Figaro: Yet Another Constraint Programming Library

Martin Henz, Tobias Miiller, Ng Ka Boon
December 27, 1999

Abstract

Existing libraries and languages for finite domain constraint programming usu-
ally have depth-first search (with branch and bound) built-in as the only search
algorithm. FExceptions are the languages CLATRE and Oz, which support the pro-
gramming of different search algorithms through special purpose programming lan-
guage constructs. The goal of this work is to make abstractions for programming
search algorithms available in a language-independent setting.

Figaro is an experimentation platform being designed to study non-standard
search algorithms, different memory policies for search (trailing vs copying), con-
sistency algorithms, failure handling and support for modeling. This paper focuses
on the use and implementation of such abstractions for investigating programmable
search algorithms and memory policies in a C++4 constraint programming library.

1 Introduction

Languages and libraries for finite-domain constraint programming (CP(FD)) allow to
solve finite-domain problems through exhaustive constraint propagation, interleaved with
non-deterministic strengthening of a constraint store, leading to the exploration of a
search tree.

Languages for CP(FD) allow a semantic embedding of CP(FD)-specific features.
Prolog-based languages such as CHIP [DVS*88] semantically embed depth-first search
by inheriting Prolog’s resolution, and the languages crLATRE [CL96] and Oz [Smo95] se-
mantically embed more generic constructs that allow to program search algorithms other
than depth-first search. Libraries such as PECOS [Pug92] and Tlog Solver [TLO97] are
confined to general-purpose programming languages that do not provide such support.

We show in this work how to support programmable search algorithms in a C++
library by representing constraint stores as data objects. We call the C++ library Figaro,
since its implementation reuses parts of the Mozart system [Moz99]. The distinguishing
feature of Figaro from other libraries and systems is the relative addressing of propagators
and variables in stores, which allows a clean separation of tree search algorithms from
search heuristics and supports both copying-based and trailing based search.

We present the design of Figaro by introducing stores, variables and propagators in
Section 2, the notion of search trees in Section 3, and search algorithms in Section 4.
Section b shows how relative addressing allows to use copying-based search in addition
to trailing-based search. Finally, Section 6 describes related work and further directions.



2 Variables and Propagators

The constraint store in CP(FD) contains the current domain of each variable of the
constraint problem, i.e. the set of possible values it can take. For example, for the
usual model of the n-queens problem, we introduce variables x;,0 < 7 < n whose initial
domains {0,...,n — 1} represent all possible rows in which the queens of column 7 can
be positioned. Tn [HS99], search algorithms use a data structure (called “rooms” in that
paper) representing a store. Such a store data structure host variables and propagators
and support search. In an object-oriented setting, is natural to introduce a class store.
The class store is related to the built-in data type of spaces in Oz [Sch97] and the
class I1cManager of Tlog Solver [TLO97] (for a comparison, see Section 6). Variables are
introduced by requesting a new variable with initial domain from lo to hi from a store.

class store {

private:

public:
var newvar(int lo,int hi);
var getlo(var v);
var gethi(var v);

3

For the purpose of this discussion, let us assume that var is an abstract data type
whose values represent variables. In Section 5, we further discuss the var type.

Using the store abstraction, we can introduce variables for the n-queens problem as

follows. Here we employ vectors as provided by the Standard Template Library [SL95]
for C4++.

int main(int argc,char * argv[]) {

int n = atoi(argv[1]); // number of queens

store * s = new store(); // create new store

vector<var> vars(n); // declare variable vector

for (int i=0;i<n;i++) // create n variables;
vars[i]l=s—>newvar(0,n-1); //  one for each row

The no-attack constraints can be expressed using three constraints that constrain
all variables in a given vector to be pairwise distinct modulo a given offset. Thus
given a vector vars of n variables and a vector offset of n integers, the constraint
distinctOffset(vars, offset) expresses that for every ¢ and j, where 0 < 4,5 < n;i # j,
the constraint vars; + offset; # vars; + offset; holds. The implementation of the propa-
gator distinct_offset is taken from the C++4 constraint programming interface of the
Mozart system [MW97]. Reusing Mozart’s propagators significantly reduces the imple-
mentation effort for Figaro.



Program 1 Constraints for the N-Queens Problem

int main(int argc,char * argv[]) {

int n = atoi(argv[1]); // number of queens

store * s = new store(); // create new store

vector<var> vars(n); // declare variable vector

for (int i=0;i<n;i++) // create n variables;
vars[i]l=s—>newvar(0,n-1); // one for each row

vector<int> offset(n); // vector for offset

for (int i=0;i<n;i++) offset[i]=0; // horizontal no-attack

distinct_offset(s,vars,offset);

for (int i=0;i<n;i++) offset[il=i; // diagonal-up no-attack

distinct_offset(s,vars,offset);
for (int i=0;i<n;i++) offset[i]l=n-i; // diagonal-down no-attack
distinct_offset(s,vars,offset);

In Figaro, constraints are represented by classes which extend an abstract class
propagator. Propagators are created with a given store, variables and auxiliary val-
ues.

class distinct_offset : public propagator {
public:
distinct_offset(store * s, vector<var>, vector<int>);...}

Using the class distinct_offset, the b-queens problem can be expressed as in Pro-
gram 1.

The creation of propagators will immediately compute the fixpoint with respect to all
propagators in the store, according to the propagators’ consistency algorithms. In this
process, propagators may tell new domains for variables.

The member function tell of stores allows to narrow the domain dy of a given variable
such that it contains only values from the domain ds passed to tell. If the intersection
of di and ds is empty, a failure occurs.

store::tell(var v, int lo, int hi);

If the intersection of d; and ds is empty, a failure occurs. Such failures are crucial for
constraint programming, since they allow to prune the search tree. As a generic way to
indicate failure to search algorithms, failing tell operations raise the C4++ exception
Failure() (see discussion on C++ exceptions in Section 6).

3 Search Trees

Usually propagation alone does not suffice to solve constraint problems. Non-determini-
stic search is necessary, which explores a search tree in a top-down manner. From a node



to a child node, constraints are added. At each node, the fixpoint with respect to all
propagators is reached before the resulting constraint store is used to devise a suitable
constraint for a child node. In that manner, search trees are created dynamically, at
each point exploiting the current information in the constraint store. Search trees are
represented in Figaro using instances of an abstract class node.

class node {
public:
virtual node * child(store *, int)=0;

};

The member function child of node is given an integer i and returns its " child.
Often, search trees are constructed by fixing one variable v of a given set of variables to
a value z in the left child (i = 0) and excluding  from the domain of v in the right child
(i = 1). Such a tree is called enumeration tree. The class in Program 2 represents naive
enumeration, where the variables of a given vector are enumerated from left to right,
starting with the smallest values in their domains.

By recursively applying the child function to it results, we are able to explore an
enumeration tree. The tree subtree is returned when all variables are enumerated. It
can be used to place another search tree at the leaves of the enumeration tree, or to
collect solutions. For example, the class in Program 3 allows to display a solution to the
n-queens problem.

Program 2 Naive Variable Enumeration

class naive : public node {
private:
int idx; vector<var> vars; node * subtree;
public:
naive(vector<var> vs,int i,node * t) : vars(vs), idx(i), subtree(t) {}
node * child(store * s, int i) {

if (i==0) {
s->tell(vars[idx],s->getlo(vars[idx]),s->getlo(vars[idx]));
return
(idx+1==vars.size() ? subtree : new naive(vars,idx+1,subtree));
¥
else {

s->tell(vars[idx],s->getlo(vars[idx])+1,s->gethi(vars[idx]));
return new naive(vars,idx,subtree);

}

Note that such queens_printer nodes are leaves, because their child member func-
tion returns the NULL pointer. Thus, queens_printer nodes can be used as subtree of
enumeration trees.



Program 3 A Node Class for Printing Solutions

class queens_printer : public node {
public:
queens_printer(vector<var> vs) {
for (int j = 0; i < vs.size(); j++)
cout<<"col: "<<vs[i]<<"\nrow: '"<<s->getlo(vs[i])<<"\n"; }
node * child(store * s, int i) {return NULL;}
}

4 Programming Inference Algorithms

During the exploration of a search tree, failure may occur as a result of applying the
child function of a node. That means one of the decisions leading to the corresponding
node was the wrong one. Unfortunately, after that decision was taken the store has
changed through creating variables and propagators and telling domains. In order to
undo these changes and trying an alternative, we introduce the following operations on
stores.

mark store::mark();
void store::backtrack(mark m);

The function store: :mark returns a value that represents the current state of the store,
and the function backtrack undoes all changes done to the store since the given mark
was obtained. A search algorithm using store: :mark and store::backtrack is given
in Program 4.

Program 4 First-solution Depth-first Search

node * solve_one(store * s,node * t) {
if (t == NULL) return t;
int m = s->mark();
try {return solve_one(s,t->child(s,0));}
catch (Failure) {
s->backtrack(m);
return solve_one(s,t->child(s,1));
¥
¥

Using this search algorithm, we are finally able to solve the n-queens problem as
shown in Program 5.

Note that in the exposition above, we used several simplifications to clarify the de-
sign underlying Figaro. Both enumeration and search can be improved significantly by
introducing additional tests and member functions. For instance, the creation of node
objects can be avoided, when choosing the left child node of an enumeration node by
incrementing the idx member of the parent.



Program 5 Solving N-Queens with Figaro

int main(int argc,char * argv[]) {
int n = atoi(argv[1]);
store * s = new store();
vector<var> vars(n);

try {solve_one(s,new naive(vars,0,new queens_printer(vars)));
} catch (Failure) {printf("no solution\n");};
¥

5 Copying-Based Search and Relative Addressing

Note that in the previous section the same store is passed between solve_one and child.
Search is done entirely by trailing and backtracking, as in most constraint programming
systems. Schulte [Sch99] shows that copying-based search as employed by the Mozart
system, combined with recomputation of spaces, can compete with the performance of
trailing-based systems. To study the performance of memory policies, it appears to be
attractive to provide both copying and trailing in the same system. In order to support
copying-based search, we use a suitable C4++ copy constructor.

class store {
public:
store(const &store);

}

For combining copying and trailing-based search, we propose that in the copy, all marks
are removed and that no information is trailed in a store before the first mark is obtained.

Since we pass the store, on which a node operates, explicitly to the store, it is straight-
forward to use copying-based search in our setup. We illustrate this using example of
limited discrepancy search (LDS), a search algorithm proposed by Harvey and Gins-
berg [HG95]. LDS addresses the question how to avoid getting stuck in a small leftmost
subtree in the presence of a strong heuristic for building the search tree. Let us assume
that a script uses a heuristic which generates binary nodes whose left child are consid-
ered much more likely to lead to a solutions than the right child. Then the number of
discrepancies of a solution is the number of right children in the path from the root to
the solution. LDS prescribes to search for solutions with a small number of discrepancies
first.

The algorithm 1ds_one given in Program 6 searches for a solution according to LDS—
assuming that a solution exists—with increasing number of discrepancies, starting with
a given d, typically 0. The auxiliary function probe returns a solution within a given
number of discrepancies 4, if such a solution exists. Note that once the number of allowed
discrepancies has reached 0, there is no need to make copies any longer. Instead, probe
descends straight down towards a solution.



Program 6 A Copying-based Search Algorithm For Limited Discrepancy Search

node * probe(store * s,node * t,int d) {
if (t==NULL) return t;
if (d > 0) {
store * s1 = new store(s);
try {return probe(s,t->child(s,1),d-1);}
catch (Failure) {
return probe(si,t->child(s,0),d);}
} else return probe(s,t->child(s,0),0);
¥
void lds_one(store * s,node * t,int d) {
try {return probe(s,t,d);}
catch (Failure) {lds_one(s,t,d+1);}
¥

In copying-based search, tree descriptions will use var values that stem from calls
of newvar on a store and apply operations such as tell to copies of the store. Thus
variables must be invariant with respect to copying. We achieve this invariance by using
as var values the relative address of the variable in the store data structure. In stores, a
dynamic array keeps track of variables, variables are represented by their indices in this
array.

#define var int

The same technique, we use for propagators; trail entries and propagator lists for vari-
ables use relative addresses. Note that relative addressing makes copying particularly
easy, whereas absolute addressing as employed by the Mozart system and Tlog Solver
necessitates recursive traversal of data structures in stores.

6 Directions and Perspectives

The design presented here has been inspired by a proposal for an ML library [HS99], in
which data structures for representing constraint stores were called rooms. The design
presented here has been used to develop a modular architecture for programming search
algorithms [CHNOO]. In this architecture, aspects of search algorithms such as the mem-
ory policy, optimization, interactivity and search tree visualization can be programmed
independently. The goal to allow the programming of different search algorithms in a li-
brary for finite domain constraint programming has been apparently recognized recently
in the Tlog Solver library as briefly mentioned in [LP99].

Figaro is currently being implemented by reusing parts of the Mozart system. In par-
ticular Mozart’s sophisticated representation of domains and its propagation algorithms
such as serialization and cummulative constraints for scheduling applications are being
reused. We hope by this, we can reduce the development time of Figaro.



Representing Constraint Stores

Search in Oz [Smo95] is programmable through the abstraction of a space [Sch97]. The
store abstraction was inspired by spaces and shares with them the ability to manipulate
constraint stores together with their variables and propagators as data. However, spaces
are tightly integrated into the language Oz such that the space with respect to which
variables and propagators are introduced 1s kept implicit. In addition to variables and
propagators, spaces host threads. The programming of search engines in Oz amounts
to communicating and synchronizing with the threads of spaces. Due to the concurrent
setup, search in Oz is based on cloning of spaces, whereas our approach supports both
backtracking and copy-based search.

In Tlog Solver [ILO97], constraint stores are represented by instances of the C++
class I1cManager. The incremental building of the search tree is supported through data
structures, called goals, which are installed in manager objects. The separation of stores
from node objects for search in Figaro allows to cleanly separate distribution from tree
search algorithms and supports copying-based search well (see next section).

Memory Policy

Relative addressing of variables and propagators in stores in Figaro, which is not present
in Tlog Solver, is the the key feature that allows to use copying-based search in addition
to trailing.

Both copying-based and trailing-based search can be combined with recomputa-
tion [Sch99]. We hope that the flexibility to use both memory policies leads to in-
teresting, possibly adaptive, and more efficient combinations of the two memory policies
and recomputation.

Another memory management issue is the creation of nodes, which are in the pre-
sented simplified design not explicitly deallocated. We are currently experimenting with
search algorithms that explicitly deallocate nodes as well as with automatic memory
management systems for C++.

Consistency Algorithms

Different constraint programming languages and libraries use different consistency algo-
rithms, usually variants of AC3 and AC5. In practice, the trade-off between the two
seems to be to use more elaborate data structures and reduce pure computation time
(AC5) versus simpler data structure and redundant computations (AC3). This trade-off
becomes interesting in the light of a widening gap between computation speed and mem-
ory access speed in modern processors. We hope to carry out practical experiments on
consistency algorithms with Figaro.

Representation of Failure

As in the ML design [HS99], we treated failure by exceptions in this paper. Another
possibility would be to let stores assume a failure state, when an exception is encountered.
This design issue is not settled yet and depends on practical considerations such as the



efficiency of exception handling in C4++ compilers. Benchmarks will shed some light on
the efficiency of the two mechanisms for failure.

Modeling and Interfacing through Scripting Languages

Figaro is designed as a C++ library for constraint programming. Typically, the library
will be linked to applications that make use of constraint programming for problem solv-
ing. However, in some applications the need for a more formal and flexible formulation of
constraint problems arises. This need 1s addressed in symbolic programming languages
for constraint programming (Prolog-based, Oz, cLAIRE) and in modeling languages for
constraint programming such as OPL [Hen99]. To address this need, we provide a generic
interface to scripting languages such as Tcl and Perl. In addition to modeling, the use
of scripting languages aids the development of and experimentation with the library and
improves interoperability.

Acknowledgements

Gert Smolka collaborated on the development of the room concept and corresponding
abstractions in an ML setting, which provided a blueprint for stores in Figaro. Christian
Schulte helped us see the importance of indirect addressing and pointed out references.
The project benefited from a travel grant from the National University of Singapore
(project ReAlloc) and the hosting of the third author by the Programming Systems Lab,
Saarbrucken.

References

[CHNOO] Tee Yong Chew, Martin Henz, and Ka Boon Ng. A toolkit for constraint-
based inference engines. In Practical Aspects of Declarative Languages, Sec-
ond International Workshop, PADL’00, Lecture Notes in Computer Science.
Springer-Verlag, 2000. to appear.

[CL96] Yves Caseau and Francois Laburthe. CLAIRE: Combining objects and rules
for problem solving. In Proceedings of the JICSLP’96 workshop on multi-
paradigm logic programming. TU Berlin, 1996.

[DVS*88] M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, and T. Graf. The
constraint logic programming language CHIP. In Proceedings International
Conference on Fifth Generation Computer Systems, pages 693-702, Tokyo,
Japan, December 1988. Springer-Verlag.

[Hen99]  Pascal Van Hentenryck. The OPL Optimization Programming Language. The
MIT Press, Cambridge, MA, 1999.

[HG95]  William D. Harvey and Matthew L. Ginsberg. Limited discrepancy search.
In Chris S. Mellish, editor, Proceedings of the International Joint Conference



[F1S99]

[T.097]

[L.P99]

[Moz99]

[MW97]

[Pug9?]

[Sch97]

[Sch99]

[ST.95]

[Smo95]

on Artificial Intelligence, pages 607-615, Montréal, Québec, Canada, August
1995. Morgan Kaufmann Publishers, San Mateo, CA.

Martin  Henz and Gert Smolka. Design  of a finite domain
constraint  programming library for ML. draft  available at
http://www.comp.nus.edu.sg/ henz/drafts/room.ps, 1999.

ILOG Inc., Mountain View, CA 94043, USA, http://wuw.ilog.com. ILOG
Solver 4.0, Reference Manual, 1997.

Irvin J. Lustig and Jean-Frangois Puget. Program != program: Con-
straint programming and its relationship to mathematical programming.
white paper of Ilog Inc., Mountain View, CA 94043, USA, available at
http://wuw.ilog.com, 1999.

Mozart Consortium. The Mozart Programming System. Documentation and
system available from http://www.mozart-oz.org, Programming Systems
Lab, Saarbricken, Swedish Institute of Computer Science, Stockholm, and
Université catholique de Louvain, 1999.

Tobias Miuller and Jorg Wirtz. Extending a concurrent constraint language
by propagators. In Jan Maluszynski, editor, Logic Programming: Proceedings
of the 1997 International Symposium, pages 149-163, Long Island, NY, USA,
1997. The MIT Press.

Jean-Francois Puget. PECOS: A high level constraint programming language.
In Proceedings of the First Singapore International Conference on Intelligent

Systems (SPICIS), pages 137-142, Singapore, September/October 1992.

Christian Schulte.  Programming constraint inference engines. In Gert
Smolka, editor, Principles and Practice of Constraint Programming—CP97,
Proceedings of the Third International Conference, Lecture Notes in Com-
puter Science 1330, pages 519-533, Schloss Hagenberg, Linz, Austria, Octo-
ber/November 1997. Springer-Verlag, Berlin.

Christian Schulte. Comparing trailing and copying for constraint program-
ming. In Proceedings of the International Conference on Logic Programming,
1999. to appear.

Alexander Stepanov and Meng Lee. The Standard Template Library. Hewlett
Packard, 1995. STL has since been incorporated into the C+4++ standard,
ISO/TEC 14882-1998.

Gert Smolka. The Oz programming model. In Jan van Leeuwen, editor,
Computer Science Today, Lecture Notes in Computer Science 1000, pages

324-343. Springer-Verlag, Berlin, 1995.

10



