
An Overview of Finite Domain Constraint Programming

Martin Henz Tobias M�uller

S
hool of Computing Programming Systems Lab

National University of Singapore Universit�at des Saarlandes

henz�
omp.nus.edu.sg tmueller�ps.uni-sb.de

Abstra
t

In re
ent years, the repertoire of available te
hniques for solving 
ombinatorial problems has

seen a signi�
ant addition: �nite domain 
onstraint programming. This te
hnique is best seen as

a framework for 
ombining software 
omponents to a
hieve problem-spe
i�
 tree sear
h solvers. Its

strength depends on the synergy that 
an be a
hieved between these 
omponents. In this paper,

we give an overview of 
onstraint programming for solving 
ombinatorial problems. We fo
us on

pra
ti
al aspe
ts and highlight 
onne
tions to Operations Resear
h te
hniques and their appli
ations.

Keywords: Constraint programming, 
ombinatorial sear
h, tree sear
h.

1 Introdu
tion

Constraint programming is a heterogenous �eld of resear
h, ranging from theoreti
al topi
s in math-

emati
al logi
 to pra
ti
al appli
ations su
h as job-shop s
heduling. Constraints under 
onsideration


an be of symboli
 nature su
h as tree 
onstraints used in natural language pro
essing, or of numeri
al

nature, operating on real or integer variables. In this overview, we fo
us on a bran
h of 
onstraint

programming that has re
ently been applied to 
ombinatorial sear
h and optimization problems, namely

�nite domain 
onstraint programming (CP(FD)). CP(FD) developed in the 1980s out of 
onstraint logi


programming [JM94℄, an extension of the logi
 programming paradigm. Sin
e then, two developments

turned CP(FD) into a solving te
hnique that 
an 
ompete in some appli
ation areas with more estab-

lished Operational Resear
h te
hniques for 
ombinatorial sear
h. Firstly, te
hniques and algorithms from

Operational Resear
h su
h as appli
ation-spe
i�
 �ltering algorithms and bran
h-and-bound sear
h and

from Arti�
ial Intelligen
e, su
h as 
onsisten
y algorithms [Ma
77℄ and limited dis
repan
y sear
h [HG95℄

were integrated in the 
onstraint programming framework. Se
ondly, high quality software systems be-


ame available that support the development of 
onstraint-based solutions to 
ombinatorial problems.

Initially, these systems were extensions of programming systems for Prolog; a 
urrent example is the

CHIP system [DVS

+

88℄. The C++ library Ilog Solver [ILO97℄ demonstrated that the solving paradigm

of 
onstraint programming is programming language independent. The aim of the 
onstraint program-

ming languages Oz [Smo95, Moz99℄ and Claire [CL96b℄ and the modeling language OPL [Hen99℄ was

to 
ombine an expressive symboli
 language for problem modeling with extensive support for problem

solving.

This paper guides the reader through the pro
ess of solving 
ombinatorial problems using 
onstraint

programming. Se
tion 2 gives an overview of the paradigm, explaining CP(FD) as a framework, in

whi
h propagation, bran
hing and exploration algorithms 
ooperate for problem solving. Se
tions 3,

Se
tion 4 and Se
tion 5 des
ribe propagation, bran
hing and exploration algorithms in detail. This



paper is intended as an overview of CP(FD). Stu
key and Marriott [MS98℄ give a thorough treatment

of 
onstraint programming in general, Van Hentenry
k [Hen99℄ des
ribes problem modeling and solving

using CP(FD) and Walla
e [Wal96℄ presents an overview of appli
ations of 
onstraint programming.

2 Problem Solving with Finite Domain Constraint

Programming

We fo
us on dis
rete sear
h and optimization problems. Thus, de
ision variables in the 
onsidered

problem models represent integers. A 
onstraint store stores information on su
h variables in the form

of the set of possible values that the variable 
an take; this set is 
alled the 
urrent domain of the variable.

More formally, the 
onstraint store is a 
onjun
tion of 
onstraints of the form x 2 S, where S is a set of

integers. These 
onstraints are 
alled basi
 
onstraints. Computation starts with an initial domain for

ea
h variable as given in the model. Some 
onstraints 
an be dire
tly entered in the 
onstraint store by

strengthening the basi
 
onstraint on a variable. For example, the 
onstraint x 6= 5 
an be expressed in

the 
onstraint store by removing 5 from the domain of x.

Other more 
omplex 
onstraints are represented by 
omputational agents 
alled propagators. Ea
h

propagator observes the variables given by the 
orresponding 
onstraint in the problem. Whenever

possible, it strengthens the 
onstraint store with respe
t to these variables by ex
luding values from

their domain a

ording to the 
orresponding 
onstraint. For example, a propagator for the 
onstraint

x � y observes the upper and lower bounds of the domains of x and y. A possible strengthening 
onsists

of removing all values from the domain of x that are greater than the upper bound of the domain of y.

The pro
ess of propagation 
ontinues until no propagator 
an further strengthen the 
onstraint store.

The 
onstraint store is said to be stable. At this point, many problem variables typi
ally have still non-

singleton domains. Thus the 
onstraint store does not represent a solution yet, and sear
h be
omes

ne
essary.

Sear
h for solutions is implemented by 
hoi
e points. A 
hoi
e point generates a bran
hing 
onstraint


. From the 
urrent stable 
onstraint store 
s, two new 
onstraint stores are 
reated by adding 
 and :
,

respe
tively, to 
s. Typi
ally, the new 
onstraint stores are not stable, in other words 
 and :
 trigger

some propagators in the respe
tive new store. After stability is rea
hed again, this bran
hing pro
ess is


ontinued re
ursively on both sides until the resulting store is either in
onsistent or represents a solution

to the problem.

Finite domain 
onstraint programming is best seen as a software framework for 
ombining software


omponents to a
hieve problem-spe
i�
 tree sear
h solvers. These software 
omponents 
an be organized

into three families.

Propagation algorithms implement individual 
onstraints by des
ribing how the 
onstraints 
an be

employed to strengthen the 
onstraint store.

Bran
hing algorithms sele
t bran
hing 
onstraints at ea
h node of the sear
h tree after all propaga-

tion has been done. Bran
hing algorithms de�ne the size and shape of the sear
h tree.

Exploration algorithms des
ribe whi
h part of a given sear
h tree is explored and in whi
h order.

The task of CP(FD) programming systems is to provide two servi
es. The �rst servi
e is an environ-

ment in whi
h these algorithms 
an intera
t. For example, after bran
hing, the propagation algorithms


orresponding to the 
onstraints have to be revisited in order to a
hieve a stable 
onstraint store. The

ne
essary book-keeping is handled by the programming system. The se
ond servi
e is to provide libraries

of 
ommonly used instan
es of the algorithms. All pra
ti
al systems for CP(FD) provides extensive li-

braries of propagation, bran
hing and (more re
ently) exploration algorithms.



In this tutorial, we 
on
entrate on CP(FD). For 
ompleteness, we mention two other 
onstraint

systems that are relevant for many appli
ations; real intervals [BO97℄ and �nite set [Ger97, MM97℄


onstraints. Real interval 
onstraints approximate a real number by an interval [a; b℄ and provide the

usual arithmeti
 propagators.

A set 
onstraint S over sets of integers approximates a set value whi
h is a �nite set of integers s.

It approximates a set value by a lower bound s

l

(s

l

� S) and upper bound s

u

(S � s

u

). Models based

on set 
onstraints often have signi�
ant advantages over CP(FD) models. The 
onstraint programming

systems Ilog Solver (and thus OPL) and Mozart provide real intervals and set 
onstraints in addition to

�nite domain 
onstraints.

3 Propagation Algorithms

The 
onstraint store stores information on variables as basi
 
onstraints of the form x 2 S. More 
omplex

non-basi
 
onstraints, as for example x+y = z, are represented by propagators, over a set of problem vari-

ables 
alled propagator parameters. A propagator observes its

propagator � � � propagator


onstraint store

parameters and as soon as a value is removed from one of

their domains, it tries to remove further values from the

domains of its parameters. The algorithm employed in this

pro
ess is 
alled propagation algorithm. By removing values

it may trigger other propagators whi
h in turn may remove value from basi
 
onstraints. Eventually, no

further values 
an be removed and propagation stops at a �x-point. Sin
e 
onstraint propagation always

removes values from �nite domains, the pro
ess is guaranteed to terminate.

One run of a propagation algorithm 
an have three di�erent out
omes:

� It may just remove values from its parameter's domains.

� The propagator may dete
t that it may never be able to remove any values from any domains in

the future, no matter how the parameter domains shrink. In this 
ase, we say the propagator is

entailed by the 
onstraint store and the propagator 
an be removed.

� The propagator may �nd out that it is in
onsistent with the 
onstraint store. It terminates and

signals failure to the exploration algorithm.

Amount of propagation vs. 
omputational e�ort. The e�ort taken by the propagation algorithm

in 
ombination with the bran
hing and exploration algorithms is essential for the e�e
tiveness and

eÆ
ien
y of the 
onstraint solver. Consider the 
onstraint 2x = y with domains x 2 f1; : : : ; 5g and

y 2 f0; : : : ; 8g. An often suÆ
ient propagation te
hnique is to inspe
t the bounds of the domains.

That would narrow the bounds to x 2 f1; : : : ; 4g and y 2 f2; : : : ; 8g. A di�erent propagation algorithm


onsiders all values in ea
h domain and removes them, if there is no 
onsistent assignment of the other

variables. This te
hnique is 
alled ar
-
onsistent propagation ar
-
onsistent propagation [Ma
77℄ and

would result in x 2 f1; : : : ; 4g and y 2 f2; 4; 6; 8g.

We use the \send+more=money"-problem to illustrate the trade-o� between the degree of propaga-

tion and eÆ
ien
y. In this puzzle, di�erent digits need to be assigned to ea
h o

urring letter su
h that

the \equation" holds. The following 
onstraints must be satis�ed:



(a) (b) (
)

Figure 1: \send+more=money"-sear
h trees for various degrees of propagation. Squares are failure

nodes, diamonds solutions and triangles subtrees with no solution.

e; n; d; o; r; y 2 f0; : : : ; 9g (1)

s;m 2 f1; : : : ; 9g (2)

alldi� (s; e; n; d;m; o; r; y) (3)

1000� s + 100� e + 10� n + d

+ 1000�m + 100� o + 10� r + e

= 10000�m + 1000� o + 100� n + 10� e + y (4)

The 
onstraints (1) and (2) initialize the problem variables with appropriate domains. Note that

leading zeros are ex
luded. The symboli
 
onstraint alldi� (3) enfor
es all problem variables to have

pairwise distin
t values. The 
ore 
onstraint of this puzzle is 
onstraint (4) imposing the equation

send+more = money. We sear
h for the �rst solution.

Figure 1(a) shows the sear
h tree where the propagation algorithm is just 
he
king in
onsisten
y but

not performing �ltering. The resulting sear
h is thus generate-and-test sear
h. Using a simple bran
hing

algorithms, the resulting sear
h tree has 2488 
hoi
e nodes and 22325 failure nodes. At the other extreme,

the tree in Figure 1(
) 
onsists just of the solution node, be
ause here, both propagation algorithms of


onstraint (4) and alldi� -
onstraint (3) implement ar
-
onsisten
y. An eÆ
ient algorithm to a
hieve

ar
-
onsisten
y for the alldi� -
onstraint is given by [R�eg94℄. The 
omputational e�ort of ar
-
onsistent

propagation is mu
h higher than for 
onsisten
y 
he
king but avoids sear
h entirely. Overall, the solution

is found signi�
antly faster with ar
-
onsistent propagation. The most eÆ
ient sear
h te
hnique for this

example, however, employs less powerful propagation algorithms. Here, propagation for 
onstraint (4)

reasons over the bounds of the domains and propagation for the alldi� 
onstraint (3) removes a value

v from the other domains as soon as a parameters domain has be
ome fvg. The resulting solver, whose

sear
h tree is depi
ted in Figure 1(b), is faster than the other two and strikes the right balan
e between

the 
omputational e�ort of the propagation algorithms and the 
ost for traversing the sear
h tree.

Complex symboli
 
onstraints are often 
ru
ial for solving diÆ
ult problems. If su
h 
onstraints

have many parameters, they are often 
alled global 
onstraints. Resour
e 
onstraints in s
heduling are

typi
ally modeled using global 
onstraints. For solving hard s
heduling problems, a te
hnique 
alled

edge-�nding [AC91℄ is used, whi
h has been integrated in the 
onstraint programming framework in

several variants [CL94a, CL96a, CL97, CL94b, BPN95, W�ur96℄. The basi
 idea of edge �nding is to


he
k whether a 
ertain task t is to be pla
ed before or after a set of other tasks T . In 
ase this 
an

be determined, the domains of the variable denoting the starting time of t 
an usually be signi�
antly

redu
ed. Constraint programming systems su
h as CHIP, Ilog Solver/OPL, Claire and Mozart provide



libraries with several variants of these global 
onstraints.

4 Bran
hing Algorithms

Constraint propagation usually does not suÆ
e to solve a 
ombinatorial problem. We need to a
tively

try out di�erent alternative possibilities through 
hoi
e points that generate bran
hing 
onstraints 
.

The 
hoi
es of the 
onstraints 
 at ea
h node determines the size and shape of the tree and thus are


ru
ial for the performan
e of the solver. Algorithms that generate bran
hing 
onstraints are 
alled

bran
hing algorithms.

A popular 
lass of bran
hing algorithms that works well for small problems is variable enumeration.

Here 
 always has the form x = n for some integer n from the 
urrent domain of x. In variable

enumeration, the degrees of freedom are the 
hoi
e of variables x to enumerate (variable sele
tion) and

the 
hoi
e of values n to try (value sele
tion). The most naive variable sele
tion is to assume a given �xed

ordering and take the �rst variable in that ordering, whi
h has a non-singleton domain. Other strategies

su
h as taking the variable with the smallest domain (�rst-fail) or the variable that is parameter of the

highest number of 
onstraints often work better.

Apart from enumeration, another generally useful strategy is to su

essively split the domains of

variables. That means for a sele
ted variable x with 
urrently lowest domain element x

l

and highest

domain element x

h

, the bran
hing 
onstraint 
 has the form x < x

l

+ (x

h

� x

l

)=2.

Job-shop s
heduling problems are solved using a 
lass of bran
hing algorithms 
alled serialization

algorithms. Tasks t in the s
heduling problem are represented by their duration d

t

and �nite domain

variables x

t

denoting their starting time. Serialization algorithms pi
k su

essively 
riti
al resour
es

a

ording to various 
riteria, pi
k two 
riti
al tasks t

1

and t

2

that use the resour
e and generate bran
hing


onstraints of the form x

t

1

+ d

t

1

� x

t

2

. Serialization te
hniques were originally developed in Operations

Resear
h [CP89℄, and deployed and extended in the 
ontext of 
onstraint programming [BPN95, CL94b,

CL94a℄. Today, a variety of su
h serialization algorithms are available in s
heduling libraries of CP(FD)

systems.

5 Exploration Algorithms

In the previous se
tion, we saw that bran
hing algorithms determine the sear
h tree. It is the job of

sear
h algorithms to determine, whi
h part of the sear
h tree is explored and in whi
h order. Exploration

algorithms determine the following properties of the solver.

The exploration order determines the order in whi
h the nodes are explored.

The intera
tivity determines the mode of intera
tion with other algorithms or the user. An explo-

ration algorithm may return all solutions, 
ompute solutions one-by-one, explore nodes one-by-one,

et
.

The pruning behavior of an exploration algorithm may add additional 
onstraints as exploration

pro
eeds.

CP(FD) inherited the most basi
 exploration strategy, depth-�rst sear
h, from Prolog. The obser-

vation that depth-�rst sear
h often does not work well together with good bran
hing algorithms led to

the development of limited dis
repan
y sear
h [HG95℄, where the nodes of the sear
h tree are visited in

an order of in
reasing deviations (dis
repan
ies) from the bran
hing strategy.



The most 
ommon implementation te
hnique for exploration algorithms is trailing-based ba
ktra
k-

ing, also inherited from Prolog. This te
hnique works well for sequential depth-�rst sear
h and is em-

ployed by CHIP, Ilog Solver/OPL and Claire. S
hulte [S
h99℄ showed that 
opying of 
onstraint stores

together with re
omputation, whi
h is employed by Mozart [Moz99℄ and has advantages for exploration

algorithms other than sequential depth-�rst sear
h, 
an be 
ompetitive with ba
ktra
king.

In order to a
hieve 
ombinatorial optimization as in s
heduling, exploration algorithms 
an be ex-

tended by a pruning behavior. Whenever a solution is en
ountered, the exploration algorithm generates

an additional 
onstraint that expresses that further solutions should be better with respe
t to optimiza-

tion 
riteria than the solution found. This te
hnique is 
alled 
onstraint-based bran
h-and-bound and


an be seen as a generalization of bran
h-and-bound used in integer optimization. Bran
h-and-bound

ensures that solutions are found in in
reasing quality. If the 
onstraints that en
ode the quality of the

solution are strong and if solutions of high quality are found early in the sear
h, the tree 
an be pruned

signi�
antly. In job-shop s
heduling, the model in
ludes a variable f representing the overall duration

of the s
hedule. After �nding a solution with overall duration d, the additional 
onstraint f < d is

introdu
ed, whi
h often|via intera
tion with propagation algorithms|leads to pruning of the sear
h

tree.

Another variant of the exploration algorithms is exempli�ed by the Oz Explorer [S
h97℄, whi
h|in

addition to depth-�rst sear
h (with bran
h-and-bound)|visualizes the resulting sear
h tree and allows

intera
tive exploration, whi
h is useful during the development and performan
e-tuning of 
onstraint

programs.

6 Modeling Te
hniques

This se
tion presents te
hniques to model over-
onstraint problems and to improve sear
h by improving

the 
onstraint model.

Handling over-
onstrained problems. Some problems 
ontain 
on
i
ting 
onstraints, and the task

is �nd to �nd a solution that meets a maximal number of 
onstraints. The 
on
ept of rei�ed 
onstraints

allows handling of over-
onstrained problems by \soften" these 
onstraints. The idea is to 
onne
t a


onstraint 
 with 0=1-variable B, i.e., 
(x

1

; : : : ; x

n

) $ b and to re
e
t its validity into b. As long as

b 2 f0; 1g the 
onstraint does not remove any value from the domains of its parameters x

1

; : : : ; x

n

. In 
ase

the 
 is entailed by the 
onstraint store, b = 1. The 0=1-variable be
omes 0 if the 
 is in
onsistent with

the store. On the other hand, if b is 
onstrained to 1 (0) then 
 (=neg
) is added to the 
omputation spa
e

and removes values from the domains of its parameters. Usually the 0=1-variables of an over-
onstraint

problem 
ontribute a obje
tive fun
tion whi
h is then minimized or maximize using bran
h-and-bound

sear
h (see Se
tion 5).

Ex
luding symmetries. Avoiding symmetries is essential for sear
hing optimal solutions. This 
an

be a
hieved by simply imposing an order on the solutions and thus signi�
antly pruning the sear
h tree.

We demonstrate the bene�t of this te
hnique using the photo-alignment problem. A photo is to be

taken of a group of people. Everybody has a preferen
e whom she wants to stand next to. Not all of

these preferen
es 
an be met, sin
e they 
ontradi
t ea
h other, i.e., the problem is over-
onstrained. The

obje
tive is to meet as many preferen
es as possible by maximizing the number of ful�lled preferen
es

using bran
h-and-bound sear
h (see Se
tion 5).

We model that two persons stand next to ea
h other by stating that their distan
e is 1 and reify this


onstraint to be able to use it in the obje
tive fun
tion of bran
h-and-bound sear
h: 8 two distin
t persons

p

i

and p

j

: (ja

p

i

� a

p

j

j = 1)$ r

k

. The variable a

p

i

is a �nite domain variable and denotes the position



of the person in the line. The obje
tive fun
tion is max �r

k

. Solving the problem for 7 persons takes

313 
hoi
e points and 313 failures to �nd the optimal solution. Adding a symmetry-breaking order


onstraint on two arbitrary person's positions a

p

1

< a

p

2

redu
es the sear
h tree to 219 
hoi
e points and

219 failures.

Redundant 
onstraints. Another te
hnique to improve 
onstraint propagation is to add (semanti
al-

ly) redundant 
onstraints, i.e., these 
onstraints are a
tually implied by the already present 
onstraints

but they add extra pruning sin
e they, e.g., use a di�erent �ltering algorithms. We demonstrate this

te
hnique by the example of �nding a so-
alled magi
 sequen
e (x

0

; : : : ; x

n

) of n elements. The \magi
"

is that x

i

determines how often i o

urs in the sequen
e. A solution for n = 3 is the sequen
e (1; 2; 1; 0).

The model of the problem represents every element of the sequen
e s = (x

0

; : : : ; x

n

) by a �nite

domain variable with an initial domain x

i2f0;:::;ng

2 f0; : : : ; n + 1g. We state for ea
h position i that

there are exa
tly x

i

elements i in the sequen
e s: 8i 2 f0; : : : ; ng : exa
tly(s[i℄; s; i) where s[i℄ denotes

the ith element of s. Sear
h uses the �rst-fail bran
hing algorithm (see Se
tion 4). Finding the �rst

solution takes 164 
hoi
e points and 160 failures. We 
an improve the model by adding more 
onstraints,

e.g., it is straightforward to see that the sum of all elements of the sequen
e is n+ 1: �

n

i=0

s[i℄ = n (5).

Adding this 
onstraint redu
es the number of 
hoi
e points to 29 and the number of failures to 25.

But we 
an do better by adding the 
onstraint �

n

i=1

(i � 1) � x

i

= 0 (6). This 
onstraint is perhaps

not as straightforward as the �rst one: it is easy to see that �

n

i=0

i � x

i

= n. The se
ond redundant


onstraint (6) equates this sum with 
onstraint (5). This leads to a further redu
tion of the size of the

sear
h tree to 9 
hoi
e points and 6 failures. Note that the pruning of the sear
h tree due to redundant


onstraints has to outweigh the 
omputational e�ort for the extra 
onstraints as it happens in the magi


sequen
e example.

7 Con
lusion

We introdu
ed �nite domain 
onstraint programming as a software framework for 
ombining propagation,

bran
hing and exploration algorithms. The integration of algorithms and te
hniques from Operational

Resea
h and Arti�
ial Intelligen
e allow the solving of hard 
ombinatorial sear
h problems. We hight-

lighted the importan
e of global symboli
 
onstraints and appli
ation-spe
i�
 bran
hing algorithms. Sys-

tems that provide extensive support for �nite domain 
onstraint programming in
lude CHIP [DVS

+

88℄,

Ilog Solver/OPL [ILO97, Hen99℄, Claire [CL96b℄ and Mozart [Moz99℄. Areas of appli
ation where 
on-

straint programming has been shown to be superior to Operational Resear
h te
hniques in
lude job-shop

s
heduling [CL94a, CL96a, CL97, CL94b, BPN95, W�ur96℄ and sport s
heduling [Hen00℄. The su

ess of


onstraint programming relies on the following properties of these appli
ations:

� fruitful intera
tion of propagation and bran
hing algorithms,

� existen
e of eÆ
ient and powerful propagation algorithms for symboli
 
onstraints,

� tightness of the 
onstraints, allowing for substantial pruning of the sear
h tree.

In situations where sear
h tree 
annot be pruned e�e
tively, for example in typi
al time tabling ap-

pli
ations, 
onstraint programming 
an still be used to guide heuristi
 in
omplete tree sear
h te
h-

niques [HW96℄.



Referen
es

[AC91℄ D. Applegate and W. Cook. A 
omputational study of the job-shop s
heduling problem.

ORSA Journal on Computing, 3(2):149{156, 1991.

[BO97℄ Frederi
 Benhamou and William Older. Applying interval arithmeti
 to real, integer, and

boolean 
onstraints. Journal of Logi
 Programming, 32(1), 1997.

[BPN95℄ P. Baptiste, C. Le Pape, , and W. Nuijten. In
orporating eÆ
ient operations resear
h algo-

rithms in 
onstraint-based s
heduling. In Pro
eedings of the First International Joint Work-

shop on Arti�
ial Intelligen
e and Operations Resear
h, 1995.

[CL94a℄ Y. Caseau and F. Laburthe. Improved CLP s
heduling with task intervals. In Pro
eedings of

the International Conferen
e on Logi
 Programming, pages 369{383, 1994.

[CL94b℄ Yves Caseau and Fran�
ois Laburthe. Improved 
lp s
heduling with task intervals. In Pro-


eedings of the In International Conferen
e on Logi
 Programming, pages 369{383, 1994.

[CL96a℄ Y. Caseau and F. Laburthe. Cumulative s
heduling with task intervals. In Joint International

Conferen
e and Symposium on Logi
 Programming, 1996.

[CL96b℄ Yves Caseau and Fran�
ois Laburthe. CLAIRE: Combining obje
ts and rules for problem

solving. In Pro
eedings of the JICSLP'96 workshop on multi-paradigm logi
 programming.

TU Berlin, 1996.

[CL97℄ Yves Caseau and Fran 
ois Laburthe. Solving various weighted mat
hing problems with


onstraints. In Gert Smolka, editor, Prin
iples and Pra
ti
e of Constraint Programming|

CP97, Pro
eedings of the Third International Conferen
e, Le
ture Notes in Computer S
i-

en
e 1330, pages 17{31, S
hloss Hagenberg, Linz, Austria, O
tober/November 1997. Springer-

Verlag, Berlin.

[CP89℄ J. Carlier and E. Pinson. An algorithm for solving the job-shop problem. Management

S
ien
e, 35(2):164{176, 1989.

[DVS

+

88℄ M. Din
bas, P. Van Hentenry
k, H. Simonis, A. Aggoun, and T. Graf. The 
onstraint logi


programming language CHIP. In Pro
eedings International Conferen
e on Fifth Generation

Computer Systems, pages 693{702, Tokyo, Japan, De
ember 1988. Springer-Verlag.

[Ger97℄ Carmen Gervet. Interval propagation to reason about sets: De�nition and implementation of

a pra
ti
al language. Constraints, 1(3):191{244, 1997.

[Hen99℄ Pas
al Van Hentenry
k. The OPL Optimization Programming Language. The MIT Press,

Cambridge, MA, 1999.

[Hen00℄ Martin Henz. S
heduling a major 
ollege basketball 
onferen
e|revisited. Operations Re-

sear
h, 2000. to appear.

[HG95℄ William D. Harvey and Matthew L. Ginsberg. Limited dis
repan
y sear
h. In Chris S.

Mellish, editor, Pro
eedings of the International Joint Conferen
e on Arti�
ial Intelligen
e,

pages 607{615, Montr�eal, Qu�ebe
, Canada, August 1995. Morgan Kaufmann Publishers, San

Mateo, CA.



[HW96℄ Martin Henz and J�org W�urtz. Using Oz for 
ollege time tabling. In E.K.Burke and P.Ross,

editors, The Sele
ted Pro
eedings of the 1st International Conferen
e on the Pra
ti
e and The-

ory of Automated Time Tabling, Edinburgh 1995, Le
ture Notes in Computer S
ien
e 1153,

pages 162{177. Springer-Verlag, Berlin, 1996.

[ILO97℄ ILOG In
., Mountain View, CA 94043, USA, http://www.ilog.
om. ILOG Solver 4.0,

Referen
e Manual, 1997.

[JM94℄ Joxan Ja�ar and Mi
hael Maher. Constraint logi
 programming|a survey. Journal of Logi


Programming, 19/20:503{582, 1994.

[Ma
77℄ Alan Ma
kworth. Consisten
y in networks of relations. Arti�
ial Intelligen
e, 8:99{118, 1977.

[MM97℄ T. M�uller and M. M�uller. Finite set 
onstraints in Oz. In Fran�
ois Bry, Burkhard Freitag, and

Dietmar Seipel, editors, 13. Workshop Logis
he Programmierung, pages 104{115, Te
hnis
he

Universit�at M�un
hen, 17{19 September 1997.

[Moz99℄ Mozart Consortium. The Mozart Programming System. Do
umentation and system avail-

able from http://www.mozart-oz.org, Programming Systems Lab, Saarbr�u
ken, Swedish

Institute of Computer S
ien
e, Sto
kholm, and Universit�e 
atholique de Louvain, 1999.

[MS98℄ Kim Marriott and Peter J. Stu
key. Programming with Constraints. The MIT Press, Cam-

bridge, MA, 1998.

[R�eg94℄ Jean-Charles R�egin. A �ltering algorithm for 
onstraints of di�eren
e in 
sps. In Pro
eedings

of the 12th National Conferen
e on Arti�
ial Intelligen
e. AAAI Press, 1994.

[S
h97℄ Christian S
hulte. Oz Explorer: A visual 
onstraint programming tool. In Lee Naish, editor,

Pro
eedings of the International Conferen
e on Logi
 Programming, pages 286{300, Leuven,

Belgium, July 1997. The MIT Press, Cambridge, MA.

[S
h99℄ Christian S
hulte. Comparing trailing and 
opying for 
onstraint programming. In Pro
eedings

of the International Conferen
e on Logi
 Programming, 1999. to appear.

[Smo95℄ Gert Smolka. The Oz programming model. In Jan van Leeuwen, editor, Computer S
ien
e

Today, Le
ture Notes in Computer S
ien
e 1000, pages 324{343. Springer-Verlag, Berlin,

1995.

[Wal96℄ Mark Walla
e. Pra
ti
al appli
ations of 
onstraint programming. Constraints, 1(1&2):139{

168, 1996.

[W�ur96℄ J�org W�urtz. Oz S
heduler: A workben
h for s
heduling problems. In Pro
eedings of the 8th

IEEE International Conferen
e on Tools with Arti�
ial Intelligen
e, pages 132{139, Toulouse,

Fran
e, November16{19 1996. IEEE Computer So
iety Press.


