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Figure 1. The stepper, showing the step just after the third call of factorial, written in JavaScript.

Abstract

The first two chapters of the introductory computer science
textbook Structure and Interpretation of Computer Programs,

JavaScript Edition (SICP JS), use a subset of JavaScript called
Source ğ2. The book introduces the reduction-based łsubsti-
tution modelž as a first mental model for the evaluation of
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Source ğ2 programs. To support the learner in adopting this
mental model, we built an algebraic stepperÐa tool for visu-
alizing the evaluation of Source ğ2 programs according to
the model. As a sublanguage of JavaScript, Source ğ2 differs
from other purely functional programming languages by us-
ing a statement-oriented syntax, with statement sequences,
return statements, and block-scoped declarations. For the
purpose of this tool description, we distill these distinguish-
ing featuresÐalong with explicit recursionÐinto a Source ğ2
sublanguage that we call Source ğ0, and focus on a stepper for
this language. We formalize the substitution model of Source
ğ0 as a lambda-calculus-style reduction semantics that han-
dles explicit recursion by term graph rewriting and faithfully
implements the JavaScript specification, when restricted to
that language. Our implementation of the stepper represents
term graphs by persistent data structures that maximize
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sharing and enable random access to all steps. This work
presents the first reduction-based semantics for a JavaScript
sublanguage and the first algebraic stepper for a language
with return statements and block-scoped declarations. The
tool supports the learner with step-level explanations, redex
highlighting, and function-level skipping and can also be
used for teaching the applicative-order-reduction lambda
calculus.

CCS Concepts: · Software and its engineering→ Inte-

grated and visual development environments; ·Applied
computing→Computer-assisted instruction; ·Theory
of computation→ Lambda calculus.

Keywords: programming environments, education, function-
al languages, lambda calculus, semantics, JavaScript, stepper,
term graph rewriting
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1 Introduction

A hallmark of the introductory computer science textbook
Structure and Interpretation of Computer Programs (SICP, [1])
is its functional-programming-first approach. Computation
is introduced as a step-by-step process of simplification and
function unfolding, reminiscent of familiar mental models in
mathematical calculation and equation solving. In the book,
this process is called the substitution model, and can in princi-
ple explain the evaluation of all programs in its first two chap-
ters. The JavaScript adaptation of SICPÐSICP JS [2]Ðuses
JavaScript for all programs instead of the language Scheme
used in the first two editions of SICP. JavaScript employs
a statement-oriented syntax, which is the syntactic style
of most mainstream languages as of 2021, including Java,
Python, and C, rather than Scheme’s expression-oriented
syntax. The most significant change in the first two chapters
of SICP JS, compared to SICP, is the use of return statements
and block-scoped declarations.
While teaching Computer Science first-year students us-

ing SICP JS, we saw the need for a tool that explains the
evaluation of programs in the first two chapters accord-
ing to the substitution model. Existing JavaScript imple-
mentations, including the browsers’ JavaScript debugging
tools, are not suitable for this task, because the substitu-
tion model radically differs from their underlying computa-
tional models. Section 2 specifies Source ğ0, a sublanguage
of JavaScript that includes the most important features that
distinguish JavaScript from Scheme. Section 3 specifies its
formal, lambda-calculus-style reduction semantics, and Sec-
tion 4 describes the notion of substitution employed in the

prog ::= stmt . . . program

stmt ::= function name

( names ) block function decl.

| return expr ; return statement

| expr ; expression st’ment

names ::= 𝜖 | name ( , name ) . . . parameters

block ::= { prog } function body

expr ::= number | true | false
| undefined literal expression

| name name expression

| expr bin-op expr binary op. comb.

| expr ( exprs ) function appl.

| expr ? expr : expr conditional expr.

| ( expr ) parenthesized expr.

bin-op ::= + | - | * | / | ===
| > | < | >= | <= binary operator

exprs ::= 𝜖 | expr ( , expr ) . . . argument expr’s

Figure 2. Source ğ0 in Backus-Naur Form [18]; bold font
for keywords, italics for syntactic variables, 𝜖 for nothing,
𝑥 | 𝑦 for 𝑥 or 𝑦, and ( 𝑥 ) . . . for zero or more repetitions of 𝑥 .

semantics. Section 5 outlines how this semantics is imple-
mented in our stepper and how the tool is integrated in
the Source Academy, our online environment for teaching
SICP JS [23]. Section 6 gives example sessions of the step-
per to illustrate its basic features. Section 7 introduces the
advanced feature of function skipping, demonstrates its use
and discusses its implementation. Numerous stepper tools
and systems for designing and implementing such tools are
presented in the literature. In Section 8, we compare the most
closely related systems to our approach, before concluding
and discussing planned extensions in Section 9.
The stepper is implemented in an open-source program-

ming environment custom-built for first-year students. The
beginning of Section 6 explains how to use the system and
how to navigate to the stepper.

2 Syntax of Source §0

To focus on the distinguishing features of the stepper, Fig-
ure 2 specifies a Source ğ2 sublanguage that we call Source
ğ0. We limit the discussion in this section and Sections 3
and 4 to Source ğ0 to avoid excessive formalism in this tool
description. The full language Source ğ2Ðspecified in [16]Ð
adds blocks as statements, constant declarations, conditional
statements, lambda expressions, unary operators, more bi-
nary operators, strings, and pairs as primitive data structures.
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A full Source ğ2 stepper is implemented in the Source Acad-
emy and described in [9].

In the Source languages, the bodies of functions are blocks,
which may contain return statements and expression state-
ments in any position, as illustrated by the following (some-
what contrived) example program, which we will call f-apply.

function f(x) { 17; return x + 1; 57; }

2 + 3; f(4 * 5) - 6;

The first two chapters of SICP JS adhere to purely func-
tional programming (no assignment, stateful operations or
loops), and rely on (mutual) recursion as the central means
of control flow. In the following example program, which we
will call even-odd, the declarations of the mutually recursive
functions even and odd are followed by the application of
even to the literal 5.

function even(n) {

return n === 0 ? true : odd(n - 1);

}

function odd(n) {

return n === 0 ? false : even(n - 1);

}

even (5);

In JavaScript (and Source), the scope of a function declara-
tion is the surrounding block, or the whole program if there
is no surrounding block as in this case. As in JavaScript, we
stipulate that function declarations are moved (łhoistedž) to
the beginning of the block or program, as a preprocessing
step.

3 Reduction

In this section, we define a reduction relation→∗ that de-
scribes the evaluation of Source ğ0 programs. The stepper
visualizes the evaluation process. The reduction of the even-
odd program above will include the following steps; the exact
shapes of even and odd during reduction are explained in
Section 3.2.

even-odd

→∗ even(5); →∗ 5 === 0 ? true : odd(5 - 1);

→∗ odd(5 - 1);→∗ 4 === 0 ? false : even(4 - 1);

→∗ odd(1 - 1);→∗ 0 === 0 ? false : even(0 - 1);

→∗ false;
We will define the one-step reduction function → as a

partial function from programs/statements/expressions to
programs/statements/expressions, and→∗ as its reflexive
transitive closure. The one-step reduction function is the
least relation that meets all rules given in this section using
Gentzen-style. A value is a literal expression or a recursive
function definition (introduced in Section 3.2), and values
are denoted with the letter 𝑣 in the following.

A reduction is a sequence of programs 𝑝1 → 𝑝2 → · · · →
𝑝𝑛 , where 𝑝𝑛 is not reducible, i.e. there is no program 𝑞 such

that 𝑝𝑛 → 𝑞. If 𝑝𝑛 is of the form 𝑣;, we call 𝑣 the result

of the program evaluation. If 𝑝𝑛 is the empty sequence of
statements, we declare the result of the program evaluation
to be the value undefined. Reduction can get łstuckž; the
result can be a program that has neither of these two forms,
which corresponds to a runtime error, for example when a
function is used as an operand of the arithmetic operation *.

3.1 Operator Combinations, Conditionals, and

Sequences

The rules Op-Comb-Intro (OCI1, OCI2), Op-Comb-Red (OCR),
Cond-Intro (CI), and Cond-Red (CR1, CR2) implement the
binary operator combinations and conditional expressions
of Source ğ0.

𝑒1 → 𝑒 ′1
𝑒1 bin-op 𝑒2 → 𝑒 ′1 bin-op 𝑒2

[OCI1]

𝑒2 → 𝑒 ′2
𝑣 bin-op 𝑒2 → 𝑣 bin-op 𝑒 ′2

[OCI2]

𝑣 is result of 𝑣1 bin-op 𝑣2
𝑣1 bin-op 𝑣2 → 𝑣

[OCR]

𝑒1 → 𝑒 ′1
𝑒1 ? 𝑒2 : 𝑒3 → 𝑒 ′1 ? 𝑒2 : 𝑒3

[CI]

true ? 𝑒1 : 𝑒2 → 𝑒1
[CR1]

false ? 𝑒1 : 𝑒2 → 𝑒2
[CR2]

Our proof trees identify in square brackets each rule being
applied. The base case at the top of a tree is always a reduc-
tion rule ...-Red rule (...R...).

1 + 2→ 3
[OCR]

3 === 1 + 2→ 3 === 3
[OCI1]

3 === 1 + 2 ? 17 : 42→ 3 === 3 ? 17 : 42
[CI]

The program component where a reduction rule can be
applied is called a redex. JavaScript semantics prescribes that
there is at most one redex in any program with only one
applicable rule, and therefore→ must be a function. The re-
dexes of our example proof trees of Section 3 are highlighted
with a gray background.

Expression-Statement-Intro (ESI): An expression statement as
first statement in a statement sequence can be reduced if the
expression can be reduced.

expr → expr ′

expr; prog → expr ′; prog
[ESI]

First-Statement-Red (FSR), First-Statement-Intro (FSI): The
JavaScript specification [15] categorizes statement sequences
statically as value-producing (in our case: sequences contain-
ing expression or return statements) and not value-producing
(in our case: sequences of declarations). A statement 𝑣; in
front of a value-producing statement sequence is discarded,
and a statement 𝑣; in front of a not value-producing state-
ment sequence is retained.
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The rule FSI explains why the final value of a program
is retained, the remaining not value-producing statement
sequence being the empty sequence in this case. In Source ğ2,
the FSI rule also explains why the value of the program

1; const x = 0;

is 1 and not undefined.

prog is value-producing

v; prog → prog
[FSR]

prog → prog′ and prog is not value-producing

v; prog → v; prog′
[FSI]

Two steps from the reduction of f-apply illustrate some of
the rules introduced so far; the shape of fun is explained in
Section 3.2.

2 + 3→ 5
[OCR]

2 + 3; fun(4 * 5) - 6;→ 5; fun(4 * 5) - 6;
[ESI]

5; fun(4 * 5) - 6;→ fun(4 * 5) - 6;
[FSR]

3.2 Function Declaration and Application

Function-Declaration-Red (FDR): Function declarations are
reduced as follows.

function f (names) block prog

→ prog[f ← 𝜇𝑓 .(names) => block]

[FDR]

Here, 𝜇-terms [3] are used to represent recursive function
definitions. They are not part of Source ğ0, but appear during
reduction.

expr ::= 𝜇 name.( names ) => block recursive funct. def.

Every occurrence of name in block represents the recursive
function definition itself, and thus can be seen as a cycle in
the expression. Here, 𝑡 [𝑥 ← 𝑠] denotes the capture-avoiding
substitution of 𝑠 for 𝑥 in 𝑡 (details in Section 3.2), according
to the following scoping rules. In JavaScript [15], the scope
of a function declaration is the surrounding block or the
whole program if there is no surrounding block, and the
scope of parameters is the function body. The scope of name

in 𝜇 name.( names ) => block is block.
The first two reduction steps for the even-odd program

illustrate how function declarations give rise to cyclic recur-
sive function definitions.
even-odd→FDR

function odd(n) {

return n === 0

? false

: (𝜇 even.(n) => {

return n === 0

? true

: odd(n - 1);

})

(n - 1);

}

(𝜇 even.(n) => {

return n === 0

? true

: odd(n - 1);

})

(5);

→FDR

(𝜇 even.(n) => {

return n === 0

? true

: (𝜇 odd.(n) => {

return n === 0

? false

: (𝜇 even.(n) => {

return n === 0

? true

: odd(n - 1);

})

(n - 1);

})

(n - 1);

})

(5);

Function-application-Red (FR): JavaScript’s specification [15]
stipulates applicative-order reduction and thus, the applica-
tion of a function can be reduced, only if all arguments are
values. Since all function declarations substitute the function
name by a 𝜇-term, we combine 𝛽-reduction of the lambda
calculus with the 𝜇-rule, stated in [3] in the context of the
𝜆𝜇-calculus: 𝜇𝑥 .𝑍 → 𝑍 [𝑥 ← 𝜇𝑥 .𝑍 ]

expr = 𝜇𝑓 .( 𝑥1 . . . 𝑥𝑛 ) => block

expr(𝑣1 . . . 𝑣𝑛)→ block[𝑥1 ← 𝑣1] . . .[𝑥𝑛 ← 𝑣𝑛] [𝑓 ← expr]
This rule [FR] introduces a block expression, the second new
kind of expressions that is not part of Source ğ0:

expr ::= block block expression

The result of the second step in the reduction of even-odd is
further reduced with FR (with no free occurrences of even to
be unfolded), and then with BER3 (which we will introduce
in Section 3.3):

→FR,ESI

{

return 5 === 0

? true

: (𝜇 odd.(n) => {

return n === 0

? false

: (𝜇 even.(n) => {

return n === 0

? true

: odd(n - 1);

})

(n - 1);

})

(5 - 1);

};

→BER3,ESI

5 === 0

? true

: (𝜇 odd.(n) => {

return n === 0

? false

: (𝜇 even.(n) => {

return n === 0

? true

: odd(n - 1);

})

(n - 1);

})

(5 - 1);

Function-application-Intro (FI1, FI2): The application intro-
duction rules stipulate strict, left-to-right reduction of the
components of function applications, following JavaScript’s
specification [15].
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expr → expr ′

expr ( exprs ) → expr ′ ( exprs )
[FI1]

expr → expr ′

𝑣 ( 𝑣1, . . . , 𝑣𝑖 , expr, . . . ) → 𝑣 ( 𝑣1, . . . , 𝑣𝑖 , expr ′, . . . )
[FI2]

3.3 Block Expressions

The rule FR gives rise to block expressions, which are blocks
that appear as expressions as a result of the unfolding of a
function application expression.

Block-Expression-Intro/Reduce (BEI, BER1, BER2): A block
expression is reducible if its body is reducible. A block ex-
pression whose body is the empty statement sequence or
only contains a single value statement reduces to the value
undefined.

prog → prog′

{ prog }→ { prog′ }
[BEI]

{ }→ undefined
[BER1]

{ 𝑣 ; }→ undefined
[BER2]

BER1 and BER2 reflect that in JavaScript, a function returns
the value undefined, if the reduction of the function body
does not encounter a return statement, for example:

function g(x) { x; } g(5);

→∗ { 5; };

→BER2 undefined;

Block-Expression-Red (BER3): A block expression whose body
starts with a return statement reduces to the return expres-
sion of the return statement and ignores any subsequent
statements.

{ return 𝑒𝑥𝑝𝑟 ; stmt . . . } → 𝑒𝑥𝑝𝑟
[BER3]

Each line in the following reduction of the example f-apply
in Section 2 is annotated by all rules involved in the reduc-
tion, and the redexes of ...-Red rules are highlighted.

f-apply →FDR 2+3; (𝜇f.(x) => { . . . })(4 * 5) - 6;

→OCR,ESI 5; (𝜇f.(x) => { . . . })(4 * 5) - 6;

→FSR,ESI (𝜇f.(x) => { . . . })(4 * 5) - 6;

→OCR,FI2,OCI1,ESI (𝜇f.(x) => { . . . })(20) - 6;

→FR,OCI1,ESI { 17; return 20 + 1; 57; } - 6;

→FSR,BEI,OCI1,ESI { return 20 + 1; 57; } - 6;

→BER3,OCI1,ESI (20 + 1) - 6;

→OCR,ESI 21 - 6;

→OCR,ESI 15;

4 Capture-Avoiding Substitution

As in the lambda calculus, we define substitution by apply-
ing substitution rules recursively, following the structure of
the program. It avoids capturing by alpha-renaming, when

the component to be substituted into a name binder con-
tains one of the binder’s names as a free name. In Source ğ0,
name binders are function declarations, whose parameters
are binding, blocks, whose function declarations are binding,
and 𝜇-terms of the form 𝜇 name.(names) => block, where
name and all names in names are binding. Capture-avoiding
substitution of an expression e for a name 𝑦 in a 𝜇-term is
defined as follows:

(𝜇x .(names) => block)
[𝑦 ← 𝑒] =





(𝜇z.(names) =>

block[x ← 𝑧]) [𝑦 ← 𝑒]
if x occurs free in 𝑒

(𝜇z.(names′) =>

block[n← 𝑧]) [𝑦 ← 𝑒]
if 𝑛 ∈names occurs free in 𝑒

𝜇𝑥 .(names) =>

block[𝑦 ← 𝑒]
otherwise

where 𝑧 is fresh, neither being 𝑥 nor occurring in names,
block or 𝑒 , and where names′ is the result of replacing 𝑛 by 𝑧
in names. The replacement of 𝑥 or𝑛 by 𝑧 prior to substitution
in the first two cases is called alpha-renaming.
The rules for avoiding capturing when applying substi-

tution to function declarations and blocks given in [9] sim-
ilarly avoid the capturing of free names in the substituted
components by parameters and local names of the function
declarations and blocks.

5 Implementation and Integration

The Source Academy is web-based, written in TypeScript us-
ing React. The TypeScript sources are compiled to JavaScript
and bundled into a web application that gets served to the
browser when the learner visits the public website of the
Source Academy [14]. When the learners select the stepper,
their programs are not executed using the default Source
language implementation but by invoking the stepper com-
ponent of a collection of open-source implementations of the
Source languages that also includes transpilers to JavaScript,
interpreters, compilers and virtual machines.
Upon invoking the stepper, the program is parsed into

an abstract syntax tree (AST) following the ESTree spec of
the JavaScript syntax [13]. Instead of representing 𝜇-terms
explicitly, we decided to implement back-references to en-
closing function declarations simply by cyclic references
to their nodes in the AST, which as a result is more aptly
called an abstract syntax graph (ASG). The syntax graph of
the given program is repeatedly reduced until the result is
reached. The ASGs of all reduction steps are stored in an ar-
ray, and are converted back into program text in the frontend
of the Source Academy whenever necessary. The learner can
access the steps by dragging a slider or using hotkeys. We ex-
tend the ESTree spec for our purpose by allowing cycles and
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coreferences, and by adding block expressions. In the inter-
face, we display 𝜇𝑥 .expr simply as 𝑥 , so the reduction steps
for the even-odd example appear as shown in the beginning
of Section 3.
Our implementation of the reduction rules of Section 3

represents ASGs as persistent data structures. In the terminol-
ogy of [11], the ASG is partially persistent during reduction:
all previous versions of the ASG can be accessed but only
the newest version is being modified (constructed). Careful
implementation of reduction and substitution results in sig-
nificant sharing of data structures across the elements of the
array of ASGs. As typical for persistent data structures, a
reduction step copies only the path from the root node of the
program to the redex. Our implementation of substitution
keeps track of the already processed nodes of the syntax
graph to avoid any repeated application of recursive substi-
tution rules to nodes of cyclic ASGs. Substituted expressions
are shared across the replacements sites, introducing corefer-
ences in the resulting ASG. Coreferences within and sharing
between ASGs enable the greedy generation and retention
in browser memory of all steps of the learner program.
The run time of the stepper is not perceptible for most

textbook examples and learner programs. In our experience
of using the stepper in an introductory computer science
course in NUS, the performance of the stepper is more than
sufficient. An adjustable step limit allows the learner to play
with non-terminating programs. As a gauge of the stepper’s
performance, the evaluation of the following infinite loop
takes 12 seconds with a step limit of 50,000, on a 2.2 GHz
MacBook Pro using the Google Chrome browser Version 20.

function f() { return f(); } f();

6 Example Sessions

The web-based IDE of the Source Academy lets the learner
enter their programs in an editor on the left. After pressing
łRunž, the program is evaluated and the result is displayed
in a read-eval-print-loop (REPL) on the right, which allows
the learner to test and explore the functions declared in the
program.

Selection of the Source language (Source ğ1, ğ2, ğ3, or ğ4,
see oval highlighted in white) restricts the evaluator to only
accept programs of the selected JavaScript sublanguage. The
stepper is available when one of the purely functional Java-
Script sublanguages, Source ğ1 or Source ğ2, is selected. The
languages Source ğ3 and Source ğ4 include assignment and

destructive operations on pairs and thus, the evaluation of
their programs cannot be explained with a reduction-based
model.
After clicking on the stepper icon (see circle highlighted

in white), the evaluation switches to reduction and the REPL
is replaced by the stepper. The learner can set a limit for the
number of steps (with a default value of 1000), to handle long
reductions. Figure 1 above the abstract shows the stepper
after the learner moves the slider to Step 22. Each reduction
is shown in two steps: before (even step number) and after
(odd step number) the reduction. The redex is highlighted in
red in even-numbered steps and the result of reducing the
redex is highlighted in green in odd-numbered steps.

Each step displays an explanation text below the program.

Step 22 in Figure 1 shows the program just after the third
call of factorial. Step 36 below shows the program just
before the final recursive call of factorial, and the deferred
multiplications that have accumulated during the previous
recursive calls.

The last step shows the result of factorial(5).

To save space, we clipped off the display of the explanation
in the images below.

6.1 Stepping through the Program even-odd

We show how the stepper visualizes the evaluation of the
even-odd example discussed in Section 3.2.
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The functions even and odd are declared and substituted
into the rest of the program, where even is applied to 5. The
stepper highlights the next expression to be reduced.

After reducing the declaration function even(n) {...}

with FDR in Section 3.2, the name even in even(n - 1); and
even(5); refers to a 𝜇-term 𝜇 even.expr, which the stepper
represents by just printing even to keep the program read-
able.

When a recursive function definition is applied whose
body consists of a single return statement as in even(5), the
stepper combines FR in Section 3.2 and BER3 in Section 3.3
into a single step. The result in this case is a conditional ex-
pression in which the condition 5 === 0 is reduced to false

with CI in Section 3.1, returning the alternative expression
odd(5 - 1) using CR2 in Section 3.1, which is reduced to
odd(4).

Similarly, the application of the recursive function defini-
tion odd is replaced with the return expression of its body, in
which the condition 4 === 0 is reduced to false, returning
the alternative expression even(4 - 1), which is reduced
to even(3).

The functions even and odd call each other recursively
until the base case odd(0) is reached. This application is
replaced with the return expression of odd, in which the
condition 0 === 0 is now reduced to true,...

...finally returning the consequent expression false.

6.2 Stepping through the f-apply Program

We illustrate how the stepper visualizes the reduction of the
f-apply example given at the end of Section 3.3.

The function f is declared and substituted into the rest of
the program. After reducing the declaration function f(x)

{...} with rule FDR in Section 3.2, the name f refers to a 𝜇-
term in f(4 * 5) - 6;, which the stepper displays as just f.

The expression statement 2 + 3; is reduced to 5; using ESI,
but 5; is discarded using FSR, both in Section 3.1.
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The application of f is replaced with the body of f using FR
in Section 3.2, in which all occurrences of x are substituted
by 20. Note the highlighted result showing a block expres-
sion within an operator combination, which is not part of
the JavaScript syntax.

As with 5; in Step 6, the statement 17; is discarded due to
FSR.

The block expression’s first statement is now a return state-
ment with the return expression 20 + 1. The block is re-
duced to the return expression due to BER3 in Section 3.3.

The remaining reduction steps are completed and the pro-
gram is reduced to 15;.

7 Skipping to Function Applications

The number of steps even for relatively simple textbook
programs can quickly reach several thousand. In addition to
the slider and hotkeys for moving forward and backward by
one step, we decided to support function-level skipping. When
the evaluation of a program reaches a function application
of a function 𝑓 , the learner has in general four options:

• move to the previous step (if there is one), using a <
button,
• move to the next step (if there is one), using a > button,
• take a łbig stepž backward by skipping to the previous
application of 𝑓 (if there is one), using a ń button, or
• take a łbig stepž forward by skipping to the next ap-
plication of 𝑓 (if there is one), using a ż button.

We illustrate this feature using the example of Newton’s
method for computing square roots from Section 1.1.8 of
SICP JS. After running the programwith the stepper, it shows
the entire program as łStart of evaluationž.

At Step 10, the functions declarations are all substituted into
the function expression of the final application sqrt(5)...

...which unfolds the body of the recursive function definition
sqrt, resulting in another example of a non-JavaScript block
expression.

Reduction continues to the application of sqrt_iter at
Step 20.
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Using only the arrow button > or hotkeys, the learner would
need to click through a large number of steps...

...in search for the next call of sqrt_iter. Instead of carry-
ing out small reduction steps, the learner can skip from the
application of sqrt_iter in Step 20...

...to the next application of this function, by pressing the ż
button, highlighted above with a white circle, skipping to
Step 52.

Repeated skipping allows the learner to quickly see the
reduction steps that involve sqrt_iter.

Similarly, the learner may decide to trace the calls of the
improve function by repeatedly pressing the ż button, start-
ing in Step 42.

...followed by sqrt_iter(improve(2.333)); in Step 102
and sqrt_iter(improve(2.238)); in Step 132 (not shown).

The last call of the function is_good_enough...

...returns true,...
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...and the reduction terminates with an approximation of
√
5

to the required accuracy as the result.

Our implementation of this feature makes use of the shar-
ing of syntax graphs in the array of graphs. The buttons ń
and ż are rendered as clickable at a function application if a
previous/following application step is found, whose function
expression is the same syntax graph (using pointer equality)
as the function expression of the function application where
the search started.

8 Discussion of Related Work

Algebraic steppers have been developed for many functional
programming languages, including Scheme [10], Racket [20],
Lazy Racket [7], and Haskell [8]. The Scheme, Racket, and
Lazy Racket steppers generate a stack of continuations at
run time by instrumenting the learner’s program with łcon-
tinuation marksž in a preprocessing step. In contrast to these
steppers, our stepper directly reduces the given program,
following the presented reduction semantics and resulting
in a random-access trace data structure. In this approach, we
follow Haskell’s stepper, Hat, which stores the full reduction
trace in a data structure called łaugmented redex trailž. Our
stepper also shares with Hat the strategy of maximizing shar-
ing for space efficiency, which leads in both systems to data
sharing between steps, coreferences, and cycles and thus
requires term graph rewriting. The direct syntactic represen-
tation of intermediate states simplifies the specification and
implementation of the tool and facilitates learner interaction
but foregoes opportunities for optimized compilation of the
learner program.
Broadly speaking, our approach is similar to the way

rewriting-based operational semantics are implemented in
PLT Redex [12], a general framework for designing program-
ming languages along with their operational semantics. As
in PLT Redex, we represent the given programs syntactically
during reduction, using the data structures that represent
their components. To maximize data structure sharing, our
data structures represent recursive functions by cycles and
the instances of parameters by coreferences in their syntax
graph.

As a minimal formal system for computation, the lambda
calculus [4] is used in teaching the theory of computation and
programming language semantics (e.g. [12]), often backed up
by programming exercises or even complete experimentation
environments such as LambdaLab [21] and Lambdulus [22].

These implementations are based on term (tree) rewriting
and not on graph rewriting and do not handle explicit recur-
sion, which is necessary for a direct implementation of our
reduction semantics. They share with our stepper and with
Hat that the intermediate results of a reduction are explicitly
generated and stored. As a web-based interactive system
written in TypeScript using React, Lambdulus has a similar
general system architecture as the Source Academy.
Our stepper performs before/after redex highlighting as

do LambdaLab and Lambdulus. A survey of functional pro-
gram visualization systems in [24] lists several earlier im-
plementations that share this feature, including the Scheme
Stepper [10].
Chang introduces the JavaScript variant Javascripty [6]

in his programming languages course, the only JavaScript-
related small-step reduction-based semantics that we are
aware of. Javascripty is not designed as a JavaScript sublan-
guage. It deviates from JavaScript in the scoping of constant
declarations and supports only a restricted form of return
statements. As opposed to Javascripty [6], our approach
handles JavaScript’s statement-oriented syntax, allows re-
turn statements to occur anywhere in a statement sequence,
and covers JavaScript’s block-scoped declarations.

9 Conclusion and Future Work

This system description presents the first reduction-based
semantics for a sublanguage of JavaScript and the first al-
gebraic stepper for a language with return statements and
block-scoped declarations. As partially persistent data struc-
tures, the abstract syntax graphs that represent each step
enjoy significant sharing among each other, and internally
through coreferences and cycles, which enables a memory-
efficient implementation. Redex highlighting and function
skipping contribute to the learner’s experience. Since the
lambda calculus is a subset of the JavaScript sublanguage
covered by the stepper, it can also be used for for teaching
applicative-order-reduction lambda calculus and capture-
avoiding substitution.

The Source Academy includes a picture language, follow-
ing Section 2.2.4 of SICP JS, which serves as a prominent
example for the substitution model in our course. Future
versions of the stepper should include an integration of pic-
tures in a similar way in which the Racket IDE integrates
the pictures generated by its Pict library [19]. In addition to
function-level skipping, we intend to adopt the fine-grained
control provided by Lambdulus [22] using break points that
are specified by the learner in the program editor.

A specification of the reduction system in Coq [5] or light-
weight mechanization tools (for an overview, see [17]) will
allow us to mechanize proofs of correctness of the stepper
or improve testing.
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