
“Early X or Late X”Questions for Discussing Curricular Practices
in CS1 and CS2

Martin Henz
henz@comp.nus.edu.sg

National University of Singapore
Singapore

ABSTRACT
In teaching university entry-level calculus, it proved useful to dis-
tinguish early from late transcendentals depending on the time
at which transcendentals such as the exponential and logarithmic
functions are introduced. I suggest we pose analogous “early X or
late X” questions for first-year computer science courses. I propose
a tentative list of concepts for which the “early or late” question
might be worthy a discussion and argue that the approach allows
us to pay attention to pedagogical choices rather than the choice
of the programming language for CS1 and CS2.
ACM Reference Format:
Martin Henz. 2023. “Early X or Late X” Questions for Discussing Curric-
ular Practices in CS1 and CS2. In Proceedings of the 54th ACM Technical
Symposium on Computing Science Education V. 2 (SIGCSE 2023), March 15–
18, 2023, Toronto, ON, Canada. ACM, New York, NY, USA, 1 page. https:
//doi.org/10.1145/3545947.3573240

1 MOTIVATION
The first calculus textbook by late Torontonian and mathematics
educator James Drewry Stewart [1] follows the traditional approach
of late transcendentals where the transcendental logarithm function
is introduced as an integral of 𝑓 (𝑥) = 1/𝑥 and the transcendental
exponential function as its inverse. Stewart and others realized
that this approach deprives the concepts preceding integrals of
these two transcendentals as interesting example functions. Stew-
art’s early-transcendentals alternative [2] introduces them—along
with transcendental trigonometric functions—informally in the first
chapter and uses these transcendentals throughout the book.

Do we have analogous pedagogic choices in CS1 and CS2? An
exhaustive approach would list all essential concepts in the first
year in CS and analyse their prerequisite dependencies. To initiate
a more focused discussion, I propose instead to limit the discourse
to a handful of concepts, and explore their “early or late” question.

2 A LOADED QUESTION
“You say you teach CS1. What’s your programming language?” The
question deprives me of the opportunity to share essential features
of my approach. When I oblige, the questioner is bound to draw
unwarranted conclusions. Imagine the analogous question posed
to Stewart: “You say you teach calculus. Do you use Mathematica,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9433-8/23/03.
https://doi.org/10.1145/3545947.3573240

Maple, or Matlab?” The analogy is increasingly fitting, because
like these tools, some of the most popular languages used in CS
first-year classrooms are converging. Python, OCaml, Java, and
JavaScript might differ in syntactic details, but they are all lexically-
scoped and support object-oriented programming, the possibility
of statically-checked type annotations, and higher-order functions.

3 POSSIBLE CANDIDATE CONCEPTS
To illustrate the “early or late” approach of discussing a CS first-year
curriculum, I will present a few candidate concepts in my lightning
talk, including:

Types: Early types establish generally useful programming
habits but might slow down the teaching of essentials and
might lack proper motivation.

Objects: Early objects provide a scaffolding for modeling real-
world problems and prepare students for software design
but might impose a conceptual overhead on programming.

Recursion: Early recursion provides useful examples for data
structure traversal and for algorithmic complexity but might
impose a significant learning obstacle; initial difficulties in
mastering recursion might discourage some students.

Higher-order: Introducing higher-order functions early places
due emphasis on programming abstractions but like recur-
sion might impose unwarranted learning obstacles.

Assignment: Early imperative programming allows some stu-
dents to draw on prior programming experiences but might
complicate mental models of computation, and might lead
to a lack of attention to mental models later on.

4 DISCUSSION
Seen in this way, any given pedagogical approach to the first year
in CS can be roughly characterized by its coordinates in an n-
dimensional design space, where each concept represents a dimen-
sion. This approach might let educators see curricular practices in a
new light and gain new insights, possibly allowing them to improve
their teaching. It also might help them question the choices they
have made and in what ways these choices were constrained.

I hope that this lightning talk motivates a more in-depth em-
pirical analysis of the choices that are manifested in the current
pedagogical approaches in CS and fruitful discussions in the CS
education community regarding the relative merits of the available
choices, while avoiding the idiosyncrasies that arise around the
choice of programming languages for CS1 and CS2.

REFERENCES
[1] James Stewart. 2015. Calculus (8 ed.). Cengage Learning, Boston, MA.
[2] James Stewart. 2015. Calculus: Early Transcendentals (8 ed.). Cengage Learning,

Boston, MA.

https://orcid.org/0000-0002-6529-5896
https://doi.org/10.1145/3545947.3573240
https://doi.org/10.1145/3545947.3573240
https://doi.org/10.1145/3545947.3573240

	Abstract
	1 Motivation
	2 A Loaded Question
	3 Possible candidate concepts
	4 Discussion
	References

