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Abstract

In recent years, the repertoire of available techniques for solving combinatorial problems has
seen a significant addition: finite domain constraint programming. This technique is best seen as
a framework for combining software components to achieve problem-specific tree search solvers. Its
strength depends on the synergy that can be achieved between these components. In this paper,
we give an overview of constraint programming for solving combinatorial problems. We focus on
practical aspects and highlight connections to Operations Research techniques and their applications.
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1 Introduction

Constraint programming is a heterogenous field of research, ranging from theoretical topics in math-
ematical logic to practical applications such as job-shop scheduling. Constraints under consideration
can be of symbolic nature such as tree constraints used in natural language processing, or of numerical
nature, operating on real or integer variables. In this overview, we focus on a branch of constraint
programming that has recently been applied to combinatorial search and optimization problems, namely
finite domain constraint programming (CP(FD)). CP(FD) developed in the 1980s out of constraint logic
programming [JM94], an extension of the logic programming paradigm. Since then, two developments
turned CP(FD) into a solving technique that can compete in some application areas with more estab-
lished Operational Research techniques for combinatorial search. Firstly, techniques and algorithms from
Operational Research such as application-specific filtering algorithms and branch-and-bound search and
from Artificial Intelligence, such as consistency algorithms [Mac77] and limited discrepancy search [HG95]
were integrated in the constraint programming framework. Secondly, high quality software systems be-
came available that support the development of constraint-based solutions to combinatorial problems.
Initially, these systems were extensions of programming systems for Prolog; a current example is the
CHIP system [DVS*88]. The C++ library Ilog Solver [ILO97] demonstrated that the solving paradigm
of constraint programming is programming language independent. The aim of the constraint program-
ming languages Oz [Smo095, Mo0z99] and Claire [CL96b] and the modeling language OPL [Hen99] was
to combine an expressive symbolic language for problem modeling with extensive support for problem
solving.

This paper guides the reader through the process of solving combinatorial problems using constraint
programming. Section 2 gives an overview of the paradigm, explaining CP(FD) as a framework, in
which propagation, branching and exploration algorithms cooperate for problem solving. Sections 3,
Section 4 and Section 5 describe propagation, branching and exploration algorithms in detail. This



paper is intended as an overview of CP(FD). Stuckey and Marriott [MS98] give a thorough treatment
of constraint programming in general, Van Hentenryck [Hen99] describes problem modeling and solving
using CP(FD) and Wallace [Wal96] presents an overview of applications of constraint programming.

2 Problem Solving with Finite Domain Constraint
Programming

We focus on discrete search and optimization problems. Thus, decision variables in the considered
problem models represent integers. A constraint store stores information on such variables in the form
of the set of possible values that the variable can take; this set is called the current domain of the variable.
More formally, the constraint store is a conjunction of constraints of the form = € S, where S is a set of
integers. These constraints are called basic constraints. Computation starts with an initial domain for
each variable as given in the model. Some constraints can be directly entered in the constraint store by
strengthening the basic constraint on a variable. For example, the constraint x # 5 can be expressed in
the constraint store by removing 5 from the domain of z.

Other more complex constraints are represented by computational agents called propagators. Each
propagator observes the variables given by the corresponding constraint in the problem. Whenever
possible, it strengthens the constraint store with respect to these variables by excluding values from
their domain according to the corresponding constraint. For example, a propagator for the constraint
x < y observes the upper and lower bounds of the domains of z and y. A possible strengthening consists
of removing all values from the domain of z that are greater than the upper bound of the domain of y.

The process of propagation continues until no propagator can further strengthen the constraint store.
The constraint store is said to be stable. At this point, many problem variables typically have still non-
singleton domains. Thus the constraint store does not represent a solution yet, and search becomes
necessary.

Search for solutions is implemented by choice points. A choice point generates a branching constraint
c. From the current stable constraint store cs, two new constraint stores are created by adding ¢ and —c¢,
respectively, to c¢s. Typically, the new constraint stores are not stable, in other words ¢ and —c trigger
some propagators in the respective new store. After stability is reached again, this branching process is
continued recursively on both sides until the resulting store is either inconsistent or represents a solution
to the problem.

Finite domain constraint programming is best seen as a software framework for combining software
components to achieve problem-specific tree search solvers. These software components can be organized
into three families.

Propagation algorithms implement individual constraints by describing how the constraints can be
employed to strengthen the constraint store.

Branching algorithms select branching constraints at each node of the search tree after all propaga-
tion has been done. Branching algorithms define the size and shape of the search tree.

Exploration algorithms describe which part of a given search tree is explored and in which order.

The task of CP(FD) programming systems is to provide two services. The first service is an environ-
ment in which these algorithms can interact. For example, after branching, the propagation algorithms
corresponding to the constraints have to be revisited in order to achieve a stable constraint store. The
necessary book-keeping is handled by the programming system. The second service is to provide libraries
of commonly used instances of the algorithms. All practical systems for CP(FD) provides extensive li-
braries of propagation, branching and (more recently) exploration algorithms.



In this tutorial, we concentrate on CP(FD). For completeness, we mention two other constraint
systems that are relevant for many applications; real intervals [BO97] and finite set [Ger97, MM97]
constraints. Real interval constraints approximate a real number by an interval [a,b] and provide the
usual arithmetic propagators.

A set constraint S over sets of integers approximates a set value which is a finite set of integers s.
It approximates a set value by a lower bound s; (s; C S) and upper bound s, (S C s,). Models based
on set constraints often have significant advantages over CP(FD) models. The constraint programming
systems Ilog Solver (and thus OPL) and Mozart provide real intervals and set constraints in addition to
finite domain constraints.

3 Propagation Algorithms

The constraint store stores information on variables as basic constraints of the form x € S. More complex
non-basic constraints, as for example x+y = z, are represented by propagators, over a set of problem vari-

ables called propagator parameters. A propagator observes its
parameters and as soon as a value is removed from one of

their domains, it tries to remove further values from the pmpagator\ }Opagawr

domains of its parameters. The algorithm employed in this constraint store

process is called propagation algorithm. By removing values
it may trigger other propagators which in turn may remove value from basic constraints. Eventually, no
further values can be removed and propagation stops at a fix-point. Since constraint propagation always
removes values from finite domains, the process is guaranteed to terminate.

One run of a propagation algorithm can have three different outcomes:

e It may just remove values from its parameter’s domains.

e The propagator may detect that it may never be able to remove any values from any domains in
the future, no matter how the parameter domains shrink. In this case, we say the propagator is
entailed by the constraint store and the propagator can be removed.

e The propagator may find out that it is inconsistent with the constraint store. It terminates and
signals failure to the exploration algorithm.

Amount of propagation vs. computational effort. The effort taken by the propagation algorithm
in combination with the branching and exploration algorithms is essential for the effectiveness and
efficiency of the constraint solver. Consider the constraint 2z = y with domains = € {1,...,5} and
y € {0,...,8}. An often sufficient propagation technique is to inspect the bounds of the domains.
That would narrow the bounds to z € {1,...,4} and y € {2,...,8}. A different propagation algorithm
considers all values in each domain and removes them, if there is no consistent assignment of the other
variables. This technique is called arc-consistent propagation arc-consistent propagation [Mac77] and
would result in z € {1,...,4} and y € {2,4,6,8}.

We use the “send+more=money”-problem to illustrate the trade-off between the degree of propaga-
tion and efficiency. In this puzzle, different digits need to be assigned to each occurring letter such that
the “equation” holds. The following constraints must be satisfied:



N g

(a) (b) ()

Figure 1: “send+more=money”-search trees for various degrees of propagation. Squares are failure
nodes, diamonds solutions and triangles subtrees with no solution.

e,n,d,o,r,y € {0,...,9} ()
s,me{l,...,9} (2)
alldiff (s,e,n,d,m,o0,r,y) 3)

1000xs + 100xe 4+ 10xn + d
+ 1000xm + 100xo 4+ 10x7r + e
= 10000xm + 1000xo + 100xn + 10xe + y (4)

The constraints (1) and (2) initialize the problem variables with appropriate domains. Note that
leading zeros are excluded. The symbolic constraint alldiff (3) enforces all problem variables to have
pairwise distinct values. The core constraint of this puzzle is constraint (4) imposing the equation
send + more = money. We search for the first solution.

Figure 1(a) shows the search tree where the propagation algorithm is just checking inconsistency but
not performing filtering. The resulting search is thus generate-and-test search. Using a simple branching
algorithms, the resulting search tree has 2488 choice nodes and 22325 failure nodes. At the other extreme,
the tree in Figure 1(c) consists just of the solution node, because here, both propagation algorithms of
constraint (4) and alldiff -constraint (3) implement arc-consistency. An efficient algorithm to achieve
arc-consistency for the alldiff -constraint is given by [Rég94]. The computational effort of arc-consistent
propagation is much higher than for consistency checking but avoids search entirely. Overall, the solution
is found significantly faster with arc-consistent propagation. The most efficient search technique for this
example, however, employs less powerful propagation algorithms. Here, propagation for constraint (4)
reasons over the bounds of the domains and propagation for the alldiff constraint (3) removes a value
v from the other domains as soon as a parameters domain has become {v}. The resulting solver, whose
search tree is depicted in Figure 1(b), is faster than the other two and strikes the right balance between
the computational effort of the propagation algorithms and the cost for traversing the search tree.

Complex symbolic constraints are often crucial for solving difficult problems. If such constraints
have many parameters, they are often called global constraints. Resource constraints in scheduling are
typically modeled using global constraints. For solving hard scheduling problems, a technique called
edge-finding [AC91] is used, which has been integrated in the constraint programming framework in
several variants [CL94a, CL96a, CL97, CL94b, BPN95, Wiir96]. The basic idea of edge finding is to
check whether a certain task ¢ is to be placed before or after a set of other tasks T. In case this can
be determined, the domains of the variable denoting the starting time of ¢ can usually be significantly
reduced. Constraint programming systems such as CHIP, Ilog Solver/OPL, Claire and Mozart provide



libraries with several variants of these global constraints.

4 Branching Algorithms

Constraint propagation usually does not suffice to solve a combinatorial problem. We need to actively
try out different alternative possibilities through choice points that generate branching constraints c.
The choices of the constraints ¢ at each node determines the size and shape of the tree and thus are
crucial for the performance of the solver. Algorithms that generate branching constraints are called
branching algorithms.

A popular class of branching algorithms that works well for small problems is variable enumeration.
Here ¢ always has the form x = n for some integer n from the current domain of z. In variable
enumeration, the degrees of freedom are the choice of variables z to enumerate (variable selection) and
the choice of values n to try (value selection). The most naive variable selection is to assume a given fixed
ordering and take the first variable in that ordering, which has a non-singleton domain. Other strategies
such as taking the variable with the smallest domain (first-fail) or the variable that is parameter of the
highest number of constraints often work better.

Apart from enumeration, another generally useful strategy is to successively split the domains of
variables. That means for a selected variable z with currently lowest domain element x; and highest
domain element xp, the branching constraint ¢ has the form = < z; + (xp — 27)/2.

Job-shop scheduling problems are solved using a class of branching algorithms called serialization
algorithms. Tasks t in the scheduling problem are represented by their duration d; and finite domain
variables z; denoting their starting time. Serialization algorithms pick successively critical resources
according to various criteria, pick two critical tasks t; and ¢, that use the resource and generate branching
constraints of the form z;, + d;;, < xy,. Serialization techniques were originally developed in Operations
Research [CP89], and deployed and extended in the context of constraint programming [BPN95, CL94b,
CL944a]. Today, a variety of such serialization algorithms are available in scheduling libraries of CP(FD)
systems.

5 Exploration Algorithms

In the previous section, we saw that branching algorithms determine the search tree. It is the job of
search algorithms to determine, which part of the search tree is explored and in which order. Exploration
algorithms determine the following properties of the solver.

The exploration order determines the order in which the nodes are explored.

The interactivity determines the mode of interaction with other algorithms or the user. An explo-
ration algorithm may return all solutions, compute solutions one-by-one, explore nodes one-by-one,
etc.

The pruning behavior of an exploration algorithm may add additional constraints as exploration
proceeds.

CP(FD) inherited the most basic exploration strategy, depth-first search, from Prolog. The obser-
vation that depth-first search often does not work well together with good branching algorithms led to
the development of limited discrepancy search [HG95], where the nodes of the search tree are visited in
an order of increasing deviations (discrepancies) from the branching strategy.



The most common implementation technique for exploration algorithms is trailing-based backtrack-
ing, also inherited from Prolog. This technique works well for sequential depth-first search and is em-
ployed by CHIP, Ilog Solver/OPL and Claire. Schulte [Sch99] showed that copying of constraint stores
together with recomputation, which is employed by Mozart [Mo0z99] and has advantages for exploration
algorithms other than sequential depth-first search, can be competitive with backtracking.

In order to achieve combinatorial optimization as in scheduling, exploration algorithms can be ex-
tended by a pruning behavior. Whenever a solution is encountered, the exploration algorithm generates
an additional constraint that expresses that further solutions should be better with respect to optimiza-
tion criteria than the solution found. This technique is called constraint-based branch-and-bound and
can be seen as a generalization of branch-and-bound used in integer optimization. Branch-and-bound
ensures that solutions are found in increasing quality. If the constraints that encode the quality of the
solution are strong and if solutions of high quality are found early in the search, the tree can be pruned
significantly. In job-shop scheduling, the model includes a variable f representing the overall duration
of the schedule. After finding a solution with overall duration d, the additional constraint f < d is
introduced, which often—via interaction with propagation algorithms—Ileads to pruning of the search
tree.

Another variant of the exploration algorithms is exemplified by the Oz Explorer [Sch97], which—in
addition to depth-first search (with branch-and-bound)—visualizes the resulting search tree and allows
interactive exploration, which is useful during the development and performance-tuning of constraint
programs.

6 Modeling Techniques

This section presents techniques to model over-constraint problems and to improve search by improving
the constraint model.

Handling over-constrained problems. Some problems contain conflicting constraints, and the task
is find to find a solution that meets a maximal number of constraints. The concept of reified constraints
allows handling of over-constrained problems by “soften” these constraints. The idea is to connect a
constraint ¢ with 0/1-variable B, i.e., ¢(z1,...,z,) <> b and to reflect its validity into b. As long as
b € {0, 1} the constraint does not remove any value from the domains of its parameters 1, ..., z,. In case
the ¢ is entailed by the constraint store, b = 1. The 0/1-variable becomes 0 if the ¢ is inconsistent with
the store. On the other hand, if b is constrained to 1 (0) then ¢ (/negc) is added to the computation space
and removes values from the domains of its parameters. Usually the 0/1-variables of an over-constraint
problem contribute a objective function which is then minimized or maximize using branch-and-bound
search (see Section 5).

Excluding symmetries. Avoiding symmetries is essential for searching optimal solutions. This can
be achieved by simply imposing an order on the solutions and thus significantly pruning the search tree.
We demonstrate the benefit of this technique using the photo-alignment problem. A photo is to be
taken of a group of people. Everybody has a preference whom she wants to stand next to. Not all of
these preferences can be met, since they contradict each other, i.e., the problem is over-constrained. The
objective is to meet as many preferences as possible by maximizing the number of fulfilled preferences
using branch-and-bound search (see Section 5).

We model that two persons stand next to each other by stating that their distance is 1 and reify this
constraint to be able to use it in the objective function of branch-and-bound search: V two distinct persons
pi and p; : (|ap, — ap,;| = 1) ¢ r. The variable a,, is a finite domain variable and denotes the position



of the person in the line. The objective function is maz ¥ry. Solving the problem for 7 persons takes
313 choice points and 313 failures to find the optimal solution. Adding a symmetry-breaking order
constraint on two arbitrary person’s positions a,, < a,, reduces the search tree to 219 choice points and
219 failures.

Redundant constraints. Another technique to improve constraint propagation is to add (semantical-
ly) redundant constraints, i.e., these constraints are actually implied by the already present constraints
but they add extra pruning since they, e.g., use a different filtering algorithms. We demonstrate this
technique by the example of finding a so-called magic sequence (x, ..., z,) of n elements. The “magic”
is that x; determines how often ¢ occurs in the sequence. A solution for n = 3 is the sequence (1,2, 1,0).

The model of the problem represents every element of the sequence s = (xo,...,2,) by a finite
domain variable with an initial domain ;c(o,..n} € {0,...,n + 1}. We state for each position i that
there are exactly z; elements ¢ in the sequence s: Vi € {0,...,n} : ezactly(s[i], s,i) where s[i] denotes
the ith element of s. Search uses the first-fail branching algorithm (see Section 4). Finding the first
solution takes 164 choice points and 160 failures. We can improve the model by adding more constraints,
e.g., it is straightforward to see that the sum of all elements of the sequence is n + 1: £ ;s[i] = n (5).
Adding this constraint reduces the number of choice points to 29 and the number of failures to 25.
But we can do better by adding the constraint X7 (i — 1) x z; = 0 (6). This constraint is perhaps
not as straightforward as the first one: it is easy to see that Xi' ;¢ x £; = n. The second redundant
constraint (6) equates this sum with constraint (5). This leads to a further reduction of the size of the
search tree to 9 choice points and 6 failures. Note that the pruning of the search tree due to redundant
constraints has to outweigh the computational effort for the extra constraints as it happens in the magic
sequence example.

7 Conclusion

We introduced finite domain constraint programming as a software framework for combining propagation,
branching and exploration algorithms. The integration of algorithms and techniques from Operational
Reseach and Artificial Intelligence allow the solving of hard combinatorial search problems. We hight-
lighted the importance of global symbolic constraints and application-specific branching algorithms. Sys-
tems that provide extensive support for finite domain constraint programming include CHIP [DVS*88],
Ilog Solver/OPL [ILO97, Hen99], Claire [CL96b] and Mozart [Mo0z99]. Areas of application where con-
straint programming has been shown to be superior to Operational Research techniques include job-shop
scheduling [CL94a, CL96a, CL97, CL94b, BPN95, Wiir96] and sport scheduling [Hen00]. The success of
constraint programming relies on the following properties of these applications:

e fruitful interaction of propagation and branching algorithms,
e existence of efficient and powerful propagation algorithms for symbolic constraints,
e tightness of the constraints, allowing for substantial pruning of the search tree.

In situations where search tree cannot be pruned effectively, for example in typical time tabling ap-
plications, constraint programming can still be used to guide heuristic incomplete tree search tech-
niques [HW96].
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