
Community-driven Course and Tool Development for CS1
Boyd Anderson∗

boyd@comp.nus.edu.sg
National University of Singapore

Singapore

Martin Henz∗
henz@comp.nus.edu.sg

National University of Singapore
Singapore

Kok-Lim Low∗

lowkl@comp.nus.edu.sg
National University of Singapore

Singapore

ABSTRACT
In 2012, the authors took responsibility for a CS1 course with 45
students. This experience report reviews the subsequent 10-year
learning process of engaging undergraduate students to facilitate
small-group teaching and to design and develop an online learning
environment to conduct what became our university’s flagship CS1
course, currently enrolling 749 students. The course inherited an
emphasis on small-group learning from its role model, MIT’s 6.001.
The size of the learning groups is limited to eight students per
group, which currently requires a team of 105 student facilitators.
The resulting need for student engagement and scaling motivated
the development of a new web-based programming environment
and assessment management system custom-made for the course.
The system was conceived, designed, and implemented by students
of the course, which provided the glue for building a sustainable
and scalable community of learners, educators, and student soft-
ware developers. This experience report describes the pedagogic
approach, the course structure, and software system to accommo-
date the needs of this community. A qualitative and quantitative
analysis of the impact of the course over the last four years provides
evidence for its efficacy. We hope that this report serves as inspi-
ration for similar large-scale pedagogic efforts that bring learners,
educators, and student developers together to form sustainable and
scalable learning communities.

CCS CONCEPTS
• Applied computing → Interactive learning environments; •
Social and professional topics→ Computational thinking.

KEYWORDS
learning management system for programming, introductory pro-
gramming, structure and interpretation of computer programs

ACM Reference Format:
Boyd Anderson, Martin Henz, and Kok-Lim Low. 2023. Community-driven
Course and Tool Development for CS1. In Proceedings of the 54th ACM
Technical Symposium on Computer Science Education V. 1 (SIGCSE 2023),
March 15–18, 2023, Toronto, ON, Canada. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3545945.3569740

∗All authors contributed equally to this research.

This work is licensed under a Creative Commons Attribution-
ShareAlike International 4.0 License.

SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9431-4/23/03.
https://doi.org/10.1145/3545945.3569740

1 BACKGROUND
CS1101S was established at the National University of Singapore
(NUS) in 1997 as a more challenging and exciting alternative to
the regular CS1 course, which followed a traditional curriculum
centered around C-programming. It enrolled 30 to 45 students each
year, who opted out of the latter to join CS1101S after passing a
selection process. The course used the textbook “Structure and In-
terpretation of Computer Programs” (SICP) by Harold Abelson and
Gerald Jay Sussman [1] and was modeled after MIT’s 6.001, which
was conceived by Abelson and Sussman. Following the publication
of the second edition of SICP in 1996, many leading universities
similarly adopted the SICP approach to CS1. CS1101S at NUS in-
herited 6.001’s rigorous approach and its use of the programming
language Scheme for all programming examples and assessments.
The most advanced students typically joined the team of facilitators
in the following year, each in charge of a group of at most eight
first-semester students. They developed homework assignments
for their juniors and the necessary software support, for example
involving entry-level algorithms and cryptography, and received
modest monetary compensation for their efforts.

With MIT discontinuing 6.001 in 2008 and other leading univer-
sities changing their courses away from SICP and Scheme in the
following years, a reassessment of CS1101S became necessary. The
support among the faculty for an entry-level course with an em-
phasis on functional programming was strong enough to continue
the SICP-based approach at NUS, but the support for Scheme as its
programming language was waning. The second author decided
to adapt the course to use JavaScript instead of Scheme, based on
a positive experience in a programming course for non-computer-
science majors, and based on an effort to adapt selected sections
of SICP to JavaScript that started in 2008. The first enrolment after
adaptation to JavaScript in 2012 comprised 45 students, handled by
one instructor and six facilitators.

While the selection process was gradually removed, the course
grew to 120 students and 15 student facilitators by 2017, still com-
prising only students who opted out of the regular C-based CS1
course. Three developments necessitated a revision in the course
material, tools, and management in 2018: (1) Our computer science
department decided to make CS1101S the required CS1 course for
all students in its 4-year computer science undergraduate program,
which meant that its enrolment was projected to more than triple
from 2017 to 2018. (2) Student interest in computer science increased
dramatically, which led to predictions of continuous post-2018 en-
rolment growth without lowering program admission criteria. (3)
JavaScript had evolved in 2015 in several crucial ways, which made
it possible to aim for a much closer textbook adaptation.

Continuing the established pattern of student-led tool devel-
opment, the academic team engaged a prominent graduating CS

https://doi.org/10.1145/3545945.3569740
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.1145/3545945.3569740


SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada Boyd Anderson, Martin Henz, and Kok-Lim Low

student, Evan Sebastian, to architect a new web-based learning en-
vironment. A team of five undergraduate students, mostly former
CS1101S facilitators, designed and implemented a basic first version
of the Source Academy (version “Cadet”) in the mid-2018 break
under Sebastian’s guidance. In Semester 1 of Academic Year (AY)
2018/19, the initial version handled 420 students and 55 facilitators.
Versions “Cadet” and “Knight” handled gradually increasing stu-
dent numbers from AY 2019/20 to AY 2021/22, and the latest stable
version “Rook” is serving 749 students and 105 student facilitators
in Semester 1 of AY 2022/23. (CS1101S is also offered in Semester 2
of each AY, but enrollment is much smaller at around 25 students;
we ignore the Semester 2 version in this report for simplicity.)

Section 2 recounts how the course evolved from MIT’s 6.001
as a result of these scaling needs and the switch to JavaScript,
and highlights core functional requirements for Source Academy.
Section 3 describes the overall system design and architecture,
while Sections 4 and 5 focus on the programming environment
and learning management aspects of the system. Section 6 outlines
the features of Source Academy that aim at improving student
engagement. Section 7 provides quantitative and qualitative results
spanning the last four years of CS1101S, and Section 8 discusses
how educators may strengthen their own communities of learners
for CS1 and beyond by engaging student developers and facilitators.

2 PEDAGOGIC REQUIREMENTS
SICP establishes a series of mental models for computation. Its first
two editions use the language Scheme in their program examples,
whose minimalistic, expression-oriented syntax allows the book
to focus on the underlying ideas rather than the design of the cho-
sen language. Aiming to retain SICP’s pedagogy and generality of
learning objectives, the JavaScript edition SICP JS [3] modernizes
the material by covering the structure and interpretation of pro-
grams written in statement-oriented languages that include return
statements, a language feature present in most widely-used pro-
gramming languages today. Apart from pedagogic reasons outlined
in [4] for choosing the statement-oriented language JavaScript for
the program examples, a practical advantage was that the programs
can be run easily on any device with a JavaScript-enabled browser,
which provided the opportunity for Source Academy to become
web-based. A web-based learning environment would simplify the
scaling of the course by removing the need for learners to install
any software apart from their web browser and facilitate the dis-
semination of system improvements, which we anticipated to be
frequent, especially in the early phases of the development.

The value of a textbook lies in establishing a common language
of discourse among students, facilitators, and staff and thus making
scaling easier. To maximize the utilization of SICP JS, an integration
of an online interactive edition of the book into Source Academy
seemed desirable. The first two mental models of computation
in SICP (JS) are the substitution model for evaluating functional
programs outlined in SICP (JS) Chapter 1 and the environment
model for execution of imperative programs in the presence of
lexical scoping and higher-order functions described in Chapter
3 and implemented in the meta-circular evaluator of Chapter 4.
A full comprehension of these mental models poses considerable
challenges for a typical learner, which affects the scalability of the

course. Interactive and graphical visualization of these models in
Source Academy would help learners, facilitators, and academic
staff to establish these mental models more reliably in large classes.

SICP (JS) often uses examples from mathematics to illustrate pro-
gramming abstractions such as higher-order functions and streams.
To engage students better, Source Academy should make good use
of the media-rich computing environment of the web, including
3-D graphics, audio and video processing, and such components
should be added to the system only when needed.

The sublanguages approach to teaching CS1 was pioneered for
PL/I [14], and was widely adopted since then, see also [10] and [15].
Following this approach, Source Academy should restrict learners
to sublanguages of JavaScript that contain just enough features
for supporting the respective chapters of SICP JS to facilitate the
scaling of the course to learners with diverse prior knowledge and
exposure to programming in general and to JavaScript in particular.

A web-based environment to support the teaching of CS1101S
provides a range of opportunities to improve student engagement
using established gamification techniques [18], such as achieve-
ments, experience points, badges, and contests. A web-based sys-
tem might include a semester-long game to provide the context
for meaningful exercises and make it easy to engage students in
media-rich programming contests.

Assessment is a potential obstacle to scalability. To give effec-
tive feedback and guidance, CS1101S comprises three sit-in written
assessments in addition to the final assessment, 20 graded home-
work assignments, a sit-in programming assessment, and two oral
assessments conducted by the student facilitator. Source Academy
should therefore provide extensive support for the management of
programming assessment through assessment management, auto-
mated grading, and grading monitoring features.

To illustrate the use of imperative programming, CS1101S in-
cludes a robotics component, based on LEGO MINDSTORMS [16].
A web-based system for CS1101S should allow students to write
their robot programs in JavaScript and run them on their robots
from the convenience of their browsers.

While Source Academy should avoid duplicating typical features
of learning management systems, a bespoke system for teaching
CS1 should provide features specific to programming, such as man-
ual review and grading by facilitators, supported by automatic
grading based on test cases.

3 SYSTEM DESIGN AND ARCHITECTURE
The requirements mentioned in the previous section necessitated
a scalable backend and the adoption of a JavaScript library for
the frontend that facilitates student developer recruitment and
onboarding. Sebastian chose the React [17] library for the frontend,
Elixir [8] for the backend, and Elixir’s web server Phoenix [7].

The system evolved to combine three components: (1) an interac-
tive web-based edition of SICP JS, (2) a web-based programming en-
vironment for learning how to write programs in custom-designed
JavaScript sublanguages, and (3) a web-based learning manage-
ment system for staff to set programming exercises, for students to
solve and submit their solutions, and for facilitators to grade the
submissions automatically or manually. The first two components
are of interest to readers of SICP JS and casual learners who don’t



Community-driven Course and Tool Development for CS1 SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada

require password protection. Source Academy therefore provides a
server-less public version that is deployed to a .org domain from
the GitHub repositories of Source Academy [20]. The third compo-
nent is available in an enhanced version of Source Academy called
Source Academy@ X and is hosted by a commercial cloud provider.

The textbook sources of SICP and SICP JS are subject to a Creative
Commons license and available in a separate GitHub repository [23],
which allows for generating a PDF version of SICP JS for printing, an
interactive online version of SICP JS, and a comparison edition [2]
that displays both books side-by-side, all from a single XML sources.

The programming-language-specific features of the program-
ming environment are provided by a JavaScript package [19] loaded
by the React frontend at build time to ensure separation of con-
cerns, to facilitate testing, and to provide the option of supporting
languages other than JavaScript in the future.

The implementations of the JavaScript sublanguages are sand-
boxed such that programs written by learners can only interact with
the frontend through well-defined pathways. Students and staff can
safely share URL-encoded programs that link to Source Academy
containing the program ready to run. Learner programs can import
media-rich extensions (see Section 4) by using JavaScript’s import
syntax. The extensions are dynamically loaded into the frontend
from a trusted module repository [22].

4 WEB-BASED PROGRAMMING
ENVIRONMENT

The web-based programming environment is available in both the
public and enhanced versions of Source Academy, and specialized
versions are also used in the interactive textbook in both versions
and in the assessment management and grading components of the
enhanced version, see Section 5.

Sublanguages
To realize the sublanguages approach described in Section 2, the
student developers designed and documented [21] a series of Java-
Script sublanguages. The frontend parses the program entered by
the learner using the JavaScript package estree [9]. The parse tree
is then checked to ensure it complies with the selected sublanguage.
Before evaluation, the program undergoes a transpilation step to
generate learner-friendly error messages and to ensure proper tail
calls (PTC) even if the browser does not comply with the PTC re-
quirement of the JavaScript specification. For details of the parsing
and transpilation, see [4].

A decisive advantage of the sublanguages approach for com-
munity-based development is that custom-designed tools can be
implemented in student term projects. The development of a web-
based educational programming environment for the full language
JavaScript would by far exceed the constraints of term projects.

Tools for mental models
Interactive and visual representations of the two main mental mod-
els of SICP (JS) enabled the scaling of CS1101S. Several successive
student project teams designed and implemented suitable tools for
these models. For the substitution model of SICP JS Chapter 1, the
teams developed a stepper tool and integrated it in the program de-
velopment component of Source Academy, as described in [13]. For

Figure 1: Imperative programming with video filters

the environment model of SICP JS Chapter 3, the teams developed
an environment model visualizer, as described in [6].

Media
To take advantage of the today’s media-rich world of web pro-
gramming for inspiring programming exercises, student project
teams developed dynamically-loaded modules for audio process-
ing (for details see [12]), 2-D graphics as covered in SICP Section
2.2.4 (following [11]), visualization of functions with 2-D and 3-D
codomains, constructive solid geometry (CSG), and video process-
ing. Figure 1 shows a learning session in Source Academy that uses
video filters to illustrate imperative programming using loops and
suitable abstractions for combining such filters.

Robotics
To support the robotics component of CS1101S, several subsequent
student team projects designed a virtual machine (VM) and a com-
piler of the SICP-Chapter-3 JavaScript sublanguage to the instruc-
tion set of the VM. The compiler is integrated in the web-based
frontend such that a suitably configured and connected robot can
execute the learner program entered in the browser by running the
compiled code in the VM, which is written in C. For details, see [5].

5 LEARNING MANAGEMENT SYSTEM
Universities usually provide learning management systems (LMSs)
to their students and staff to organize the courses that are relevant
to them. CS1101S makes use of NUS’s LMS for typical manage-
ment functions such disseminating lecture material and calculating
grades. Source Academy focuses on features we found useful but
are not provided by commercial LMSs.

Assessment management and grading
Source Academy contains a management component for assess-
ments that allows staff to upload assessments in XML and configure
their opening and closing times. Programming assessments provide
opportunities for automation by running student submissions on
preconfigured test cases. Facilitators save time by relying on the
autograding results to establish the correctness of the submission
and can focus on assessing the achievement of learning outcomes.

Figure 2 shows the grading interface that allows facilitators
to view and run student submissions, see the results of automatic
grading, adjust the grade, and enter qualitative feedback. Automatic



SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada Boyd Anderson, Martin Henz, and Kok-Lim Low

Figure 2: Grading interface for facilitators

Figure 3: Dashboard with pivot table of facilitators who have
difficulties giving timely feedback

grading is also employed in the practical assessment of CS1101S
mentioned in Section 2.

Facilitator monitoring
The pedagogy literature provides ample evidence that timely feed-
back is a crucial component of effective teaching [24]. The facili-
tators participate in an orientation session at the beginning of the
course and get detailed instructions on how to give feedback on
assessments. Given the scale of CS1101S and the busy schedule of
many student facilitators, it is inevitable that facilitators occasion-
ally fall behind in their grading commitments. Figure 3 shows the
“dashboard” of Source Academy, a pivot table of the status of assess-
ment grading that allows academic staff to identify facilitators who
need reminders of the importance of timely feedback.

6 IMPROVING STUDENT ENGAGEMENT
The student developers of Source Academy devoted considerable
effort towards involving their juniors in activities that are broadly
related to the course and that increase the enjoyment of the material
and thereby enhance motivation and engagement.

Game
Students of CS1101S designed a visual-novel-style game that pro-
vides the context for all homework assignments of the course. The
game follows a coherent semester-long plot to which the homework
assessments refer. Provided that students can muster sufficient sus-
pension of disbelief, they derive an additional sense of meaning,
urgency, and accomplishment from their homework. The game of

Figure 4: Typical scene from the CS1101S game. The planet’s
telescope is broken. The student needs to program a robot to
repair it to capture the coordinates of a hostile entity...

Figure 5: Display of student achievements

Source Academy underwent four major iterations and today fea-
tures conditional control of game chapters, forks and loops in the
plot, and extensive support for developing and testing the game
plot and assets. Figure 4 shows a typical scene in the current plot
that starts on board a spaceship and involves adventures on an
alien planet. All game assets (scenes, avatars, collectibles, etc) are
original and student-generated.

Achievements
Being able to review the achievements already attained increases
students’ confidence. Figure 5 shows the achievements component
with typical gamification elements such as the student’s level and
experience points in the course, currently open assessments, badges,
etc. Staff can use the achievements view to review a student’s
performance in the course.

Contests
To provide outlets for student creativity and the occasional comical
relief, the course contains four programming contests, following
the major groups of homework assessments. Students use Source
Academy to develop their contest entries, and to cast their votes
for the most popular entries. Typically, the criteria for winning a
contest include popularity and program brevity. Source Academy
has extensive support for managing and judging such contests.



Community-driven Course and Tool Development for CS1 SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada

7 RESULTS
NUS solicits anonymous student feedback on each course after the
lecture period and before the final assessment. The quantitative and
qualitative results reported in this section are based on the student
feedback collected on CS1101S. The colored horizontal bar charts
display the most recent course feedback, collected in AY 2021/22,
with 670 invited students of which 580 (87%) responded.

Course
Figure 6 shows the overall student opinion on CS1101S from 2018 to
2021. Note that the feedback scores increased during the pandemic,
which is a testament to the course’s capability of online engagement,
and that the feedback scores increased along with the number of
students, which shows that the course managed to scale well during
this period. Figure 7 shows the most recent overall opinion in more
detail, and Figure 8 shows that the course is perceived as relatively
difficult, indicating a sufficient engagement and challenge.

Figure 6: Student numbers and feedback scores (“What is
your overall opinion of [the course]?”: 1—Very poor, 2—Poor,
3—Average, 4—Good, 5—Very good. Response rates: 2018—74%,
2019—73%, 2020—77%, 2021—87%

.

Figure 7: Student feedback on CS1101S in AY 2021/22

Figure 8: Perceived course difficulty in AY 2021/22

Textbook
The online edition of SICP JS was an independent student project
by Samuel Fang, not connected to any academic credit or compensa-
tion. The project highlights the strength of the CS1101S community
as Fang invested countless hours to build a system that serves their
juniors. FangwonNUS’s people’s choice award for themost popular
e-book in 2021. Reflecting on the award, STUDENT Fang remarked:
“I am happy knowing that the interactive textbook is getting the at-
tention it deserves. I hope that the interactive SICP JS can continue to
benefit students for years to come!” The student feedback on the use
of the textbook is encouraging, see Figure 9. Over the past 10 years,
many dozens of students contributed to the GitHub repository of
SICP JS by reporting bugs in the textbook or contributing exer-
cise solutions, often using pull requests, and many more students
have casually viewed the repository, and been exposed to online
publishing such as single-source of truth and version control.

System
The students perceive Source Academy to be contributing to their
learning, as evident from Figure 10. Figure 11 shows positive feed-
back on the game, overwhelming support for the achievement sys-
tem, and encouraging feedback on the robotics component, despite
the limitations imposed by the pandemic.

In the qualitative feedback on the course in 2021, 41 students
mentioned Source Academy positively in response to the question
“What I liked about the [course]”. Two students mentioned Source
Academy in response to the question “What I did not like about the
[course]”. The positive mentions included the following statements:

• Source Academy is a very good environment to learn coding
in as we are limited in what we can use

• Source Academy was a brilliant and fun platform to use.
• I’m really into Source Academy. This platform was incredible.
It motivated me a lot to complete my tasks

In addition to this recognition by their peers, the student devel-
opment team won NUS’s Outstanding Undergraduate Researcher
Prize 2021/22 (Group category) and the Annual Digital Education
Award 2021 (Team category).

The project course on Source Academy offered to first-year stu-
dents in their second semester included 19 students in AY 2021/22,

Figure 9: Student feedback on textbook use, AY 2021/22

Figure 10: Student feedback on overall system efficacy



SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada Boyd Anderson, Martin Henz, and Kok-Lim Low

Figure 11: Student feedback on game component, achieve-
ment system, and robotics component

Figure 12: Student feedback on second-semester project
course on Source Academy

out of which 17 (89%) responded to the feedback survey. Figure 12
shows that the students have a very high overall opinion of the
project course. Their qualitative feedback included the following
statements on “What I liked about the [course]”.

• Enhancing Source Academy for future students, trying new
things, working alongside others doing similar work.

• It was an excellent opportunity to explore a codebase that was
well–documented and well–organized, and to add a non–trivial
feature extension to a platform that will be used by many of
the future students in [NUS]...

• I enjoyed seeing the ideas that we came up with at the start of
the semester becoming implemented and usable...

For first-semester students, pedagogic value lies in using a student-
built system, even if they don’t become involved in the development,
because they naturally empathize with the developers, get casually
exposed to real-world software development using issue tracking
and bug reporting, and explore the sources of Source Academy.

8 DISCUSSION
The reported results stem from several positive feedback loops.
The student projects contributing to Source Academy supported
CS1101S by providing a range of custom-built tools that improve
the teaching. CS1101S improved the quality of the software projects
that contribute to Source Academy by providing strong motivation
for the participating student developers. The adaptation of SICP to
JavaScript supported CS1101S by modernizing the course content.

CS1101S supported the textbook project with volunteers for the
development of online and interactive versions and with many
textbook bug fixes and exercise solutions from the community of
students. Each of these relationships strengthened the community
of learners, educators, and student developers, which facilitated
the recruitment of the next generation of student facilitators and
student developers and thus the scaling of the course.

CS1 provides a unique opportunity for community building. De-
sirable learning experiences in first-year courses and their scaling
needs give rise to interesting pedagogic and software design chal-
lenges. CS programs continue to attract unprecedented talent who
rightfully expect to become engaged in meaningful experiences
from the first day of the program. The opportunity described in
this report consists of harnessing this talent to build a sustainable
community of learners. Undergraduate teaching support can be
continuously recruited from the most recent pool of learners, which
provides new learners with authentic “More Knowledgeable Oth-
ers”. Student software developers can be recruited from the same
pool, which unleashes a perpetual stream of talent, motivated by
their own user experience and eager to further improve and extend
the system that their seniors have built.

We hope these dynamics encourage CS1 educators to engage
their recent students in the teaching of incoming first-year students
instead of relying on graduate students and in the development
of bespoke learning tools instead of or in addition to off-the-shelf
learning management systems and integrated development envi-
ronments. Both activities can lead to meaningful learning experi-
ences that enrich the first and second university years, before more
advanced courses, immersive internships, and capstone projects
dominate the students’ university life.

In our case, the development of bespoke learning tools was facil-
itated by the choice of JavaScript, which was designed for building
web-based systems, but languages used in CS1 today such as Python,
C, Java, Racket, and OCaml are also supported by vast repositories
of open-source tools and environments that enable the student-
led development of learning and course management tools. We
recommend a sublanguages approach, not just for its well-known
pedagogic advantages, but also because it places the student-led de-
velopment of programming language tools within reach of first- and
second-year student projects. Apart from CS1, other courses might
provide similar opportunities, including courses on data structures
and algorithms, data science, and discrete mathematics.

Commercial providers of LMSs currently do not seem to priori-
tize the extensibility of their products for the needs of programming-
related courses. We described the development of a bespoke LMS
for a programming course as a drastic remedy. We pointed out
that the process of developing such a system from scratch provides
learning and community-building opportunities. To educators who
cannot or do not wish to start from scratch, the permissive licence of
Source Academy provides a starting point for their own LMS or for
contributing useful components to benefit a growing community.

ACKNOWLEDGEMENTS
We acknowledge valuable comments by Gerald Jay Sussman during
the second author’s sabbatical at MIT in early 2022, and suggestions
by Daniel Jackson and Mara Kirdani-Ryan on drafts of this paper.



Community-driven Course and Tool Development for CS1 SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada

REFERENCES
[1] Harold Abelson and Gerald Jay Sussman. 1996. Structure and Interpretation of

Computer Programs (2nd ed.). MIT Press, Cambridge, MA. with Julie Sussman.
[2] Harold Abelson and Gerald Jay Sussman. 2022. SICP—Comparison edition. https:

//sicp.sourceacademy.org JavaScript adaptation by Martin Henz and Tobias
Wrigstad with Julie Sussman.

[3] Harold Abelson and Gerald Jay Sussman. 2022. Structure and Interpretation of
Computer Programs, JavaScript edition. MIT Press, Cambridge, MA. adapted to
JavaScript by Martin Henz and Tobias Wrigstad with Julie Sussman.

[4] Boyd Anderson, Martin Henz, Kok-Lim Low, and Daryl Tan. 2021. Shrinking
JavaScript for CS1. In Proceedings of the 2021 ACM SIG-PLAN SPLASH-E Sym-
posium (SPLASH-E ’21), October 20, 2021, Chicago, IL. ACM, Chicago, IL, 87–96.
https://doi.org/10.1145/3484272.3484970

[5] Boyd Anderson, Martin Henz, and Hao-Wei Tee. 2021. Ruggedizing CS1 Robotics:
Tools and Approaches for Online Teaching. In Proceedings of the 2021 ACM
SIG-PLAN SPLASH-E Symposium (SPLASH-E ’21). ACM, New York, NY, 82–86.
https://doi.org/10.1145/3484272.3484969

[6] Kaian Cai, Martin Henz, Kok-Lim Low, Xing Yu Ng, Jing Ren Soh, Kyn-Han Tang,
and Kar Wi Toh. 2023. Visualizing Environments of Modern Scripting Languages.
submitted, under review.

[7] Chris McCord. 2018. Phoenix Framework. https://phoenixframework.org
[8] Elixir Core Team. 2019. Elixir. https://elixir-lang.org
[9] estree. 2021. estree. https://github.com/estree/estree.
[10] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krishna-

murthi. 2018. How to Design Programs: An Introduction to Programming and
Computing (2nd ed.). MIT Press, Cambridge, MA.

[11] Peter Henderson. 1982. Functional Geometry. In Conference Record of the 1982
ACM Symposium on Lisp and Functional Programming. ACM, New York, 179–187.
https://doi.org/10.1145/800068.802148

[12] Martin Henz, Shang-Hui Koh, and Samyukta Sounderraman. 2021. Teachable
Moments in Functional Audio Processing. In Proceedings of the 2021 ACM SIG-
PLAN SPLASH-E Symposium (SPLASH-E ’21). ACM, Chicago, IL, 65–70. https:

//doi.org/10.1145/3484272.3484967
[13] Martin Henz, Thomas Tan, Zachary Chua, Peter Jung, Yee-Jian Tan, Xinyi Zhang,

and Jingjing Zhao. 2021. A Stepper for a Functional JavaScript Sublanguage. In
Proceedings of the 2021 ACM SIG-PLAN SPLASH-E Symposium (SPLASH-E ’21).
ACM, Chicago, IL, 71–81. https://doi.org/10.1145/3484272.3484968

[14] Richard C. Holt and David B. Wortman. 1974. A sequence of structured subsets of
PL/I. ACM SIGCSE Bulletin, Proceedings of the fourth SIGCSE Technical Symposium
on Computer Science Education 6, 1 (January 1974), 129–132.

[15] M. Homer, T. Jones, J. Noble, K.B. Bruce, and A.P. Black. 2014. Graceful Dialects.
In ECOOP 2014—Object-Oriented Programming (Lecture Notes in Computer Science,
Vol. 8586), Jones R. (Ed.). Springer, Berlin, Heidelberg, 131–156.

[16] LEGO System A/S. 2021. LEGO MINDSTORMS. https://www.lego.com/en-
us/themes/mindstorms.

[17] Meta Platforms, Inc. 2022. React—A JavaScript library for building user interfaces.
https://reactjs.org

[18] Mourya Reddy Narasareddy Gari, Gursimran Singh Walia, and Alex David Ra-
dermacher. 2018. Gamification in Computer Science Education: a Systematic
Literature Review Paper. In Proceeedings of the 2018 ASEE Annual Conference
& Exposition. American Society for Engineering Education, Salt Lake City, UT,
13 pages. https://doi.org/10.18260/1-2--30554

[19] Source Academy. 2021. js-slang. https://github.com/source-academy/js-slang.
[20] Source Academy. 2022. https://github.com/source-academy.
[21] Source Academy. 2022. Specification of JavaScript sublanguages for SICP JS. Source

Academy Specifications. Source Academy, https://docs.sourceacademy.org.
[22] Students and staff of CS1101S at the National University of Singapore. 2022.

Modules for Source Academy. https://github.com/source-academy/modules.
[23] Students and staff of CS1101S at the National University of Singapore. 2022.

Sources for SICP JS. https://github.com/source-academy/sicp.
[24] Benedikt Wisniewski, Klaus Zierer, and John Hattie. 2020. The Power of Feed-

back Revisited: A Meta-Analysis of Educational Feedback Research. Frontiers in
Psychology 10 (1 2020), 14 pages. https://doi.org/10.3389/fpsyg.2019.03087

https://sicp.sourceacademy.org
https://sicp.sourceacademy.org
https://doi.org/10.1145/3484272.3484970
https://doi.org/10.1145/3484272.3484969
https://phoenixframework.org
https://elixir-lang.org
https://github.com/estree/estree
https://doi.org/10.1145/800068.802148
https://doi.org/10.1145/3484272.3484967
https://doi.org/10.1145/3484272.3484967
https://doi.org/10.1145/3484272.3484968
https://www.lego.com/en-us/themes/mindstorms
https://www.lego.com/en-us/themes/mindstorms
https://reactjs.org
https://doi.org/10.18260/1-2--30554
https://github.com/source-academy/js-slang
https://github.com/source-academy
https://docs.sourceacademy.org
https://github.com/source-academy/modules
https://github.com/source-academy/sicp
https://doi.org/10.3389/fpsyg.2019.03087

	Abstract
	1 Background
	2 Pedagogic requirements
	3 System design and architecture
	4 Web-based programming environment
	5 Learning management system
	6 Improving student engagement
	7 Results
	8 Discussion
	References

