is a string (e.g., val, get). Names do not
have a concrete syntax in Oz. It suffices to know that there are infinitely
many names.

4 Chapter 1

A record is either a literal or a proper record. A proper record is
an unordered tree

l
N
(%1 Un

where [is a literal, I, ..., are pairwise distinct literals, vy, ..., v, are
values, and n > 0.

Records are written as {(l1:v1...0,:v,), n > 0, where [() stands for
l. Two proper records are equal if and only if they have the same linear
notation up to permutation of named fields [;: v;.

Given a record t of the form [(l;: vy ...l vy,), we call the literal [the
label, the values vy, ..., v, the fields, the integer n the width, and the
literals Iy, ...,l, the features of t. Moreover, we call v; the field or
subtree of ¢ at [;.

An important operation on records is adjunction. The adjunction of
two records s and t is the record st defined as follows: the label of s*¢
is the label of ¢; the features of s * ¢ are the features of s together with
the features of ¢; and v is the subtree of s x ¢t at [if and only if either v
is the subtree of ¢ at [, or if [1s not a feature of ¢ and v is the subtree of
s at [. Thus record adjunction amounts to record concatenation, where
for shared features the right argument takes priority. For instance, the
adjunction {(a:16:2 ¢:3) x k(b:77 d:4) results in k(a:16:77 ¢:3 d:4).

The signature of the Oz Universe consists of literals and integers
(constants denoting themselves) and some predicates called constraint
predicates. The constraint predicates for records are defined as follows:

label(z,y) holds if and only if x is a record whose label is y.
width(z, y) holds if and only if z is a record whose width is y.

subtree(z,y, z) holds if and only if x is a tuple or record, y is a feature
of x, and z is the subtree of = at y.

adjoin(x, y, z) is the predicate corresponding to record adjunction.
adjoinAt(z,y, z,u) holds if and only if # and wu are records such that
z *l(y: z) = u, where [is the label of .

Constraint predicates for integers are intPlus(z, y, z), intMinus(z, y, z)
and intMult(xz, y, z) corresponding to the addition, subtraction and mul-
tiplication functions on integers.

Object-Oriented Concurrent Constraint Programming in Oz* 5

1.4 An Informal Computation Model

This section gives an informal presentation of the basic computation
model underlying a sublanguage of Oz that suffices for the purpose of
this paper! (see [20] for a formal presentation). A full description of
Kernel Oz, a semantically complete sublanguage of Oz is given in [6].

1.4.1 The Computation Space

Oz generalizes the model of concurrent constraint programming [15] by
providing for higher-order programming and cells. Central to the com-
putation model of Oz is the notion of a computation space. A compu-
tation space consists of a number of elaborators connected to a black-

board.
Blackboard

Elaborator --- Elaborator

The elaborators read the blackboard and reduce once the blackboard
contains sufficient information. The elaborators may reduce in parallel,
however the effect must always be achievable by a sequence of single
elaborator reductions (interleaving semantics).

The blackboard stores a constraint (constraints are closed under con-
junction, hence one constraint suffices) and name bindings. Name bind-
ings map names to abstractions or variables as explained later in this
section.

The constraint on the blackboard is always satisfiable in the universe
and becomes monotonically stronger over time. We say that a black-
board entails a constraint ¢ if the implication ¢ — ¥ 1s valid in the
universe, where ¢ is the constraint stored on the blackboard. We say
that the blackboard is consistent with a constraint « if the conjunction
¢ A 1 is satisfiable in the universe, where ¢ is the constraint stored on

the blackboard.

IWe omit deep guard computation, disjunction, encapsulated search, and finite
domains.

6 Chapter 1

1.4.2 Elaboration of Expressions

Elaborators reduce expressions. When an elaborator reduces, it may
put new information on the blackboard and create new elaborators. The
elaborators of the computation space are short-lived: once they reduce
they disappear.

The abstract syntax of expressions is defined as follows:

E = ¢ constraint
| a«:y/E abstraction
| a:y cell
| FEF composition
| localT in F end declaration
| 2yYn application
| exch[z,y,] exchange
| if 7 in ¢ then I else F fi conditional
z,y,z == (variable)
T,y = (possibly empty sequence of variables)

By elaboration of an expression F we mean the reduction of an
elaborator for £. Elaboration of

a constraint ¢ checks whether ¢ is consistent with the blackboard.
If this is the case, ¢ is conjoined to the constraint on the blackboard;
otherwise, an error is reported. Elaboration of a constraint corresponds
to the eventual tell operation in concurrent constraint programming [15].

an abstraction z:3/FE chooses a fresh name a, binds a to the abstrac-
tion ¥/ FE (name binding) and creates an elaborator for the constraint
z=a. Since fresh names are chosen whenever a name binding is written
on the blackboard, a name cannot be bound to more than one abstrac-
tion. Thus elaboration of an abstraction provides it with a unique iden-
tity. Since the variable x refers to a name rather than to the abstraction,
we can test for equality between x and other variables.

a cell z:y chooses a fresh name a, binds a to y (name binding), and
creates an elaborator for the constraint r=a.

a composition E F creates two separate elaborators for £ and F.

Object-Oriented Concurrent Constraint Programming in Oz* 7

a variable declaration local z in F end chooses a fresh variable y
and an elaborator for the expression E[y/«]. The notation E[y/«] stands
for the expression that is obtained from E by replacing all free occur-
rences of x with y. A multiple variable declaration local # 7 in F end
is treated as a nested declaration local z in local T in F end end.

an application z y; ... y, waits until there is a name a such that the
blackboard entails =a. If a is bound to an abstraction y; ...y, /F, an
elaborator for E[y/z] (a copy of the body of the abstraction, where the
actual arguments replace the formal arguments) is created. Otherwise,
the application cannot reduce.

an exchange exch[z, y1, y2] waits until there is a name a such that the
blackboard entails # =a. If a is bound to a variable z, an elaborator for
the constraint y; = z 1s created and the name binding for a is changed
such that a is now bound to the variable y,. Otherwise, the exchange
cannot reduce.

a conditional if T in ¢ then I else F fi waits until the black-
board either entails 3% ¢, in which case an elaborator for the expression
local 7 in ¢ I/ emnd is created, or disentails 3% ¢, in which case an
elaborator for F' is created.

The treatment of abstractions and applications provides for all higher-
order programming techniques [21]. By making variables denote names
rather than higher-order values, we obtain a smooth combination of
first-order constraints with higher-order programming.

While the constraint on the blackboard becomes monotonically
stronger over time and bindings of names to abstractions do not change,
an exchange may change the binding of a name to a variable. Thus, cells
provide a primitive to express state.

1.5 The Programming Language

Having introduced an informal computation model for Oz using the ab-
stract syntax of expressions, we can now present the concrete program-
ming language. In the concrete syntax of Oz, abstractions, applications,
cells, exchanges and constraints may not be used directly. Instead the
concrete syntax given in Section 1.5.1 must be used for abstraction and
application, the concrete syntax given in Section 1.5.2 for cells and ex-

8 Chapter 1

changes and the concrete syntax given in 1.5.3 for constraints. The
execution of a program F amounts to the creation of an elaborator for
the expansion of E according to the following sections.

1.5.1 Procedures

In the concrete syntax, variables start with a capital letter to distinguish
them from atoms. A procedure P taking n arguments can be defined with
the concrete syntax

proc {P X;... X,} E end

standing for the expression
local A in
A:Xy... Xp/E
P=procedure("NAME :A “ARITY :n)
end

Thus, a procedure is represented by a record (the concrete syntax for
record construction will be explained in Section 1.5.3). This record has
the name to which the abstraction is bound as subtree at feature "NAME" .
The variables "NAME® and “ARITY are constrained to names and may
not be used in programs.

An application of a procedure P to the arguments X;,..., X, can be
written with the concrete syntax

{P Xi... X,}

standing for the expression
if A in
label (P ,procedure)
subtree (P, NAME ,A)
subtree (P, ARITY ,n)
then A X;...X,

else false fi

Introducing abstractions and applications indirectly in this way en-
hances programming security in that no application z y; ...y, may be-
come elaborated unless there exists a name a such that the blackboard
entails # = a and a is bound to an n-ary abstraction. If x is constrained
to something else but a name, or if the name is not bound to an ab-
straction or if the arity does not match the arity of the application, the
constraint false is elaborated, resulting in a run-time error. The effect

Object-Oriented Concurrent Constraint Programming in Oz* 9

is a form of dynamic type checking. The representation of procedures
by records has additional benefits for objects (see Section 1.6).

1.5.2 Cells

The same form of dynamic type checking as for procedures applies to
cells in the concrete syntax of Oz. A cell is created by applying the
procedure NewCell, defined by
proc {NewCell Init C}
local 4 in
A:Init
C = cell(NAME :4)
end
end

and an exchange is performed using the procedure Exchange defined as
proc {Exchange C X Y}
if A in
label(C,cell)
subtree(C, NAME ,A4)
then exch[A X,Y]
fi
end

Note that the default for the missing else part of the conditional is
else false.

1.5.3 Constraints

Because the Oz Universe provides for integers with constraint predicates
for addition and multiplication, satisfiability of constraints is undecid-
able even for conjunctions of atomic integer constraints (Hilbert’s Tenth
Problem). Therefore, the concrete syntax restricts the use of constraints
such that satisfiability and entailment of the occurring constraints is ef-
ficiently decidable.

The procedure Det plays a key role in the rest of this section. Informal-
ly {Det X7} is entailed whenever X becomes determined, i.e. constrained
to a record or an integer. The procedure Det is defined by

proc {Det X}
if X=1 then true else true fi
end

10 Chapter 1

The concrete syntax allows to enter arithmetic constraints like
intPlus(X, Y, Z) only by expressions of the form Z=X+Y which expands to
the expression

if {Det X} {Det Y} them intPlus(X,Y,Z) fi

This treatment of arithmetic constraints avoids the undecidability prob-
lem because the elaboration of a constraint intPlus(X,Y,Z) either fails
or is equivalent to Z = n where n is the sum of the integers X and Y.

We ask the reader to accept a technical inaccuracy here: According
to Section 1.4, the guard must consist of a constraint and not contain
applications like {Det X} (flat guards). Due to space limitations, we
will not describe the more complex deep-guard computation here (see
[20] for a complete description).

A similar technique as for arithmetic constraints is used to weaken the
semantics of record constraints. Instead of using the constraint predi-
cates label, adjoin and adjoinAt, we use the procedures Label, Adjoin
and AdjoinAt:

proc {Label X Y}
if {Det X} themn label(X)Y) fi
end
proc {Adjoin X Y Z}
if {Det X} {Det Y} then adjoin(X,Y,Z) fi
end
proc {AdjoinAt X Y Z U}
if {Det X} {Det Y} themn adjoinAt(X,Y,Z,U) £fi
end

The expression X.Y=Z stands for
if {Det X} {Det Y} then subtree(X,Y,Z) fi

For record construction, we use the syntax

X=Y(Y1 Zl - .YnZ Zn)
which stands for

if {Det Y} {Det Y} - - {Det Y,}
then
label(X,Y) width(X,n) subtree(X,Y1,Z;)...subtree(X,Yn,Z,)
fi

We write Y(Z;...Z,) as a short hand for Y(*1":Z;.../n':Z,). Thus

we obtain Prolog’s finite trees as a special case of records. The out-

Object-Oriented Concurrent Constraint Programming in Oz* 11

lined constraint system is in fact a conservative extension of Prolog I1’s
rational tree system.

1.5.4 Examples

Cells are used to express objects as procedures with state. A simple
procedure with state is shown in Program 1.5.1.

Program 1.5.1 A Procedure With State

local Cell
in
{NewCell 0 Cell}
proc {Num X}
local Y in {Exchange Cell X Y} Y =X + 1 end
end
end

Elaboration of this expression creates a local variable Cell and an
elaborator for the composition. Elaboration of the composition con-
strains the varaibles Cell and Num to records and writes two name bind-
ings on the blackboard.

Suppose the computation space contains the applications

{Num X} {Num Y} {Num Z}

The abstraction realizing the procedure Num will be applied concur-
rently to the variables X, Y, and Z. They will be equated to different
numbers and the internal counter of Num will be incremented three times.
One possible outcome is X=0 Y=2 Z=1. The procedure Num builds a state
sequence

X1,X9,X3,..., Xy

whose members are linked by constraints X1 = X + 1, and whose
respective last member is held in Cell. Concurrent applications of Num
create concurrent exchange requests for Cell, which are performed in in-
determinate order. Reduction of an application {Exchange Cell X Y}
will equate X to the current end of the sequence and make Y the new
end of the sequence.

12 Chapter 1

Object-oriented programming in Oz makes use of records to represent
states, messages, and method tables. An example for the state of an
object 1s

CounterState=state(val:0)

The procedure Inc
proc {Inc State Message Self NewState}
if Message=inc then {AdjoinAt State val State.val+i
NewStatel} fi
end

increments the value in field val of the argument State, resulting in
NewState. We use functional notation in the then part which stands for
local X Y Z in

X = val
Y = State.X
Z=Y+1
{AdjoinAt State X Z NewStatel}
end
The

NewCounterStatel}, where the
symbol _ denotes an anonymous variable occurring only once, constrains
NewCounterState to state(val:1). The third formal parameter Self
of the procedure Inc is not used in i1ts body, but will serve to capture
the notion of “self” in Section 1.6.2 in similar procedures.
Similarly, the procedure Get
proc {Get State Message Self NewState}
if X in Message=get(X) then NewState=State
X=State.val fi
end

application {Inc CounterState inc

serves to
access the value in field val and leaves the State unchanged. The appli-
cation {Get NewCounterState get(X) _ NewCounterState2l} equates
NewCounterState2 to NewCounterState and the variable X to 1.
The variable CounterMethodTable in
CounterMethodTable=methods(inc: Inc get: Get)

is constrained to a record that contains the procedures Inc and Get.
The application of Inc above can now be written as

Object-Oriented Concurrent Constraint Programming in Oz* 13

{CounterMethodTable.inc CounterState inc _
NewCounterStatel}

1.6 Objects

Our goal are objects with the following properties:

¢ Identity and state. While enjoying persistent indentity, an object
changes its behavior over time depending on its state. The manipulation
of this state happens in a controlled manner.

¢ Structured programming. The behavior of objects is described in a
way that allows code reuse (multiple inheritance, “self”).

e Concurrency. Objects may be dynamically created and interact with
each other in a concurrent setting.

The first goal, we achieve by representing an object by a procedure
with state similar to the procedure Num in Program 1.5.1. In Sec-
tion 1.6.1, we refine this scheme by incorporating late method binding
and a generic mechanism to create objects.

The second goal is achieved by encoding the behavior of an object by
a method table, a record containing methods. Methods are procedures

method: state x message x object — state

When the object is applied to a message (represented as a record), the
appropriate method is retrieved from the object’s method table and
applied to the current state, the message, and the object itself, resulting
in a new state. We represent method tables by records. In Section 1.6.3,
we will show how we can express multiple inheritance by adjunction of
method tables, and how the notion of “self” can be captured.

Objects are concurrent due to the inherent concurrency of Oz. In
Section 1.6.3, we show how we can nonetheless preserve the order of
messages and how objects are synchronized.

1.6.1 Objects Are Procedures With State

Objects are procedures with state whose behavior is determined by a
method table. Procedures with state were already discussed in Sec-
tion 1.5.4.

14 Chapter 1

Program 1.6.1 defines an object Counter, employing late method bind-
ing. The variable CounterMethodTable refers to the record given in
Section 1.5.4 on page 12. In the following, we discuss Program 1.6.1
top-down.

Program 1.6.1 A Counter Object

local Cell in
{NewCell state(val:0) Cell}
proc {Counter Message}
local State NewState in
{Exchange Cell State NewState}
if {Det State}
then {CounterMethodTable.{Label Message}
State Message Counter NewStatel}
fi
end
end
end

The state of the object is represented by a record and stored in Cell.
The initial content of the cell is the record state(val:0).

When the object Counter is applied to a message like {Counter inc},
the current State is obtained from Cell and exchanged with the fresh
variable NewState. If State is determined, the appropriate method
Inc is retrieved from CounterMethodTable using the label inc of the
message. The method is then applied to State, the message inc,
Counter and NewState. Thus, if {Counter inc} is the first applica-
tion of Counter, Cell will hold the new state state(val:1).

Since objects are represented as procedures, they enjoy persistent
identity (recall the translation of proc --- end given in Section 1.5.1).
Thus one can test for identity of two objects Counter, Counter2 using a
conditional if Counter = Counter? then --- fi.

Note that many agents may know the object Counter and thus may
concurrently attempt to apply Counter. Representing the state by a
cell ensures mutual exclusion: the respective method applications are
implicitly and indeterministically sequentialized.

Object-Oriented Concurrent Constraint Programming in Oz* 15

Generic Object Creation

Since procedures are first-class citizens, we can write a generic procedure
shown in Program 1.6.2 that creates a new object 0 from an initial state
IState and a MethodTable.

Program 1.6.2 Generic Object Creation

proc {Create IState MethodTable 0}
local Cell in
{NewCell IState Cell}
proc {0 Message}

end
end
end

When Create is applied as in
{Create state(val:7) CounterMethodTable Counter2}

a new counter Counter?2 is created with initial value 7.
1.6.2 Inheritance

The behavior of an object is determined by 1ts method table. Inheritance
thus means that the method table of a new object is obtained by combin-
ing and extending method tables of existing objects. Since method tables
are represented by records, combining and extending them is straight-
forward (e.g., by record adjunction). To make the methods of an object
accessible, we will now enrich the representation of objects with informa-
tion used for inheritance. Since objects are procedures and procedures
are represented by records on the blackboard, we can construct an en-
riched object 0Inh by adjoining inheritance information to an object 0.
Program 1.6.3 modifies Program 1.6.2 to incorporate inheritance.

The procedure Create now has an additional argument FromObjects,
a list of objects from which the new object 0Inh inherits. The argument
NewMethodTable refers to the new methods of the new object. The
MethodTable is constructed by the procedure Inherit by adjoining all
method tables of inherited objects and the NewMethodTable (we assume
the procedure FoldL to be known from functional programming).

16 Chapter 1

Program 1.6.3 Incorporating Inheritance

proc {Create FromObjects IState NewMethodTable OInh}
local Cell MethodTable in
{NewCell IState Cell}
{Inherit FromObjects NewMethodTable MethodTable}
proc {0 Message} --- end
{AdjoinAt O methods MethodTable OInh}
end
end

proc {Inherit From NMT MT}
{Adjoin {FoldL
From proc {I E 0} {Adjoin I E.methods 0}
end methods}
NMT MT}
end

Record adjunction (see Section 1.3) takes care of the usual method
overriding in object-oriented languages.

MethodTable is adjoined to the created procedure 0 to provide the
object 0Inh with information that can be used when another object
inherits from 0Inh. For example, in Program 1.6.4 a DecCounter is cre-
ated that inherits from Counter and additionally understands a message
dec.

Syntactic Extension

Oz supports a syntactic extension for object creation and method def-
inition, which allows writing the expression in Program 1.6.4 including
CounterMethodTable in Section 1.5.4 as shown in Program 1.6.5.

The first and the last argument of methods are the incoming State
and the outgoing NewState of the object (see Program 1.6.1). In the
body of methods, NewState is computed from State. During this com-
putation, 1t may be necessary to introduce several auxiliary state vari-
ables. Thus one can say, that the state of the object 1s threaded through
the body of methods. In the syntactic extension, this threading is done
by the compiler. The two expressions that implicitly refer to the state
are attribute access (@) and assignment (<-). Syntactic limitations guar-

Object-Oriented Concurrent Constraint Programming in Oz* 17

Program 1.6.4 Example for Inheritance

{Create nil state(val:7) CounterMethodTable Counter3}
local DecMethodTable in
DecMethodTable
=methods(dec: proc {State Message Self NewState}
if Message=dec
then {AdjoinAt
State val State.val-1

NewStatel}
fi
end
)
DecCounter={Create Counter3|nil state(val:10)
DecMethodTable}
end

Program 1.6.5 Objects in Sugared Syntax

create Counter3
from UrObject

attr val:7

meth inc val <- @val + 1 end

meth get(X) X = @val end
end

create DecCounter

from Counter

attr val:10

meth dec val <- @val - 1 end
end

18 Chapter 1

antee that there is always only one reference to the state of an object
at run-time. Therefore, we can implement assignment such that the
construction of a new record as in AdjoinAt is avoided (compile-time
garbage collection).

Observe that our model alleviates the distinction between classes and
their instances by combining object creation and inheritance into one
single operation.

Self

The third formal parameter of the methods is the variable Self. Since
methods are called with the receiving object as third actual parameter,
the variable Self used in the body of methods has the semantics familiar
from object-oriented languages. In the syntactic extension, the keyword
self represents that variable. For example, the object Counter4 in
Program 1.6.6 sends the message inc twice to itself when it receives the
message inc2.

Program 1.6.6 Example for self

create Counter4d

from Counter

attr val:0

meth inc2 {self inc} {self inc} end
end

Method Application

In Section 1.6.2, we saw that attribute access and assignment implicitly
refer to the state. In this section, we describe a third such expression,
called method application.

Assume that the object Counter4 in Program 1.6.6 has received the
message inc2. Due to concurrent execution, a message, say get (X), may
be received by self after the first and before the second inc message.
To avoid such situations, Oz provides for method application, a way to
apply a method locally to the available state. For example, consider

create Counterb
from Counter
attr val:0

Object-Oriented Concurrent Constraint Programming in Oz* 19

meth inc2 <<self inc>> <<self inc>> end
end

The state is threaded through the two consecutive method applications
introducing an intermediate state
local TmpState in S'®'®<<self inc>>TmpState
TmpState<<self inc>>NeWState ond

and a threaded method application
InState<<O Message>>0ut5tate

expands to
{0.methods.{Label Message} InState Message Self
OutState}

The notation for method application exploits the fact that in our mod-
el every method m of every object 0 can be referred to by 0.methods.m.
Incidentally, our notation for method application also serves the purpose
of Smalltalk’s “super” notation. For example, the method inc in

create Counter6

from Counter

attr val:0

meth inc(X) <<Counter inc>> <<self get(X)>> end
end

1s defined in terms of Counter’s method inc and Counter6’s own method
get.

1.6.3 Concurrency Issues

We saw in the previous section that the execution order of applica-
tions may not coincide with the textual order of the applications. Using
method application, we can define batch methods as a way to enforce
an order on messages like in
create BatchObject
meth M|Mr <<self IM>> <<self Mr>> end
meth nil true end
end

The object Counter4 in Program 1.6.6 can be reformulated using the
batch methods.

20 Chapter 1

create Counter?

from Counter BatchObject

attr val:0

meth inc2 <<self inc|inc|nil>> end
end

Observe the use of multiple inheritance. Sending the message
{Counter7 inclget(X)|inc|nil} guarantees that no other application
{Counter7 get(Y)} can be sent such that X=Y.

So far, the application of an object to messages was done in an asyn-
chronous fashion. We can synchronize objects by using messages that
are constrained by the object. For example, in

{Counter7 inclget(X)|nil}
if {Det X} then L fi

the expression £ is only elaborated after Counter?7 is incremented.

1.7 Summary

Oz is an attempt to create a high-level concurrent programminglanguage
bringing together the merits of logic and object-oriented programming.
For this purpose, we extend the concurrent constraint model with a facil-
ity for higher-order programming and the notion of cells. We presented
aspects of the underlying constraint system and an informal model of
computation of a sublanguage of Oz, based on elaboration of expressions.

We have shown how concurrent objects can be expressed concisely
and naturally in Oz. Being represented by named procedures, objects
enjoy persistent identity. An object can refer to an encapsulated state,
stored 1n a cell that can only be accessed by calling the object.

Structured programming is supported by late method binding, which
1s achieved by method lookup in a method table represented by a record.
We gave a straightforward implementation of “self” and presented how
methods can be applied directly within methods, generalizing the con-
cept of “super”. We showed how method tables of several objects may
be combined providing for multiple inheritance.

Objects in Oz are concurrent due to the inherent concurrency of Oz.
We showed programming techniques that nonetheless enforce an order
on messages and allow for synchronization of objects.

Object-Oriented Concurrent Constraint Programming in Oz* 21

Acknowledgements

We thank all members of the Programming Systems Lab at DFKI for
inspiring discussions on all kinds of subjects and objects. The research
reported in this paper has been supported by the Bundesminister fir
Forschung und Technologie, contract TTW 9105 (Hydra), and by the
ESPRIT basic research project 7195 (ACCLAIM).

Bibliography

(1]
(2]
(3]

10]

(11]

(12]

(13]

(14]

15]

F. Benhamou and A. Comerauer, editors. Constraint Logic Programming.
ISBNO0-262-02353-9 II1. Series. MIT Press, 1993. Selected Research.

W. Chen, M. Kifer, and D. S. Warren. HiLog: A foundation for higher-order
logic programming. Journal of Logic Programming, 15:187-230, 1993.

K. Clark and S. Gregory. A relational language for parallel programming. In
Proc. of the ACM Conference on IFunctional Programming Lan-
guages and Computer Architecture, pages 171-178, 1981.

A. Colmerauer, H. Kanoui, and M. V. Caneghem. Prolog, theoretical principles
and current trends. Technology and Science of Informatics, 2(4):255-292,
1983.

Y. Goldberg, W. Silverman, and E. Shapiro. Logic programs with inheritance.
In Proceedings of the International Conference on Fifth Generation
Computer Systems, pages 951-960, Tokyo, Japan, 1992. ICOT.

M. Henz, M. Mehl, M. Miiller, T. Miiller, J. Niehren, R. Scheidhauer,
C. Schulte, G. Smolka, R. Treinen, and J. Wirtz. The Oz Hand-
book. Research Report RR-94-09, dfki, dfkiaddr, 1994. Available
through anonymous ftp from ps-ftp.dfki.uni-sb.de or through www from
http://ps—www.dfki.uni-sb.de.

M. Henz, G. Smolka, and J. Wiirtz. Oz—a programming language for multi-
agent systems. In 13th International Joint Conference on Artificial
Intelh'gence, volume 1, pages 404—-409, Chambéry, France, 1993. Morgan Kauf-
mann Publishers.

J. Jaffar and M. Maher. Constraint logic programming- a survey. The Jour-
nal of LogIC Programmlng7 1994. Special issue on 10 years of logic pro-
gramming.

S. Janson and S. Haridi. Programming paradigms of the Andorra kernel lan-
guage. In V. Saraswat and K. Ueda, editors, Logic Programming, Proceed-
ings of the 1991 International Symposium, pages 167-186, San Diego,
USA, 1991. The MIT Press.

K. Kahn. Objects: A fresh look. In Proceedings of the Third Euro-
pean Conference on Object Oriented Programming, pages 207-223.
Cambridge University Press, Cambridge, MA, 1989.

M. J. Maher. Logic semantics for a class of committed-choice programs. In
J.-L. Lassez, editor, Logic Programming, Proceedings of the Fourth
International Conference, pages 858-876, Cambridge, MA, 1987. The MIT
Press.

R. Milner. Functions as Processes. Mathematical Structures in Comput-
er Science, 2(2):119-141, 1992.

G. Nadathur and D. Miller. An overview of AProlog. In R. A. Kowalski and
K. A. Bowen, editors, Proceedings of the Fifth International Confer-
ence and Symposium on Logic Programming, pages 810-827, Seattle,
Wash., 1988. The MIT Press.

V. Saraswat and M. Rinard. Concurrent constraint programming. In Pro-
ceedings of the 7th Annual ACM Symposium on Principles of Pro-
gramming Languages, pages 232—245, San Francisco, CA, January 1990.

V. A. Saraswat. Concurrent Constraint Programming. The MIT Press,
Cambridge, Mass., 1993.

24

(16]

18]
(19]

(20]

(21]

(22]

Bibliography

C. Schulte and G. Smolka. FEncapsulated search in higher-order concurrent
constraint programming. In M. Bruynooghe, editor, Logic Programming:
Proceedings of the 1994 International Symposium, Tthaca, New York,
USA, Nov. 1994. The MIT Press.

C. Schulte, G. Smolka, and J. Wiirtz. Encapsulated search and constraint
programming in Oz. In Second Workshop on Principles and Practice
of Constraint Programming, Orcas Island, Washington, USA, May 1994.
Springer-Verlag, LNCS. to appear.

E. Shapiro. The family of concurrent logic programming languages. ACM
Computing Surveys, 21(3):413-511, September 1989.

E. Shapiro and A. Takeuchi. Object oriented programming in Concurrent Pro-
log. New Generation Computing, 1:24-48, 1983.

G. Smolka. A calculus for higher-order concurrent constraint programming with
deep guards. Research Report RR-94-03, DFKI, Feb. 1994. Available through
anonymous ftp from ps-ftp.dfki.uni-sb.de.

G. Smolka. A foundation for higher-order concurrent constraint programming.
In J.-P. Jouannaud, editor, 1st International Conference on Constraints
in Computationa] LOg“I'CS7 Lecture Notes in Computer Science, Miinchen,
Germany, 7-9 Sept. 1994. Springer-Verlag. Invited Lecture. To appear.

G. Smolka and R. Treinen. Records for logic programming. The Journal of
Logic Programming, 18(3):229-258, Apr. 1994.

