
Glinda: A Meta-circular Interpreter for Oz

Martin Henz and Michael Mehl

Abstract| Executing computer programs means

interpreting the instructions coded in a programming

language. Most implementations of high-level lan-

guages, such as DFKI Oz, use an intermediate step

of compilation: The source code is compiled to

a machine code which is then interpreted by the

hardware or a more abstract machine. We show

the advantages and problems that occur when one

tries to directly interprete Oz source code. We

present an implementation of a meta-circular Oz

interpreter, i.e. an interpreter for Oz written in

Oz and demonstrate its application to source-level

pro�ling, execution visualization and language de-

sign.

Keywords| Oz, interpreter, programming envi-

ronments, pro�ling

1. Introduction

Interpreters are computer programs that execute a

suitable representation of a source program. Exam-

ples of interpreters are (1) every computer itself since

it executes source programs in form of binary code,

and (2) a BASIC interpreter that executes a given BA-

SIC program line-by-line. Meta-circular interpreters

of a given language are interpreters in which source

and implementation language coincide.

During the development of concurrent logic program-

ming languages, interpreters were often used to judge

the quality of the language design [2]. The following

questions were used as criteria:

� Does a proposed language have a simple meta-

interpreter? A positive answer is usually consid-

ered a plus for a given language design.

� Does a simple interpreter for programs of a lan-

guage A written in language B exist? A positive

answer is usually considered as an indication that

language A is at least as expressive as B.

Interpreters are used for language implementation since

they typically require less programming e�ort than

compilers. Other applications include program debug-

Martin Henz and Michael Mehl are researchers in the

German Research Center for Arti�cial Intelligence (DF-

KI), Stuhlsatzenhausweg 3, D{66123 Saarbr�ucken, Germany,

email:fhenz,mehlg@dfki.uni-sb.de

gers and pro�lers. For example, Prolog debuggers are

often based on a meta-cirular interpreter for Prolog.

In this work, we presentGlinda

1

, a simple meta-circular

interpreter for Oz [3], a concurrent language, provid-

ing for higher-order functional, object-oriented and

constraint programming. We show how Glinda can

be modi�ed to serve as a program pro�ler and visual-

izer.

2. Current Implementation

The core of Glinda interpretes a ground-term repre-

sentation of Kernel Oz programs. Glinda's user in-

terface allows to enter full Oz programs, which are

automatically translated to Kernel Oz for interpreta-

tion. Glinda allows to call Oz builtins and compiled

procedures from interpreted programs. This is use-

ful for interpreting only certain modules of a program

and compiling others to run at full speed.

The static scoping rules of Oz are implemented in

Glinda by interpreting every construct with respect to

an environment, in which bindings of variable names

to Oz variables are stored. Every variable declaration

extends the environment. The interpreter uses the ex-

tended environment for interpreting the program frag-

ment in the scope of the declaration.

All interpreted procedures are unary so that proce-

dures can be constructed and applied regardless of

their arity.

Conditionals with n parallel clauses are implement-

ed by parallel conditionals with two clauses. This

becomes possible by using deep guards and passing

around the bodies of the conditionals in form of pro-

gram code.

The source code of Glinda is available through

WWW under http://ps-www.dfki.uni-sb.

de/~ henz/oz/interpreter.html.

1

the good witch in [1]; we imagine Glinda to be beautiful, but

somewhat slow.



3. Applications

Every language construct in Kernel Oz is interpret-

ed by a particular procedure in Glinda. Manipulating

this procedure thus allows to manipulate the seman-

tics of the language construct.

As an example consider a pro�ler based on Glinda.

The pro�ler should show how often every procedure

in a given program is executed at run-time. We on-

ly have to manipulate the procedure of Glinda that is

responsible for procedure application, such that appli-

cations are executed as usual but additionally notify

a pro�ler object. To obtain a pro�ler, this pro�ler ob-

ject only has to keep track of the number of applica-

tions of each procedures and provide this information

to the user.

Another application is visualization and tracing of Oz

programs. To this aim, we augment Glinda with code

that incrementally builds a data structure while it in-

terpretes code. This data structure can be visualized

(e.g. by the Oz Browser) to obtain a run-time trace

of the program. Furthermore, we can manipulate the

interpretation of certain constructs so that a user in-

teraction is necessary to continue the interpretation.

This allows the user to interactively step through the

program and watch the resulting computation.

Other applications include experimentation with al-

ternative language semantics and with program trans-

formations.

4. Limitations and Problems

Glinda is not very fast and it is not clear whether it

is useful as a tool for debugging programs of realistic

size.

The implementation of conditionals and disjunctions

using deep guards imposes several limitations. One

limitation is, that the interpreter cannot be imple-

mented as an object and therefore the di�erent exten-

sions of the interpreter can not be implemented using

inheritance. Another one is that it is not possible to

communicate to toplevel objects, e.g. the pro�ler or

the visualizer, from within guards.

The creation of new threads, due to suspension of con-

ditionals or disjunctions is currently not observable

and needs further investigation.

References

[1] L. F. Baum. The Wonderful Whizard of Oz. G. M. Hill,

1900.

[2] E. Shapiro, editor. Concurrent Prolog. Collected Papers.

Volume 1 and 2. The MIT Press, 1987.

[3] G. Smolka and R. T. (ed.). DFKI Oz documentation se-

ries. Available on paper

or via WWW from http://ps-www.dfki.uni-sb.de/oz/,

Deutsches Forschungszentrum f�ur K�unstliche Intelligenz,

Stuhlsatzenhausweg 3, D{66123 Saarbr�ucken, Germany,

1994.


