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Abstract. Stochastic Local Search (SLS) methods have proven to be
successful for solving propositional satisfiability problems (SAT). In this
paper, we show a hardware implementation of the greedy local search
proceduce GSAT. With the use of field programmable gate arrays (FP-
GAs), our implementation achieves one flip per clock cycle by exploiting
maximal parallelism and at the same time avoiding excessive hardware
cost. Experimental evaluation of our prototype design shows a speedup
of two orders of magnitude over optimized software implementations and
at least one order of magnitude over existing hardware schemes. As far
as we are aware, this is the fastest known implementation of GSAT. We
also introduce a high level algorithmic notation which is convenient for
describing the implementation of such algorithms in hardware, as well as
an appropriate performance measure for SLS implementations in hard-
ware.

1 Introduction

Local search has been used successfully for finding models for propositional sat-
isfiability problems given in conjunctive normal form (CNF), after seminal work
by Selman, Levesque, and Mitchell [SLM92] and Gu [Gu92]. A family of al-
gorithms has been studied extensively over the last 10 years, all of which are
instances of the algorithm scheme given in Program 1.

The algorithm repeatedly tries to turn an initial assignment of variables oc-
curring in the given set of clauses enf into a satisfying assignment by performing
flips, which inverts the truth value of a chosen variable. The instances of GenSAT
differ in their choice of INIT_ASSIGN and CHOOSE FLIP. Note that INIT_ASSIGN
and CHOOSE FLIP are place-holders for code in the sense of macros, which will
be explained later. In all instances of GenSAT, the concept of the score for a
variable plays a crucial role. The function score(i, cnf, V') returns the number
of clauses in enf that are satisfied by the assignment V' modified by inverting
the truth value of variable 7. For simplicity of discussion, we concentrate on the
most basic variant, GSAT [SLM92], where INIT_ASSIGN randomly assigns truth
values to the components of V' and CHOOSE_FLIP assigns to f a randomly chosen
variable ¢ that produces maximal score(i, enf,V’). Variants of this algorithm,
random walk [SKC94], history and tabu mechanisms [MSK97], are presented
systematically in [HS00].



Program 1 The GenSAT Algorithm Family

procedure GenSAT(cnf, maztries, mazflips)
output: satisfying assignment satisfying cnf
for i = 1 to maxtries do /* outer loop */
INIT_ASSIGN(V);
for j =1 to mazflips do /* inner loop */
if V satisfies c¢nf then return V
else
CHOOSE_FLIP(f);
V :=V with variable f flipped;
end end end end

The speed of GSAT is determined by the cost of checking and flipping a vari-
able. Its time complexity is O(maztries maxflips m n), where m is the number
of clauses and n is the number of variables. In this paper, our goal is to make
this flipping step as fast as possible. Given the simplicity of the GSAT algorithm
and that boolean formula can be directly represented as digital logic, the best
way of meeting this objective is an implementation of GSAT in hardware. The
advantage of hardware is of course speed and fine-grained parallelism which is
to be balanced against the difficulty and complexity of realization in hardware.
For maximum flexibility and ease of implementation, we use the Xilinx Virtex
family of Field Programmable Gate Arrays (FPGAs).

The potential of FPGAs for solving SAT was realized by Hamadi and Mer-
ceron [HM97] and Yung, Seung, Lee and Leong [YSLL99]. Hamadi and Mer-
ceron describe an implementation of GSAT on FPGAs where the inner loop is
done in hardware with n cycles per flip, hence the time complexity for GSAT
is O(maxtries mazflips n) since the clause checking and the computation of the
score is done within one cycle. However, the results in Hamadi and Merceron are
sketchy and appear to be estimates based on cycle time rather than results of ac-
tual implementation and measurement. Hamadi and Merceron claim a speedup
over software of two orders of magnitude, but the software timings which are
presented seem to be particularly slow and appear to be using an unoptimized
implementation of GSAT.! In the work by Yung et al., the implementation in
FPGAs is similar, but their results are slower than GSAT in pure software. We
shall show in Section 3, why this is not surprising.

After introducing a notation for parallel programs in Section 2 that allows
for asymptotic complexity analysis, we state and discuss existing hardware-based
GSAT implementations in Section 3, and suggest several improvements. Section 4
further optimizes the algorithm through aggressive parallelization. The details
for our GSAT implementation are given in Section 5. Section 6 reports the results
of an initial experimental evaluation of the described approach.

! Possibly one which does not take advantage of the O(1) implementation of flipping
given size assumptions on clause length and variable occurrences.



2 Notation

In order to analyse the parallel complexity of GSAT algorithms, we adapt the
notation used in [BM99], which in turn adopts central constructs of the parallel
functional language NESL [BHSZ95]. We adapt the work-depth model of [BM99]
so that we can asymptotically determine the two factors that determine the cost
of running a program on an FPGA. The number of gates needed for running the
program P is denoted by g(P), which reflects the total size of the FPGA. The
depth of a program P is the number of time units required to execute it, and is
denoted by d(P) which contributes both to the maximum gate delay within a
clock cycle as well as the total number of clock cycles required for execution.

The most basic construct is an assignment such as P : x := y + 2z, where
x, y and z are integers. As usual, we assume that integers are represented by a
constant number of bits, and thus a constant number of gates suffices to per-
form integer arithmetic and logical operations, and such operations require only
constant time. Thus, g(P) = O(1) and d(P) = O(1). Sequential composition
P; @ of programs P and @) has the obvious depth d(P; Q) = d(P) + d(Q). The
number of gates accumulates in a similar way g(P; Q) = g(P) + g(Q). Note that
in some cases the number of gates could be reduced by reusing P’s gates for Q.
For a sequential loop P : for i =1to n do @ end , we have g(P) = ¢(Q),
since the gates are reused by sequential runs, and d(P) = n - d(Q).

A central feature of the notation is support for sequences (one-dimensional
arrays of integers). For example, the assignment V' := [0,1,0,0, 1] assigns the
sequence of boolean values [0,1,0,0,1] to a variable V', which can represent an
assignment of boolean variables V7, ..., V5. Such sequences are accessed using the
usual array notation (V[3] returns 0). Assignment of a field in a sequence is done
by V[3] := 1, which updates V to [0,1,1,0,1]. A non-destructive substitution
expression of the form Vi + z] denotes a new sequence that is different by one
slot where index ¢ in the sequence has x substituted without affecting V', for
example V[3 - 1]. These sequences are implemented in hardware by arrays of
flip-flops. Thus, the depth of both sequence assignments and substitution is O(1)
and the number of gates needed is O(n), where n is the size of the sequence. Note
that the implementation of sequences requires that their size must be compile
time constant, which is the case for all programs given in this paper.

Since we are constructing a gate array to solve an individual SAT prob-
lem, we can encode a clause directly in circuitry. For example, if the third
clause of the SAT problem has the v — EVAL;
form vy V —w3 V v, we can assume a s
circuit EVAL3(V) that evaluates the |,
clause. The circuitry is depicted to
the right. Considering that the OR- Vs I
gates can be arranged into a bina-
ry tree structure, for clauses of size n, we have d(EVAL;(V)) = O(logn) and
g(EVAL;(V)) = O(n). Throughout the paper, log denotes the logarithm function
with the base of 2.




The most interesting feature of the notation is with the parallel processing
of sequences. This is done using a set like notation. The following expression P
evaluates all m clauses of a given SAT problem with n variables in parallel with
respect to a given assignment V', P : {EVAL;(V') : i € [1..m]}. The depth of such
a parallel construct is the maximal depth of its parallel components and the
number of gates is the sum of the numbers of all component gates. Thus, under
the assumptions above, we have g(P) = O(mn) and d(P) = O(logn). Usually
there are more variables than clauses in SAT problems, therefore we set n < m
for complexity analysis.

The sum of all integers in a given sequence of statically known length n can
be computed with the following divide-and-conquer SUM program. For simplicity,
we assume that n is a power of 2.

macro SUM(S,n):
if n =1 then S[0]
else SUM({A[24] + A[2i + 1] : i € [0.n/2 = 1]},n/2)

Note that we call SUM a macro. We refrain from using runtime functions or
procedures in this paper in order to avoid issues regarding parallel calls in the
FPGA implementation, which cannot in general map directly to gates. Such
macros can be recursive, as long as static macro expansion terminates. This is the
case for SUM, since the size n of the sequence S is statically known. Consequently,
the macro SUM creates a binary tree of adders. Thus for a given sequence S of
size n, we have g(SUM(S,n)) = O(n) and d(SUM(S,n)) = O(logn).

3 Naive GSAT in Hardware

Current Implementations of GSAT

In this section, we will review the implementation of GSAT given in Hamadi and
Merceron [HM97]. The work in Yung et al. [YSLL99], is essentially the same but
allows clauses with a fixed number of variables to be reconfigured on the FPGA
without the need for resynthesis. This is possible because the particular FPGA
used, Xilinx XC6216, documents the configuration file for reconfiguring the FP-
GA. This is not the case with most FPGAs where changing the design requires
re-synthesis of the FPGA. As we will be describing both parallel algorithms and
the associated hardware, we will in this paper interchangeably use the terms
design, implementation, circuit and algorithm where appropriate.

Here, we describe the algorithm sketched in [HM97] in more detail using
our notation. This allows for a complexity analysis and comparison. For reasons
which we will see later, we will refer to this algorithm as Naive GSAT. In Naive
GSAT, the inner loop from Figure 1 is implemented in hardware. Meanwhile,
the outer loop is implemented in software which is used to make the initial
assignment (INIT_ASSIGN) and for communication and control to and from the
FPGA. The design for CHOOSE_FLIP is given in Program 2.

In Program 2, the gate size is primarily bounded by the clause evaluation
EVAL, therefore, g(CHOOSE_FLIP) = O(nm). The rationale in the design for both



Program 2 CHOOSEFLIP of Naive GSAT

macro CHOOSE_FLIP(f):
maz := —1; f := RANDOM_VARIABLE(n);
for i =1to n do
score := SUM({EVAL; (V[i - =V[i]]) : j € [1...m]});
if (score > maz) V (score = maz A RANDOM_BIT()) then
mazx := score; f :=1

end
end

[HM97,YSLL99] is to make use of the data independence of all calls to EVAL
for checking the clauses. This observation and the use of SUM for counting the
satisfied clauses yields a depth of d(CHOOSE_FLIP) = nx (O(logm) + O(logn)) =
O(n logm). The overall depth of Naive GSAT is O(maztries mazflips n logm).

The experimental results from [YSLL99] show the hardware implementation
to be slower than the pure software implementtion of GSAT. A GSAT version 41
from Selman and Kautz, which we refer to as GSAT41, is an optimized software
implementation, which usually serves as a reference benchmark implementa-
tion, also in this paper. The results from [HM97] are unclear as they appear
to be estimates. The software results seem to stem from an unoptimized im-
plementation of GSAT rather than GSAT41, because the flip rate (flips/s) is
relatively low. It is however not surprising that neither hardware implementa-
tions in [HM97,YSLL99] are particularly fast, as both are based in the GSAT
algorithm as given in the paper [SLM92] as opposed to the implementation
GSAT41. Furthermore, they assume the bottleneck is in clause evaluation and
only parallelize that portion of the algorithm.

Optimized software implementations such as GSAT41 recognize that the ba-
sic algorithm of [SLM92] can be greatly improved in practice given two obser-
vations: (i) the maximum number of variables in a clause is typically bounded,
eg. 3-SAT; and (ii) the maximum number of clauses where a variable occurs in
is also bounded. While this does not improve the worst case time complexity
in general, it does mean a substantial improvement for many benchmarks and
examples occurring in practice, where either one or both of these observations
hold. As an example, for a uniform 3-SAT problem, the number of gates for the
optimized software becomes O(1).

This is the reason why we refer to the implementation from [HM97,YSLL99]
as Naive GSAT. A detailed description of GSAT41 together with a complexity
analysis is given in [Ho096]. We conclude that it is necessary to parallelize GSAT
more agressively in order to significantly improve over GSAT41 running on fast
CPUs.

Improving Naive GSAT

A problem of Naive GSAT is that the selection process for the selection of moves
is not fair. Sequential calls to the macro RANDOM BIT generate a bias towards
variables that appear earlier in the variable sequence V. Since RANDOMBIT only



Program 3 CHOOSE_FLIP for Naive GSAT with random selection

macro CHOOSE_FLIP(f):
maz := —1; f := RANDOM_VARIABLE(n);
MazV :={0:ke[l...n]}
for 1 :=1 to n do
score := SUM({EVAL; (V[i + =V [i]]) : j € [1...m]});
if score > maz then
max := score;
MazV :={0:k €[1...n]}[i « 1]
else if score = maz then
MazV := MazV]i + 1]
end
end
f := CHOOSE_ONE(Maz V')

produces a stream of 0/1s without knowledge of the underlying V, it is impossible
to make a fair variable selection. An improved version of Naive GSAT that
avoids this problem is given in Program 3, which also allows the implementation
of various variable choice strategies. This version uses a macro CHOOSE_ONE for
randomly choosing a value out of a given sequence. This macro is discussed in
detail in Section 5. The complexity of gates and depth is unchanged, considering
a depth d(CHOOSE_ONE) = O(log n) and number of gates g(CHOOSE_ONE) = O(n).

Parallelism can be increased by using the classical hardware technique of
pipelining. The block diagrams in [HM97] show a pipelined implementation, as
opposed to [YSLL99] which uses a sequential design. Pipelining can be applied to
parallelize operations that multiplies performance with only a minimal increase
in the circuit size. The use of pipelining is restricted by data dependencies be-
tween operations. In Programs 2 and 3, we can see that only the comparison
with maz is dependent on the results of the previous loop iteration. By making
use of an additional queue that ensures data consistency, these designs can be
pipelined. Note that while pipelining does not change the asymptotic depth, it
can reduce the depth by a constant factor s, where s is the number of stages in
the pipeline.

4 A Fully Parallel Design

The speed of the Naive GSAT implementation in the previous section is limited,
because only clause evaluation is parallelized and not the variable scoring, hence
the minimal depth of CHODSE FLIP after applying pipelining is still O(n).

In Program 2, there is no data dependency between the score computations
for the variables. Program 4 improves over Program 2 by exploiting this obvious
parallelization opportunity using parallel score computation.

The depth of Program 4 is O(log m), since the Scores computation is bounded
by O(log m+logn) and the CHOOSE MAX computation is bounded by O(logn) (see
Section 5), and we assumed n < m. While this design comes closer to our goal,



Program 4 Basic CHOOSE_FLIP Design with Parallelized Variable Scoring
macro CHOOSE_FLIP(f):

Scores := {SUM({EVAL; (V[i <~ =V[i]]) : s € [1...m]}) i € [1...n]};

f := CHOOSE_MAX(Scores);

its drawback lies in an increase of the circuit size by a factor of n to O(mn?).
With the exception of small problems, this design is not practical.

Selective Parallel Score Computation

To alleviate this problem, we turn to an alternative hardware design. The idea
is related to the software optimizations in GSAT41, but here the rationale is to
decrease the circuit size while keeping parallel score evaluation. The key obser-
vations are:

— The selection of the flip variable can be done on the basis of relative contri-
bution to the score of that variable when flipped.

— The number of clauses which will be affected by a change to one variable is
small and typically bounded.

The new optimized design is given in Program 5. As we need to refer to only
the affected clauses, we will use the notation EVALJC.(Z) to denote the j-th clause
from the set of clauses which contain variable i and can be thought of as a fixed
boolean function for a particular SAT problem. NCI[i] is a constant and denotes
the number of clauses containing variable 1.

The total number of EVALjC.(’) needed for Program 5 is bounded by the number
of instances of variable 7 for all clauses. We will denote the bound on the maximal
number of clauses per variable as MazClauses. In practice, most problems have
also a bound on the number of variables per clause, which we denote by MaxVars.
For example, for 3-SAT, MaxVars is 3. Thus, the number of gates for Program 5
is O(MazVars MazClauses n). The depth for Program 5 is O(log MazClauses +
log MaxVars), which for practical SAT problems is much smaller than O(log m).
We remark that one more advantage of this design is that the circuit for SUM is
smaller now, because the numbers to be added require fewer bits.

Multi-Try Pipelining

The last step taken for achieving one flip per clock cycle is to push pipelining to
its limits. With Program 5 the innermost loop of GSAT is now operating over

Program 5 Parallel CHOOSE_FLIP with relative scoring
macro CHOOSE_FLIP(f):
s1:  NewS := {SUM{EVALS) (Vi ¢~ = V[i]]):j € [1... NCI[i]}):i € [1... n]};

J
s1:  OldS := {SUM({EVALS (V) 1 j € [1... NCIi]}) i €[1... n]};
s2:  Diff .= {NewS[i] — OldS[i]:i € [1... n]};
$8:  MagDiff := OBTAIN_MAX(Diff);
s4:  MazVars := {Diff [i] = MazDiff :i € [1... n]};
sb:  f := CHOOSE_ONE(Maz Vars);




each flip. Unfortunately, it is not possible to pipeline the different flip iterations
of CHOOSE_FLIP, since each iteration is data dependent on the flip of the previous
iteration. Instead, we pipeline the outer loop of Program 1; we call this multi-
try pipelining. Since there is no dependency between different tries in GSAT,
essentially one can parallelize each try independently. Each pipeline stage deals
in parallel with the work for a different try. For simplicity, maztries should be a
multiple of the number of stages in the pipeline.

In practice, for the actual implementation it is feasible in one clock cycle
to accommodate the evaluation of every EVAL]C-(Z) and the computation of SUM.
Therefore, we only need to allocate each design block in Program 5 to a pipeline
of five stages. The five stages, list as sI to s5, can be found in Program 5 is
illustrated below.

Tries Timel Time2 Time3 Time4 Time5 Time6 Time7 Time8 ...

Tryl | sl 52 53 54 55 s1 52 53
Try2 s1 52 53 54 sd s1 52
Try3 s1 52 53 54 sd s1
Try4 s1 s2 53 84 59
Tryb sl 52 53 84

5 GSAT on FPGA Implementation

In this section, we describe further refinements of the design, which result in our
final implementation of GSAT on an FPGA. Specific implementation details are
discussed for each stage of the design.

In Program 5 stage sI, the relative contribution of a variable to the score
is computed twice; once for the current value of the variable and once for the
flipped value. The corresponding circuits for clause evaluation and summation
are essentially duplicated. In a sequential implementation one could reuse the
clause evaluation and summation. However given either the use of pipelining or
parallel evaluation of the two sequences, reuse of the circuits is prohibited by
resource dependency, and duplication of the circuits is necessary.

We therefore propose a refinement to the circuits ofr clause evaluation and
summation that reduces the overall circuit size. We first introduce some notation.
Instead of working with the original form of the clauses, we use a reduced form.
Let C(v") denote the a new set of clauses where variable v occurs positively in
the original clauses, and where in each clause, v itself has been deleted. Similarly,
C(v™) contains those clauses where variable v occurs negated, and where in each
clause, v has been deleted. These new clauses are smaller by one variable. We

+
use the term EVALS(U ) to denote the evaluation circuit for clause ¢ in the clause

set C(v"), and similarly EVALS(” ). The idea in the previous section was that it
was sufficient to consider the relative effect on the score on a per variable basis.
We use the term rscore(v) to denote the relative score for the clauses defined
on v with respect to the current assignment. We know that when v = 1, all the

clauses in C(vT), but not necessarily all clauses in C(v™), are satisfied, which



results in:

SUM({EVALS"Y ) i e [L...[C)}) + [C(wh)| ifv=1
SUM({EVAL

rscore(v) = Cloty . .
{ et Le@h) +lcwT)| ifv=0
To simplify the discussion and program, we define

Dyniv] = SUM({EVALSY ) si e [L...|C(o )]}

Dyn0[v] = SUM({EVALS ") - j e [1...|C(w)[]})

These refer to the evaluation of the reduced two new clauses where v occurs
positively and negatively only. Note that v itself is not used in the circuit. Fur-
thermore, we define the constant values

Static[v] = |C(vT)| —|C(v7)]

The relative change to the score when a variable v is flipped from 0 to 1 is the
difference in rscore for both values of v, which is:

Diff'[v] = Dyn1[v] — Dyn0[v] + Static[v]

Note that this is not the same as Diff[v] in Program 5 since the sign depends
on the direction in which v is flipped.

We illustrate the computation with the following example where n = 4 and
m = 8. A clause vy V v2 V —ws is written in the form (1 2 — 3). The current
assignment of the variables vy, v2,vs, v4 is the sequence [1,1,1,0].

All clauses||Clauses with variable
1+ 1~

T23) [(123) [(123) Static[1] = 2
(124) |[(124) |(-1-23) Dyni[l] =1
(-1-2-3) (134) Dyn0[1] = 4
(-1-23) |[(1-3-4)
(134) Simplified clauses flip 0 — 1 gives:
(23-4) || cat)y | c@r) Diffl]=1-44+2=-1
(1-3-4) |I(23) [(-2-3) flip 1 — 0 is —Diff'[1]
234) [[(24) |(23)

(3 4)

(-3 -4)

Program 6 shows the complete design on the FPGA with a five staged multi-
try pipeline, labelled s to s5. Each stage is executed in one cycle, thus we will
assume that the circuit for each stage can execute within the time constraints
of one cycle. RECEIVE_INITIAL_ASSIGNMENT() and SEND_ASSIGNMENT() perform
the data transfer from and to the software in that order. The SATISFIED(V)
macro (discussed later) exits the loop, when a satisfying assignment is found.
Both the Dyn0 and Dyn! are computed in parallel at stage s, and are used



Program 6 Final implementation

MAIN():
V := RECEIVE_INITIAL_ASSIGNMENT();
for i :=1 to mazflips do

s1 if SATISFIED(V) then BREAK ;
s1 Dyn0 := {SUM({EVALf(iJr) cjel..|eEnY) iel. .. nl};
s1 Dyni := {SUM({EVALS" ) j e [1...|cGT)IY i € [1...n]};
s2 Diff" := {Dyn1[i] — Dyn0[i] + Static[i] : i € [1...n]};
s3 MagzDiff := OBTAIN MAX(Diff');
s4 MazVars := {Diff'[i] = MazDiff :i € [1... n]};
55 v := CHOOSE_ONE(Maz Vars);
55 Viv] := =V);
end ;

)
SEND_ASSIGNMENT(V');

to compute Diff’ at stage s2. At stage s3, the OBTAIN_MAX macro retrieves the
maximum relative score difference for all variables stored in the sequence Diff’.
Upon knowing the value of the maximum change in the score, stage s4 finds and
selects all variables that correspond to the highest increase in score. In the last
stage s, we integrate both the CHOOSE_ONE and the actual flipping of the variable
into a single stage. The CHOOSE_ONE makes a fair selection of one variable from
a list of variables in MazVars. After we flip the variable, the flip counter 7 is
incremented and all stages are repeated.

The multi-tryp pipeline that parallelizes five tries corresponding to the five
pipeline stages is realized using an additional scheduling queue to switch between
multiple tries. Separate queues are added for the results of each stage in the
pipeline. Due to the constant overhead for pipelining, the resulting design has
an asymptotic performance of one-flip per clock cycle as mazflips increases.

Support Macros

The SATISFIED Macro. This macro represents the entire CNF formula. Due
to the optimization for the clause evaluation based on the relative scores of
variables, the information that all clauses are satisfied is lost, and thus this
macro is needed. The macro implements an conjunction of disjunctions, each
representing a clause. Thus we get d(SATISFIED) = O(logm log MaxVars)
and g(SATISFIED) = O(m MazVars).

The 0BTAIN_MAX Macro. This macro returns the maximum value from a se-
quence. We use comparators structured in a binary tree, similar to the SUM
macro in Section 2. The complexities are d(0BTAINMAX) = O(logn) and
g(OBTAINMAX) = O(n).

The CHOOSE_ONE Macro. This macro selects one variable at random from the
input set of variables. To make the variable selection fair, we implement a



shift-register-based pseudo random number generator where g(RANDOM) =
O(1) and d(RANDOM) = (O(1). While it is possible to use mod, to simplify
the circuit, we use instead a binary decision tree where a random bit selects
between the left and right branches. This gives d(CHOOSE_ONE) = O(logn)
and ¢g(CHOOSE_ONE) = O(n).

6 Experimental Evaluation

In the implementation for Program 6, we have used a C-like design language,
Handel-C [Pag96,APR*™96] which compiles the program to a gate level descrip-
tion. Handel-C was chosen, because it has a simple timing model which fits well
the analysis of gates and depth used here. Handel-C does not have the sequences
used here but has a parallel construct which can be used to implement the par-
allel evaluation of sequences. Individual statements execute in one clock cycle
and thus sequencing and loops fit the model here. Expressions and variables can
be declared on arbitrary bit sizes, which is consistent with the O(1) assumption-
s for operations on integers. Handel-C is convenient for rapid prototyping and
we observed a shorter development cycle than with traditional hardware design
languages such as VHDL or Verilog. While VHDL and Verilog give finer control
and possibly better performance, the Handel-C implementation used in the ex-
perimental evaluation is sufficient to demonstrate the efficiency and efficacy of
our GSAT designs.

The hardware used with Handel-C is their supplied prototyping board, RC-
1000PP. The RC-1000PP board includes an XCV1000 FPGA from Xilinx, and
allows a maximum clock rate of 33MHz when using the 4 Mbytes of on-board
RAM. The XCV1000 itself is capable of running at clock speeds of up to 300MHz
and includes 1Mbits of distributed RAM. The XCV1000 chip contains 6144 CLBs
(configurable logic blocks), which roughly amounts to 1M system gates. Each
CLB in the virtex series is divided into 2 slices, and thus the chip is capable of
programming 12,288 slices.

The preliminary experimental results reported in Table 1 compare the flip
rate per second between:

— the software implementation of GSAT41 by Selman and Kautz with the
hill-climbing option run on a Pentium II-400MHZ machine with 256MB of
memory (Software),

— the FPGA implementation of Program 2 with pipelining (Naive GSAT), and

— the FPGA implementation of Program 6 (Multi-Try).

Our implementations for both Naive and Multi-Try use software for the outer
loop and the FPGA for the entire inner loop. The measurements are the average
times from measuring the time used for the FPGA itself, and is subject to
some experimental timing variation. The theoretical flip rate for Multi-Try is
approximately equal to the clock rate since it achieves one flip per clock cycle.

The results in Table 1 shows the disadvantage of the naive implementation.
Its speed in flips per second (fps) is inversely proportional to the number of vari-
ables in the problem. As the number of variables increases, the fps of Multi-Try



Table 1 Speed Comparison of Different GSAT Implementations

SAT Problems Software Naive |Multi-Try|| Speed-Up Ratio

Name Var|Clause||(Selman 41)|{@20MHZ| @20MHZ||vs. SW|vs. Naive
(n)| (m) Kfps| Kfps) M fps

uf20-01 20 91 47.7 962.9 35 734 36
uf50-01 50/ 218 74.4 383.6 24 323 63
uf100-01 100 430 2.7 194.9 21.6 297 111
uf200-01 200| 860 70.8 98.6 20.7 292 210
aim-50-1_6-yes1-1 50 80 129.8 383.4 23.9 184 62
aim-50-2_0-yes1-1 50 100 111.1 383.4 24 216 63
aim-50-3_4-yes1-1 50/ 170 75.4 383.7 24 318 63
aim-50-6_0-yes1-1 50/ 300 40.5 383.5 23.9 590 62
aim-100-1_6-yes1-1 {100 160 140.1 194.9 21.7 155 111
aim-100-2_0-yes1-1 |100 200 111.0 194.9 21.7 195 111
aim-100-3_4-yes1-1 |100 340 71.8 194.9 21.6 301 111
aim-100-6_0-yes1-1 |100 600 39.6 194.9 21.6 545 111
aim-200-1_6-yes1-1 {200 320 121.4 98.6 20.7 171 210
aim-200-2_0-yes1-1 200 400 98.5 98.6 20.7 210 210
aim-200-3_4-yesl-1 200 680 67.5 98.6 20.7 307 210
aim-200-6_0-yes1-1 {200| 1200 38.9 98.6 20.7 532 210
flat30-1 90 300 94.4 216.0 21.9 232 101
flat50-1 150| 545 92.7 130.9 21 227 160
rti k3 .n100-m429_0 |100| 429 72.5 195.0 19.8 273 102
bms_k3_n100-m429_0|100 429 117.3 195.0 21.6 184 111

only decreases by a small amount. We see that due to the subsumption of the
cost of SUM within a clock cycle the flip rate is not affected by the number of
clauses. The speed-up for Multi-Try versus Naive is at least one order of magni-
tude and increases with the problem size. When compared with the optimized
software implementation, Multi-Try exhibits a speed-up of two orders of magni-
tude. Note that the software is running on a machine with a clock rate, which
is one order of magnitude faster.

Due to the absense of date dependencies, the parallelism to be extracted from
the outer loop is unlimited. Such algorithms are often called “embarassingly
parallel”. The cost of exploiting this parallelism lies in the hardware needed. A
performance measure for computing devices that takes this hardware cost into
account is called computational density [DeH96] and measures bit operations
per second per micron square. We propose to apply this cost measure to SLS
algorithms running on FPGAs. We define flip density to be the number of flips
per second per slice of the FPGA. For a given FPGA architecture (here the
Xilinx Virtex family), the flip density adequately measures the peroformance of
a GSAT implementation.

In Table 2, the size of the circuits for both designs are listed in terms of slices.
The minimal gate delay—as reported by the Xilinx synthesis tools—for these
examples lies between 13 and 22 nanoseconds, but does not vary significantly
between the two implementations. By cross referencing the fps from the first



Table 2 Performance Comparison of FPGA-based Implementations

Problem Naive Multi-Try
Delay| Size|Flip Density|/Delay| Size|Flip Density|/Impv.
(ns)|(slice)| (fps/slice)|| (ns)|(slice)| (fps/slice)

uf20-01 11} 511 1884 14| 1483 23601 13
uf50-01 16| 1006 381 14| 3149 7621 20
uf100-01 24| 1825 107 25| 5882 3672 34
uf200-01 21| 3481 28 27|11848 1747 62
aim-50-1_6-yes1-1 12| 650 590 14| 1816 13161 22
aim-50-2_0-yes1-1 14| 705 544 16| 1772 13544 25
aim-50-3_4-yesl1-1 15| 889 432 12| 2462 9748 23
aim-50-6_0-yes1-1 15| 1219 315 15| 3530 6771 21
aim-100-1_6-yes1-1 18| 1136 172 16| 3402 6379 37
aim-100-2_0-yes1-1 17| 1242 157 19| 3191 6800 43
aim-100-3_4-yes1-1 17| 1559 125 16| 4714 4582 37
aim-100-6_0-yes1-1 19| 2271 86 22| 6635 3255 38
aim-200-1_6-yesl-1 22| 2100 47 14| 6442 3213 68
aim-200-2_0-yes1-1 17| 2304 43 20| 6304 3284 76
aim-200-3_4-yes1-1 23| 3019 33 21| 9103 2274 69
aim-200-6_0-yes1-1 26| 4328 23 30(12286 1685 73
flat30-1 18| 1440 150 15| 3546 6176 41
flat50-1 20| 2409 54 20| 6042 3476 64
rti_k3-n100-m429_0 19| 1824 107 21| 5874 3371 32
bms_k3.n100-m429_0 16| 1463 133 20| 4955 4359 33

table, a result in terms of flip density is shown. The last column compares the
two algorithms with respect to flip density, and shows an improvement of factors
between 13 and 76. The improvement factor increases with the problem size.

We remark that the results are preliminary as we are using a beta version
of the Handel-C version 3 software. There are limitations in the beta version
for compiling larger designs. We are also limited by the maximum clock speed
of the RC-1000-PP board due to the interaction between external RAM and
the simple Handel-C timing model, even though the XCV1000 FPGA is itself
capable of being clocked at higher speeds. This does not diminish our results as
it is possible to implement our design and algorithms in VHDL or Verilog, which
would incur a slower development cycle.

7 Conclusion

We have shown that previous work on implementing the GSAT family of algo-
rithms using FPGAs leave considerable room for improvement. From an imple-
mentation of the algorithms described by Hamadi and Merceron [HM97] and
Yung et al [YSLL99], we proceeded in three stages:

— We achieved a uniform random selection of candidate flips by storing the can-
didate flips in a vector and employing a binary decision tree (CHOOSE.ONE).



— We parallelized the score computation and still avoided excessive use of gates.
— We exploited the absense of data dependencies by using multi-try pipelining.

The resulting algorithm achieves an improvement of the depth by at least a fac-
tor of n, where n is the number of variables. It implementation on an FPGA
achieves one flip per clock cycle. Preliminary experimental evaluation shows that
formula of realistic size can be solved using the presented algorithm with curren-
t FPGA technology running at reasonably high clock speed. The improvement,
over an optimized sequential implementation is more than two orders of magni-
tude. We analysed the combined effect of increased flip rate and increased space
consumption using the cost measure of flip density, which showed an improve-
ment, of more than one order of magnitude compared to existing FPGA-based
implementations.
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