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Abstract

In teaching and learning programming at first-year-universi-
ty level, simple languages with small feature sets are prefer-
able over industry-strength languages with extensive feature
sets, to reduce the learners’ cognitive load. At the same time,
there is increasing pressure to familiarise students with main-
stream languages early in their learning journey, and these
languages accumulate features as years go by. In response
to these competing requirements, we developed Source, a
collection of JavaScript sublanguages with feature sets just
expressive enough to introduce first-year computer science
students to the elements of computation. These languages
are supported by a web-based programming environment
custom-built for learning at beginner’s level, which pro-
vides transpiler, interpreter, virtual machine, and algebraic-
stepper-based implementations of the languages, and in-
cludes tracing, debugging, visualization, type-inference, and
smart-editor features. This paper motivates the choice of
JavaScript as starting point and describes the syntax and
semantics of the Source languages compared to their par-
ent language, and their implementations in the system. We
report our experiences in developing and improving the lan-
guages and implementations over a period of three years,
teaching a total of 1561 computer science first-year students
at a university.

CCS Concepts: · Software and its engineering → Gen-

eral programming languages; Integrated and visual devel-
opment environments.

Keywords: teaching programming, JavaScript, learning tools,
learning environments

ACM Reference Format:

Boyd Anderson, Martin Henz, Kok-Lim Low, and Daryl Tan. 2021.

Shrinking JavaScript for CS1. In Proceedings of the 2021 ACM SIG-

PLAN International SPLASH-E Symposium (SPLASH-E ’21), October

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

SPLASH-E ’21, October 20, 2021, Chicago, IL, USA

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9089-7/21/10.

https://doi.org/10.1145/3484272.3484970

20, 2021, Chicago, IL, USA. ACM, New York, NY, USA, 10 pages.

https://doi.org/10.1145/3484272.3484970

1 Introduction and Related Work

1.1 The Problem with Large Languages

Programming languages are like trees: they keep growing
until they die (and they usually die slowly). With a rise in
popularity of a language comes an increasing pressure on the
language designers to undertake only backwards-compatible
changes, which means that existing features cannot be re-
moved. Thus, programming languages rarely shrink: once a
feature is introduced it will stay until the language dies. A no-
table exception was the introduction of Python 3.0 in 2008,
which was not backwards-compatible with Python 2 and
which removed several language features. Language design-
ers face continuous demands from their user communities
and in response regularly add new features while making
sure that they are distinguishable from existing features to
retain backwards compatibility. Over the years, languages
grow by accumulating new features. For example, Java’s lat-
est specification [11] runs at 844 pages, and JavaScript’s [12]
at 860 pages. Novice students in a Java-based course justifi-
ably ask: łShould I learn all of Java to excel in the course?ž
On the other hand, schools are facing pressure from stu-

dents and industry to teach languages that are of industrial
relevance, as a result of short-term considerations such as
finding internships/interns as well as medium-term consid-
erations involving employability and graduate skill sets. For
example, łIndustrial relevancež is cited as the second-most
important factor in the choice of first-year programming lan-
guage by instructors in Australasia, only marginally behind
łpedagogical benefitsž [22].

For instructors, large languages pose several challenges.
Professional language implementations and tools need to
remain standard-compliant and grow with the languages
and therefore become harder to master. Some language fea-
tures are difficult to avoid as they pervade the language
design and usage. As an example, the introduction of generic
types in Java made it harder to use Java in first-year courses.
The most problematic aspect of large languages for teaching
is classroom control. First-year courses today enroll com-
plete novices as well as learners with ten years or more of
programming experience. The latter tend to use language
features that might be tangential to the learning outcome

This work is licensed under a Creative Commons Attribution-

ShareAlike 4.0 International License.

87

http://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.1145/3484272.3484970
https://doi.org/10.1145/3484272.3484970


SPLASH-E ’21, October 20, 2021, Chicago, IL, USA Boyd Anderson, Martin Henz, Kok-Lim Low, and Daryl Tan

of a particular course segment. In this situation, instructors
face the dilemma either to explain the feature, thereby devi-
ating from the learning objective, or to discourage the use of
the feature without much explanation, thereby leaving the
students’ justified curiosity unsatisfied.

1.2 Our Starting Point: SICP

The book łStructure and Interpretation of Computer Pro-
grams (SICP) by Abelson and Sussman [1] introduces the
reader to central ideas of computation by establishing a se-
ries of mental models for computation. Chapters 1ś3 cover
programming concepts that are common to all modern high-
level programming languages. The original first two edi-
tions of SICP use the programming language Scheme in their
program examples, whose minimalistic, expression-oriented
syntax allows the book to focus on the underlying ideas
rather than the design of the chosen language. Chapters
4 and 5 use Scheme to formulate language processors for
Scheme, deepening the readers’ understanding of the mental
models and exploring language extensions and alternatives.
Since its publication in 1984, SICP has been adopted as

textbook by universities and colleges around the world, in-
cluding the National University of Singapore (NUS), which
introduced the SICP-based first-year course CS1101S in 1997.
In the mid-1990s, the languages Python, JavaScript, and Ruby
emerged, which share central design elements with Scheme,
but which employ a more complex, statement-oriented syn-
tax that uses familiar algebraic (infix) notation. Their rise in
popularity led instructors to adapt their SICP-based courses,
typically by translating the example programs to their lan-
guage of choice, by adding material specific to that language,
and by removing the material of chapters 4 and 5.
Recognizing the fundamental soundness of SICP’s peda-

gogy and universality of learning objectives, we set out to
modernize the material in its entirety. Along the way, we
saw two opportunities to improve the material, which we
will further discuss in Sections 2 and 3:

• Mostmodern languages are statement-oriented, where-
as Scheme is expression-oriented. We set out to mod-
ernize SICP by explaining the interpretation of state-
ment-oriented languages, including the treatment of
return statements in these languages.

• Scheme’s minimalistic design provides a direct repre-
sentation of programs as data structures, which cannot
be taken for granted in modern languages. We wanted
to keep the language processors of Chapters 4 and
5 that make use of programs as data structures, but
explain how those language processors can be imple-
mented in modern languages.

The JavaScript Edition of SICP [2], to be published in 2022,
resulted from our efforts and includes these improvements.

1.3 The Choice of JavaScript

The SICP approach does not require Scheme, but the infor-
mal and liberal treatment of data structures makes it easier
to adapt SICP to a dynamically typed language with auto-
matic memory management such as Python, Ruby, Clojure,
Lua, and JavaScript. Among the most popular of these lan-
guages, Python and JavaScript, we chose JavaScript because
its block-scoped constant and variable declarations match
Scheme’s scoping better than Python’s function scope, be-
cause JavaScript’s standard specifies proper tail calls, and
because Python does not syntactically distinguish variable
declaration from assignment, which makes it more difficult
to limit the discourse to purely functional programming in
Chapters 1 and 2. The language standard ECMAScript 2015
introduced lambda expressions, tail recursion, and block-
scoped variables and constants, which enabled the course
material to move closer to the original Scheme-based version.

1.4 Shrinking JavaScript

In order to cope with the challenges posed by large languages
listed in Section 1.1, we decided to systematically restrict the
use of language features to match the pedagogical require-
ments of SICP. Since the switch of our CS1101S to JavaScript
in 2012, we found the need to gradually introduce language
features and prevent the use of features that were not in-
troduced yet. This would allow us to control the classroom
and provide a level playing field across a wide variety of stu-
dents’ prior knowledge. Some restrictions such as avoiding
the == operator were proposed by Douglas Crockford in [5],
who also developed the linting tool JSlint to enforce such
restrictions.
We decided to follow a more comprehensive approach

than linting and instead to invest in a full-fledged, course-
specific web-based programming environment called Source

Academy [23]. Initially, we introduced a larger language in
each week of the course, so Source Week 4 would include
only those features needed until Week 4 of the semester, and
the Source Academywould only provide those features when
Source Week 4 was chosen. To reduce our administrative
overhead and the students’ cognitive load, we limited the
number of languages to four in 2018. Each chapter 𝑥 of SICP
comeswith a JavaScript sublanguage that we shall call Source
ğ𝑥 .

1.5 Other Related Work

The first systematic shrinking of a programming language for
teaching was undertaken in 1974 for the language PL/I [15].
The DrScheme implementation of Scheme systematically
restricted the language features [8] to follow the textbook
łHow to Design Programsž by Felleisen et al. [7]. The text-
book łFunctional JavaScriptž [9] introduces functional pro-
gramming using the language JavaScript without physically
restricting the user to any sublanguage. The language Grace
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also gave rise to a sequence of sublanguages designed for
the needs of teachers and learners [16].

1.6 Overview

Section 2 introduces the language needs of each SICP chap-
ter and describes the respective JavaScript sublanguage. Sec-
tion 3 introduces the semantic concepts pursued by the SICP
chapters and how we present these concepts to the users
of the Source Academy. Section 4 describes the language-
specific pedagogical features of the system that we built to
support the readers of SICP. Section 5 discusses program-
ming language and system implementation aspects of the
Source Academy, and Section 6 reports our experiences with
introducing this system and improving it over three consec-
utive years.

2 Shrinking the Syntax of JavaScript

The languages Source ğ𝑥 are sublanguages of JavaScript
in the sense that every Source ğx program is a JavaScript
program. The languages are designed to be just expressive
enough to handle the programs of SICP, up to and including
the chapter in which the programs appear. The number of
syntactic forms used in the Source languages is as small
as the number of special forms used in the corresponding
chapter of SICP and thus, in the words of Felleisen et al [6],
Source serves to łliberate the introductory course from the
tyranny of syntaxž.

2.1 Source §1

Chapter 1 of SICP introduces a purely functional language
with numbers, boolean values and strings, but without any
other data structures. The syntax of Source ğ1 depicted in
Figure 1 deviates from Scheme in the following ways:

• The language is block-structured. The scope of con-
stant and function declarations is the immediately sur-
rounding block.

• The language is statement-oriented, following most
modern languages, including Python, C and Java. Re-
turn statements can appear anywhere in the body of a
function.

• In Scheme, the branches of conditionals cond and if

can contain local declarations, whereas JavaScript’s
conditional expressions cannot.1 Therefore, we include
conditional statements in addition to conditional ex-
pressions. The branches of conditional statements are
blocks whose declarations are local to the block.

• Similarly, we allow for the block body variant of lambda
expressions, to achieve the generality of lambda ex-
pressions in Scheme.

1Technically, expressions can include declarations by using the łimmediately

invoked function expressionž pattern, but this is syntactically cumbersome.

• Arithmetic expressions use infix notation, which is
much more common in modern languages than the
prefix notation use in Scheme.

2.2 Source §2

Following Scheme’s minimalist syntax, Source ğ1 does not
include pattern matching supported by functional languages
such as OCaml and Haskell. As a result, the programs in
SICP JS Chapter 2 look and feel like their counterparts in
SICP, and Source ğ2 only adds the primitive literal expression
null.

expression ::= number | true | false | string | null | . . .

2.3 Source §3–5

We exploit the neat syntactic distinction of ECMAScript 2015
between two block-scoped kinds of names: constants (de-
clared with const) and variables (declared with let). To
discuss imperative programming in SICP Chapter 3, Source
ğ3 introduces variable declaration and assignment, and ex-
tends the syntax of Figure 1 as shown in Figure 2. Our version
of Source ğ3 adds syntactic support for arrays and while

and for loops, which are not used in SICP Chapter 3, but
mentioned in passing in SICP JS 4.1.2, in order to augment
Chapter 3’s treatment of imperative programming with id-
iomatic examples. Chapters 4 and 5 do not necessitate the
introduction of syntactic constructs beyond Source ğ3.

3 Shrinking the Semantics of JavaScript

The semantics of the Source languages are faithful to the se-
mantics of JavaScript in the sense that if a program evaluates
to a result without error according to the Source semantics,
it evaluates to the same result without error according to the
JavaScript semantics. Nothing łworksž in Source that doesn’t
łworkž in the same way in JavaScript. This means that the
programming skills that students acquire when using Source
directly transfer to JavaScript. Crockford [5] criticizes the
excessively liberal coercion and overloading of JavaScript’s
operators. We take the liberty to restrict them such that the
operators <, >,. . ., and + either take two numbers or two
strings as operands. Any other operand type combinations
lead to an error. This rarely causes problems, but simplifies
the language significantly and reduces the cognitive load on
the students.

3.1 Source §1

SICP informally introduces the substitution model as a men-
tal model for the execution of purely functional Scheme
programs. We provide a semantic foundation for Source ğ1ś
2 in [4] that formalizes the substitution model using term
graph rewriting.
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program ::= import-directive . . . statement . . . program

import-directive ::= import { names } from string ; import directive

names ::= 𝜖 | name ( , name ) . . . list of names

statement ::= const name = expression ; constant declaration

| function name ( names ) block function declaration

| return expression ; return statement

| if-statement conditional statement

| block block statement

| expression ; expression statement

if-statement ::= if ( expression ) block

else ( block | if-statement ) conditional statement

block ::= { statement . . . } block statement

expression ::= number | true | false | string primitive literal expression

| name name expression

| expression binary-operator expression binary operator combination

| unary-operator expression unary operator combination

| expression ( expressions ) function application

| ( name | ( names ) ) => expression lambda expression (expression body)

| ( name | ( names ) ) => block lambda expression (block body)

| expression ? expression : expression conditional expression

| ( expression ) parenthesised expression

binary-operator ::= + | - | * | / | % | === | !==

| > | < | >= | <= | && | || binary operator

unary-operator ::= ! | - unary operator

expressions ::= 𝜖 | expression ( , expression ) . . . argument expressions

Figure 1. Syntax of Source ğ1, in Backus-Naur Form [18] with bold font for keywords, italics for nonterminal symbols, 𝜖 for
nothing, 𝑥 | 𝑦 for 𝑥 or 𝑦, and 𝑥 . . . for zero or more repetitions of 𝑥

statement ::= . . .

| let name = expression ; variable decl.

expression ::= . . .

| name = expression variable assgmt

Figure 2. Syntax of Source ğ3, an extension of the BNF of
Figure 1

3.2 Source §2

SICP Chapter 2 łBuilding Abstractions with Dataž introduces
only the most minimalist data structure, the pair. Source ğ2
follows suit by introducing the constructor pair and the

selectors head and tail (traditionally called car and cdr

in the Lisp/Scheme communities). We resisted the introduc-
tion of objects, literal or otherwise, and thus sidestepped
the complexities of JavaScript’s support for object-oriented
programming, such as the łprototype chainž. Any program
that uses literal objects, or object property access using ł.ž
(dot) is rejected by the Source parser. The memory model of
Source includes only pairs and is described in SICP JS Section
5.3, including a stop-and-copy garbage collector comprising
less than 60 register machine instructions, given in SICP JS
5.3.2.

3.3 Source §3

The semantic foundation of Source ğ3 is introduced infor-
mally in SICP JS Section 3.2, and operationalized in Section
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4.1 in form of a metacircular evaluator. Most syntactic con-
structs of Source ğ3 come with their own evaluation function,
and the main evaluation function evaluate given in Figure 3
dispatches to them using syntax predicates, see Section 3.4.
Figure 4 shows the function apply that implements function
calls. The mutually recursive functions evaluate and apply
form the core of the evaluator. This evaluator is similar to
the metacircular evaluator for Scheme given in SICP Section
4.1, with the notable exception that return statements, also
given in Figure 4, construct explicit return values which are
used in apply to return the value contained in the return
value, or return undefined instead.

3.4 Source §4-5

By using JavaScript, chapters 1ś3 introduce the reader to the
syntactic style of most mainstream languages today. How-
ever, that same syntactic style gave rise to significant changes
in chapters 4 and 5 of SICP JS, because the direct represen-
tation of programs as data structures could no longer be
taken for granted. This provided SICP JS with an opportu-
nity to introduce the notion of program parsing in section
4.1.2, an important component of programming-language
processors. Source ğ4 adds the function parse to the lan-
guage, which specifies a tagged-list representation of syntax
trees, following the BNF from Figures 1 and 2. The parse
rules are informally described in SICP JS Section 4.1.2, along
with the syntax predicates and selectors used in evaluate

in Figure 3. The formal specification of parse is aided by
restrictions in the syntax of Source, compared to JavaScript:

• no optional semicolons,
• no object or classes, and
• no switch, exception handling

4 Learner-Focused Development
Environment

The Source Academy is equipped with several tools and
features to support independent, as well as collaborative,
learning of SICP. The most important among them are the
algebraic stepper, the data visualizer, and the environment
visualizer, as they can provide powerful visual aids and feed-
back for the study of the three central ideas in Chapters 1 to 3
of SICP, namely, the substitution model, data representation
and abstraction, and the environment model.
These tools have similar purposes to the inspection and

visualization tools of the BlueJ system [17], where users are
able to visualize the state and evolution of program execu-
tion.

4.1 Algebraic Stepper

Following the semantics of Source ğ1ś2 in Sections 3.1 and 3.2
we developed an algebraic stepper [14] that lets the user in-
teractively discover the sequence of substitution steps that
emerge from the evaluation of a program. The tool proves

invaluable to connect students with no programming back-
ground to the familiar domain of mathematics. Figure 5
shows an interactive stepper session in the programming
environment.

4.2 Data Visualizer

A data visualization tool implements box-and-pointer dia-
gramsÐthe graphical data model of SICP ğ2Ðfollowing the
example of numerous similar tools in software engineering
and learning environments, for example the Java visualizer
for IntelliJ [20] and Racket’s Sdraw library [21]. Figure 6
shows the visualizer displaying the result of symbolic differ-
entiation according to SICP 2.3.2.

4.3 Environment Visualizer

To help with the understanding of the environment model
in SICP, students can make use of an environment visualizer.
They can inspect a Source program’s current execution state
by setting breakpoints before the relevant program lines.
Execution will be paused at a breakpoint, displaying the
current environment frames in the fashion described in SICP
3.2. Execution can be resumed afterwards. Figure 7 shows
an interactive session with the environment visualizer. The
environment visualizer achieves for the environment model
what the Java visualizer for IntelliJ [20] achieves for the
execution model of the Java Virtual Machine.

4.4 Robotics

We have designed a series of imperative programming exer-
cises in which students are required to build LEGO MIND-
STORMS EV3 [19] robots and write Source ğ3 programs to
control the robots to accomplish a set of assigned tasks. The
Source Academy provides the capability to wirelessly upload
their solutions from the web browser to the EV3 Bricks for
execution. See [3] how this feature is used in online teaching.

5 Implementation

The Source Academy is amedium-scale free-software project,
whose GitHub organization [10] currently comprises 139
developers, mostly undergraduate students of our univer-
sity who carry out software project courses or independent
projects by contributing to the system. The programming
language implementation of Source is kept independent from
the programming environment for future extensibility.

5.1 Parsing

Since any Source program is also a valid JavaScript program,
we parse and generate its abstract syntax tree using Acorn,
an open-source JavaScript parser [13]. We then check for
any disallowed JavaScript syntax. If any are present, an error
is thrown and the offending constructs listed out. The final
output is a validated abstract syntax tree.
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function evaluate(component , env) {

return is_literal(component)

? literal_value(component)

: is_name(component)

? lookup_symbol_value(symbol_of_name(component), env)

: is_application(component)

? apply(evaluate(function_expression(component), env),

list_of_values(arg_expressions(component), env))

: is_operator_combination(component)

? evaluate(operator_combination_to_application(component), env)

: is_conditional(component)

? eval_conditional(component , env)

: is_lambda_expression(component)

? make_function(lambda_parameter_symbols(component),

lambda_body(component), env)

: is_sequence(component)

? eval_sequence(sequence_statements(component), env)

: is_block(component)

? eval_block(component , env)

: is_return_statement(component)

? eval_return_statement(component , env)

: is_function_declaration(component)

? evaluate(function_decl_to_constant_decl(component), env)

: is_declaration(component)

? eval_declaration(component , env)

: is_assignment(component)

? eval_assignment(component , env)

: error(component , "unknown syntax -- evaluate");

}

Figure 3.Main function evaluate of a metacircular evaluator for Source ğ4

5.2 Algebraic Stepper

The stepper implements the semantics of Source ğ1ś2, which
is based on term-graph rewriting rather than term (tree)
rewriting, because as evaluation proceeds, the syntax trees
evolve into possibly cyclic graphs in order to capture the
semantics of block-scoped names and recursive functions.
The implementation stores the syntax graph for each step
in an array and lets the user access the steps with a slider
as shown in Figure 5. This is possible even for computa-
tions with several thousand steps because there is significant
sharing between the graphs. For more details on the imple-
mentation of the stepper, see [14].

5.3 Environment Visualizer

The environment visualizer is built on top of an interpreter
for Source. Like the metacircular evaluator described in Sec-
tion 3.3, our interpreter keeps track of environment frames
and their variables. To ensure that our interpreter is tail

recursive, whenever a function call is made in the tail posi-
tion, a trampolining [24] version is returned instead of the
function call.

5.4 Robotics

As we only support Source ğ3 programs and not all of Java-
Script, we were able to build a virtual machine language for
running our programs with moderate effort, known as the
Source Virtual Machine Language (SVML) and its interpreter
(Sinter). This interpreter is written in C++ and can be ported
to many other architectures. The SVML compiler is written
in TypeScript and therefore can be run in a web browser.
Our robotics system consists of four main components:

SVML, Sinter, the Source-to-SVML compiler, and an MQTT-
based protocol/library to transfer programs to a robot and
return the output of any computation (Sling). These compo-
nents (SVML, Sinter, and Sling) are included in a customized
version of the ev3dev linux distro running on the LEGO
MINDSTORMS EV3 robot platform. This customized image
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function apply(fun , args) {

if (is_primitive_function(fun)) {

return apply_primitive_function(fun , args);

} else if (is_compound_function(fun)) {

const result = evaluate(function_body(fun),

extend_environment(

function_parameters(fun),

args ,

function_environment(fun )));

return is_return_value(result)

? return_value_content(result)

: undefined;

} else {

error(fun , "unknown function type -- apply");

}

}

function eval_return_statement(component , env) {

return make_return_value(

evaluate(return_expression(component), env ));

}

Figure 4. Functions apply and eval_return_statement

Figure 5. Stepping through the substitutions that evaluate a program, according to the Source ğ1ś2 semantics

Figure 6. Displaying the result of symbolic differentiation of 𝑥𝑦/𝑑𝑥 (non-simplifying version)
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Figure 7. The environment visualizer showing the environment of a program at a breakpoint

is flashed on to the EV3 computer and then the device gener-
ates a UUID which can be registered on the Source Academy.
On the EV3 robot, Sling connects to the backend and awaits
instructions. Programs are then compiled to SVML in the
web browser and sent to the EV3 robot. These programs are
interpreted by Sinter, and any output is sent back to the web
browser. See [3] for more details on the implementation of
our robotics system.

5.5 Transpiler

Even though we have an interpreter for Source used by the
environment visualizer, it was too slow for computationally
intensive tasks. Therefore, we decided to execute Source pro-
grams using the browsers’ JavaScript engine instead, leading
to a decrease in execution time by a factor of around 50.

A tail-recursive implementationÐa feature known as proper
tail callsÐis necessary for the concept of iterative processes
in SICP, but, although specified by the ECMAScript stan-
dard since 2015, Safari is the only modern browser as of
2021 whose JavaScript engine implements this feature. There-
fore, we implement proper tail calls using a trampoline func-
tion [24] after syntactically detecting tail calls and transform-
ing them into trampolining versions. To restrict JavaScript’s
operators as mentioned in Section 3, we transpile operator

combinations into function calls that perform the necessary
tests.

The transpiled JavaScript code is executed via JavaScript’s
eval. The execution of third-party Source programs is safe
from cross-site scripting attacks, because we ensure that no
JavaScript global variables can be referenced in Source and
prevent the use of JavaScript features such as cookies and
HTTP requests.

6 Experiences and Future Work

Motivated by the need to adapt the SICP textbook to a mod-
ern, mainstream programming language, we have demon-
strated how to shrink the real-world language JavaScript
to a set of features that matches the minimalistic design of
Scheme, with and for which SICP was originally written.
Constraining programming novices to small sublanguages
has a liberating effect on the teaching and learning process:

• Students with little or no programming background
are liberated from the demotivating presence of stu-
dents with years of programming experience. As an
example, the tiny language Source ğ1 in Section 2 is
sufficient for the first four weeks of a rigorous CS1
course.
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Figure 8. Student feedback in 2020 on how the course’s vehicle for shrinking JavaScript, the Source Academy, contributed to
the learning

Figure 9. Student numbers (solid line; CS1101S became mandatory for CS majors from 2018); student feedback scores for
łWhat is your overall opinion of CS1101S?ž (dashed line; 1ś5 Likert scale, from 1: łvery poorž to 5: łvery goodž)

• Instructors are liberated from the need to cater to stu-
dent questions on language features that are not con-
tributing to the learning objectives at hand. For exam-
ple, none of the Source languages need to touch on the
complexities of object-oriented programming.

• Developers of tools are liberated from the suffocating
need to implement the huge feature sets of industry-
strength programming languages. Development of use-
ful learning tools becomes a realistic objective for
semester-sized undergraduate student projects. All
tools described in Section 4 were implemented by un-
dergraduate students in project-based software engi-
neering or programming language implementation
courses.

The design of the syntaxes and semantics of the sublan-
guages, their implementations and language tools are battle-
tested in three successive years (2018ś2020) of using con-
tinuously improved versions in CS1101S. Prior to 2018, the
course was an opt-in alternative to a CS1 course that did not

follow SICP, and CS1101S had only a fraction of the cohort
of computer science first-year students. That fraction was
self-selected and unrepresentative of the cohort, so student
feedback scores for 2016 and 2017 are not comparable to the
scores of 2018ś2019. Figure 9 shows the number of students
and overall student feedback scores. Student feedback on
CS1101S is favorable, especially in 2020, but we do not have
direct evidence how the shrinking of JavaScript contributed
to the success of the course. However, the main vehicle for
shrinking JavaScript from the point of view of the students
is the Source Academy, and Figure 8 shows how students
perceived the system having contributed to their mastery
of SICP concepts in 2020. In 2020, 42 students mentioned
łSource Academyž in their course feedback under łWhat I
liked about CS1101Sž. There were four students who men-
tioned łSource Academyž under łWhat I did not like about
CS1101Sž, and two of these were attributable to instructor
mistakes.
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The design of the Source Academy separates the program-
ming environment from the language implementation, which
allows us to reuse the language-independent components for
the shrinking of other mainstream languages. Pedagogically-
motivated sublanguages of Python, TypeScript, and R are
currently under development and will plug into the frontend
in the same way as the JavaScript implementations described
in Section 5. An effort to shrink TypeScript is also under way.
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