
SICP JS: Ketchup on Caviar?
Martin Henz

National University of Singapore
henz@comp.nus.edu.sg

Tobias Wrigstad
Uppsala University

tobias.wrigstad@it.uu.se

With its minimalism, the language Scheme is well suited, if
not designed, for teaching the structure and interpretation
of computer programs (SICP) to freshmen computer science
students, and Harold Abelson and Gerald Jay Sussman made
use of the language in their eponymous book, whose second
edition was published in 1996. The presenters applied the
same minimalism to JavaScript, by identifying four sublan-
guages just expressive enough for the �rst four chapters of
SICP, and named the languages Source §1, 2, 3 and 4. (There
turned out to be no need for a sublanguage for chapter 5
of SICP.) Due to changes introduced to JavaScript with EC-
MAScript 2015, the Source languages are similar enough to
Scheme for a relatively close adaptation of SICP to JavaScript.
The resulting book by Abelson and Sussman as original au-
thors, and by the presenters as adapters, is available online,
including a side-by-side comparison.

We encountered the following issues during the adapta-
tion due to the di�erences between the Source languages
and Scheme, and brie�y sketch here how they are resolved
in SICP JS.

The distinction between statements and expressions, and
the use of return is probably the most signi�cant change
from SICP to SICP JS. A notable consequence is the need to
wrap return values in data structures in 4.1.1 and 4.1.3 in
order to distinguish x => { return x; } from x => { x; }
the latter of which returns unde�ned in JavaScript. We faith-
fully implement JavaScript’s return statements in chapters
4 and 5, such that control can return to the caller from any-
where in the function body. This leads to several signi�cant
changes in these chapters, compared to the original. As a
bene�t, SICP JS helps readers understand statement-oriented
languages such as Java and Python better.

Both Scheme and JavaScript (in strict mode, introduced
in ECMAScript 5) employ lexical scoping. The Source lan-
guages only use JavaScript’s const and let (introduced in
ECMAScript 2015) and avoid JavaScript’s var. The treatment
of the scope of variables in chapter 4 and 5 becomes more
uniform in SICP JS compared to SICP, as a result of consis-
tently applying a treatment of const and let akin to Scheme’s
derived expression letrec.

The absence of Scheme’s homoiconicity might at the sur-
face be considered a major obstacle to adapting SICP to lan-
guages with a conventional syntax. However, SICP already
hides the concrete syntax of programs behind an abstraction
layer, which greatly simpli�es the JavaScript adaptation. The
introduction of an explicit parser su�ces for adapting chap-
ter 4 (including section 4.4 on logic programming), and the

controller instructions in chapter 5 of SICP JS enjoy a syntax
similar to SICP, through the use of constructors, which �t
naturally into section 5.2.3. On the negative side, the lack of
macros and our restriction to a JavaScript-compatible parser
required signi�cant changes to and occasionally replacement
of exercises in chapter 4.

The audience is welcome to inspect SICP JS by visiting
h�ps://source-academy.github.io/sicp. A comparison edition
lets the reader inspect the changes and compare them line-
by-line with the original. The presentation will leave ample
time for discussion.

The presentation will also cover the Source Academy, an
online learning environment for programming, developed
by and for students at the National University of Singapore,
which implements the four Source languages along with
several variants and extensions introduced in SICP.

Keynote - SICP JS: Ketchup on Caviar?

Scheme and Functional Programming Workshop 2020 1


