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Abstract

The atomic entity of digital audio processing systems is a
digital audio signal, i.e. a sequence of sound samples that
represent the amplitude of a sound wave at discrete time
intervals. Such signals are transformed additively, by com-
bining them into more complex signals, and subtractively,
by subjecting them to digital filters. In order to cover digital
audio processing in a classroom from first principles, we
need to form collections of samples in streams or arrays, and
define operations on these collections in accordance with
the constraints of digitization. In this work, we pursue an al-
ternative approach, where the atomic entity is a continuous
wave function. We present additive synthesis operations, in-
cluding wave envelopes and musical abstractions in a purely
functional setting. The final continuous wave function is
digitized in order to make the sound audible. We report our
experiences with what we call functional audio processing as
an example domain for teaching functional programming to
first-year students, where simplicity and conceptual elegance
outweighs the inherent limitation to additive synthesis. We
describe a sequence of teachable moments that highlight the
potential of functional audio processing at an early stage in
the learning process, before streams or arrays are introduced.
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1 Motivation

The functional-first approach to CS1 introduces students
to programming with purely functional programs whose
execution is understood as a step-by-step process of simplifi-
cation and function unfolding, akin to familiar mental mod-
els in mathematical calculation and equation solving. Pro-
gramming languages used in this approach include Racket,
Scheme, OCaml, and Haskell and prominent textbooks are
How to Design Programs [4] and Structure and Interpreta-

tion of Computer Programs [1] (SICP). While intuitions from
mathematics are helpful, educators recognize the value of ex-
periential learning in CS1. A prominent example of teaching
functional programming through engaging application do-
mains is Paul Hudak’s Haskell School of Expression [8], which
introduces programming through multimedia applications,
including graphics, animation, and computer music.
For audio processing, the dominant conceptual model is

digital signal processing (DSP), where a network of signal
processing nodes is constructed, and digital signalsÐstreams
of discrete samplesÐare transferred between these nodes
along the network links. The signal processors transform
the signals additively, by combining them into more com-
plex signals, or subtractively, by subjecting them to digital
filters [17]. Examples of languages for DSP-based audio pro-
cessing are Nyquist [3] and SuperCollider [13] .
Audio processing provides a rich set of abstractions and

concepts and thus potentially offers teachable moments in
computing and computational thinking. Robert Havighurst
describes a łteachable momentž as follows.

A developmental task is a task which is learned
at a specific point and which makes achievement
of succeeding tasks possible. When the timing is
right, the ability to learn a particular task will be
possible. This is referred to as a ’teachable mo-
ment.’ It is important to keep in mind that unless
the time is right, learning will not occur. Hence,
it is important to repeat important points when-
ever possible so that when a student’s teachable
moment occurs, s/he can benefit from the knowl-
edge." [6]

In this paper, we argue that audio processing offers a co-
herent set of teachable moments even before the students
are exposed to the programming techniques necessary for
stream processing. In Section 3 we introduce a functional
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sound as a pair consisting of a function with a continuous
domain, representing the sound wave, and a number, repre-
senting the duration of the sound. With functional sounds, a
CS1 course that follows a functional-first approach can pur-
sue audio processing from first principles as soon as pairs
are discussed.

In order to explain the behaviour of even the simplest au-
dio processing nodes such as the simultaneous combination
of two sounds, a DSP-based approach needs to employ the
processing of digital signals. In Section 4, we show simple
additive sound composition operators operating on func-
tional sounds, and the teachable moments that arise from
them. Section 5 shows generic abstractions, including trans-
formations and transformation generators, as higher-order
functions on functional sounds. Section 6 demonstrates the
design of synthetic musical instruments as applications of
such transformation generators. Sections 7 and 8 explore
abstractions for manipulating musical structures. Section 9
handles the final step of functional audio processing, which is
the digitization of the functional sound for making it audible,
and Section 10 discusses implementation and performance
issues of digitization. Section 11 reports on our experiences
with this approach in our CS1 course and points to future
enhancements as well as its inherent limitations. Before we
embark on our journey in functional audio processing, we
review related work.

2 Related Work

Audio processing is inherently experiential, because the re-
sults of student programs are immediately audible. As stated
by Seymour Papert in 1980 (emphasis added),

Children create programs that produce pleas-
ing graphics, funny pictures, sound effects, music,

and computer jokes. They start interacting math-
ematically because the product of their mathe-
matical work belongs to them and belongs to
real life. [14]

Since then, the pedagogical potential of sound processing
has been realized by many educators and has been widely
published. Here, we highlight three studies spanning 30 years.
In 1991, Guzdial [5] employed guided (musical) discovery
for engaging young learners in computational thinking. In
2006, Hechmer et al. [7] present musical composition as an
open-ended, creative endeavor using LogoRhythms, a library
for Papert’s language Logo. In 2020, Köppe [12] emphasizes
the potential of audio processing in engaging students of all
genders and prior computing background.
Functional programming excels in the modeling of con-

ceptually rich domains, and thus plays a prominent role in
the use of audio processing in education. Hechmer et al. [7]
use higher-order functions to create harmonies and melodies
in Logo. Karczmarczuk [10] represents audio signals as co-
recursive lazy streams in the functional language Clean. The

most extensive use of audio processing in the realm of func-
tional programming is possibly Hudak’s Haskell School of
Music [9], which recreates a rich repertoire of audio process-
ing techniques in the functional language Haskell.
To our knowledge, all existing work in the use of audio

processing for computing education is based on digital signal
processing, using streams or arrays of discrete sound samples
as fundamental building blocks. The language FAUST [19]
might come closest to our style of audio processing. FAUST
coerces primitive operators such as + such that they are
applied to streams in the C++ programs to which FAUST
programs compile. FAUST programmers might not always
be aware of the underlying stream processing, but are inher-
ently limited to abstractions that fit into the digital audio
processing paradigm.

3 Sound Waves as Functions

An analog signal is a function 𝑎 : R → R that maps con-
tinuous time to amplitude. We limit ourselves to sounds, i.e.
analog signals of a particular duration 𝑑 that start after a
time 0, and restrict the range of the amplitude to [−1, 1]1; a
sound is a function 𝑠 : [0, 𝑑] → [−1, 1].
We use JavaScript, a dynamically-typed functional curly-

bracket programming language. All examples translate one-
to-one to Python2, Scheme, Lisp or Racket, and with ap-
propriate type declarations to OCaml, Haskell or Java3. We
use pair, head, and tail to construct pairs and select their
components, following the JavaScript edition of SICP [2].
(The corresponding functions in Scheme, Lisp and Racket
are cons, car, and cdr.) A pure sine wave with a frequency
of 440Hz can be represented in JavaScript by a function

const concert_pitch_A_wave =

t => Math.sin(2 * Math.PI * 440 * t);

A sound is a pair whose head is a wave and whose tail is its
duration in seconds. The concert pitch sound 𝐴 of duration
1.5s is constructed by

const concert_pitch_A =

pair(concert_pitch_A_wave , 1.5);

We insist on using the following selectors on sounds:

const wave = s => head(s);

const duration = s => tail(s);

We insist that the wave function of a sound returns 0 for any
time larger than its duration. The constructor make_sound
enforces this invariant:

const make_sound = (w, d) =>

pair(t => t >= d ? 0 : w(t), d);

1It is recommended not to enforce this range strictly. See section 10 for

more details.
2In the case of Python, the digitization function of Section 9 cannot rely on

tail recursion; an explicit loop is required.
3ditto for Java
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We call the invariant sound discipline: Any sound s con-
structed by make_sound fulfils

wave(s)(t) = 0, if t > duration(s)

Teachable Moment 1.

The importance of data abstraction: make_sound guaran-
tees sound discipline, pair does not.

We define a sound generator for pure sine-wave sounds of a
frequency f and duration d.

function sine_sound(f, d) {

return make_sound(

t => Math.sin(2 * Math.PI *

f * t),

d);

}

play(sine_sound (500, 1));

We make a sound audible using the digitization function
play, which we will examine in Section 9.

Teachable Moment 2.

Practical use of higher-order programming: sine_sound
returns a sound which contains a wave function. The
function play then calls the wave function to digitize the
sound.

A function that takes a frequency and a duration as ar-
guments and produces a sound of the given frequency and
duration is called a wave form. The function sine_sound

above is a wave form, and students program other common
wave forms such as square_sound and sawtooth_sound

with similar ease.

4 Programming Sound Composition
Operators

Naturally, the two primary composition methods are to ap-
pend and to overlap two sounds. The following function
shows the latter; the former is intriguingly similar and left
to the reader.

function simultaneously(sound1 , sound2 ){

const w1 = wave(sound1 );

const d1 = duration(sound1 );

const w2 = wave(sound2 );

const d2 = duration(sound2 );

return make_sound(

t => (w1(t) + w2(t)) / 2,

d1 < d2 ? d2 : d1);

}

play(simultaneously(sine_sound (500,1),

sine_sound (505 ,1)));

With functional sounds, composition operators are defined
by simply constructing the resultant wave function. These
compositions themselves require constant time and space,
similar to stream-based digital signal processing where com-
position operators just set up a node in the signal processing
network, and the stream operations take place when the
signal processing is activated. Section 9 discusses the im-
pact of composition on the time and space complexity of the
digitization function play.

Teachable Moment 3.

The importance of composition in programming: Appli-
cation domains typically come with domain-specific com-
position operators.

Teachable Moment 4.

simultaneously makes use of the sound discipline, in-
variant in action!

More teachable moments are provided by the need to
generalize composition operators to take more than two
sounds as arguments.

5 Functional Abstraction through Audio
Processing

Students often have difficulties recognizing the power of
functions to form abstractions. Kolb’s experiential learning
cycle [11] emphasizes the interplay of concrete experiences
with abstract conceptualization. Audio processing is inher-
ently experiential, and every successful abstraction becomes
a memory-forming experience. Before we handle the abstrac-
tion of a sound transformationÐa function that takes a sound
and returns a soundÐwe encourage the students to record
their own voices and sounds in their environment. A typ-
ical transformation programmed by the students reverses
a sound in time, which is at the same time conceptually
enlightening and highly entertaining.

function reverse(sound) {

const w = wave(sound );

const d = duration(sound );

return make_sound(t => w(d - t), d);

}

Teachable Moment 5.

The significance of transformation operators (unary oper-
ators whose return type is the same as the input type) lies
in their compositionality: Function composition forms
audio processing tool chains.

6 Synthesizing Instruments

Envelopes are contours that alter the behaviour of sounds
over time. The first envelope generator was developed by
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Robert Moog in the analog era of electronic synthesizers,
where a changing voltage output was triggered when a
keyboard key was depressed. Piping the output to voltage-
controlled oscillators and filters enabled the generation of
dynamic sound effects. Envelope generators are now stan-
dard features of digital synthesizers, the most common form
being Attack, Decay, Sustain and Release (ADSR) [15].

Employing our sound discipline, we implement a modified
ADSR envelope.

Teachable Moment 6.

Students program an ADSR envelope by manipulating
the wave function according to the SDSR specification, as
a function adsr that takes the relative ADSR parameters
as arguments and returns a sound transformation on
the amplitude that respects the proportions of the ADSR
phases.

Synthetic instruments can be developed additively by ap-
plying different envelopes to different wave forms at a given
base frequency and its multiples, with much potential for
further teachable moments.

7 Musical Scales

Conventional music provides a rich domain for abstraction.
The human ear perceives rational frequency relations and
an exponential progression of twelve pitches for doubling
the frequency underlies many musical traditions worldwide.
Not to exacerbate student anxiety stemming from a lack
of prior knowledge or exposure to music theory, we do
not emphasize the scientific pitch notation (𝐴♭2, etc) and
instead use the MIDI scale, where a frequency of 440 Hz
corresponds to the MIDI note 69 and every increase by 12
(an łoctavež) on the MIDI scale doubles the frequency. The
function midi_note_to_frequency converts a MIDI note
to a frequency.

function midi_note_to_frequency(note) {

// MIDI note 69 has 440 Hz

return 440 *

Math.pow(2, ((note - 69)

/ 12));

}

The notion of an integer interval (distance between two
MIDI notes) is easy to grasp for non-musically trained stu-
dents, and we present a musical scale as a an increasing
sequence of MIDI notes characterized by a sequence of inter-
vals. Without dwelling too much on its harmonic properties,
we present a conventional major scale by the interval se-
quence 2, 2, 1, 2, 2, 2, 1, starting with a chosen note.

Teachable Moment 7.

The linking of musical standards to programming pro-
vides a teachable moment about abstraction: students

need not gain an in-depth understanding of Western mu-
sical theory when they can simply trust the above trans-
formers to convert the notes for them.

Students with musical training find opportunities to redis-
cover their musical knowledge through their newly acquired
programming skills. We borrow the musical abstractions
from established functional programming libraries and sys-
tems for digital audio processing such as the Haskell School
of Music [9].

8 Rhythmic Structures

Rhythmic structures provide an excellent opportunity to
teach functional programming by linking them to the Kon-
nakol system and nested lists. Konnakol is the art of creating
rhythms through vocal syllables such as łThaž, łKaž, łDhiž,
and łMiž, each representing a distinct sound, possibly from
a percussive instrument. An example of a rhythm would
be łTha Ka Dhi Mi Ta Ri Ki Tha Nomž. We define a simple

rhythm as a list of non-negative integers, each representing
a distinct Konnakol syllable. We also recognise that within a
rhythm, sections can be repeated multiple times. Therefore,
we say that all rhythms can be represented recursively as:

• a simple rhythm, or
• a list of rhythms, or
• a pair whose head is a rhythm and whose tail is an
integer that represents the number of times the rhythm
must be repeated.

An example of a rhythm in this rhythm language is

pair(list(pair(list(0, 1, 2, 3), 3),

pair(list(1, 5, 2), 2)), 2)

Teachable Moment 8.

The importance of language design: We routinely invent
new formal languages as required by our application do-
mains.

We instruct students to build a function that converts any
rhythm to its simple rhythm equivalent, which can then be
further processed into a functional sound.

Teachable Moment 9.

The ubiquity of language processing: A rhythm converter
can be seen as an interpreter for the rhythm language.

9 Digitization

Functions in programs are not directly audible. We need to
convert them into air pressure waves that mirror the wave
functions programmed by the students. In this łlast milež of
functional audio processing, we evaluate the wave function
at fixed time intervals to produce a list of sample values. We
explore the following tail-recursive function.
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function samples(sound , sample_rate) {

const w = wave(sound );

const d = duration(sound );

const sample_dur = 1 / sample_rate;

function accumulate_samples(t, acc) {

return t < 0 ? acc

: accumulate_samples(

t - sample_dur ,

pair(w(t), acc ));

}

return accumulate_samples(d, null);

}

Teachable Moment 10.

The importance of tail recursion: Any non-tail-recursive
solution will quickly fail for sounds of longer than around
300 milliseconds as call stack limits are generally within
the range of 10000 to 15000. Students are also encouraged
to experiment with this function and experience differ-
ences in processing speed, depending on the complexity
of the given sound.

With samples, the function play can be explained as fol-
lows, where a natural choice for global_sample_rate is
44100.

const global_sample_rate = 44100;

function play(sound) {

play_using_computer_audio_system(

samples(sound , global_sample_rate ));

}

10 Implementation

Students will perceive aliasingwhen listening to their sounds
using this play function and are encouraged to compare the
phenomenon to strobe effects in everyday life. The underly-
ing sampling theorem given by Shannon[16] states:

If a function 𝑓 (𝑡) contains no frequencies higher
than𝑊 , it is completely determined by giving
its ordinates at a series of points spaced 1/2𝑊
seconds apart.

Fourier analysis teaches the students that their sounds can
be seen as being composed of sine waves of various frequen-
cies. Unfortunately, the function square_sound in Section 3
and similarly defined sawtooth and triangle waves are not
band-limited; there is no𝑊 that permits a suitable choice
of global_sample_rate in Section 9. When played with a
high frequency fundamental, these wave forms are therefore
perceived as inharmonic. We guide the students to pursue
two directions to mitigate the resulting aliasing by (1) in-
creasing the sample rate, and (2) developing alternative im-
plementations for the basic wave forms. We currently use
the second approach in our library and provide a primitive

play function that works like the play function in Section 9
but produces an array instead of a list. In our web-based en-
vironment for JavaScript programming, we direct the output
to an audio buffer in WebAudioAPI which plays the sound
in the web browser.
The sampling time for simple sounds is several orders of

magnitude shorter than their duration and thus sampling
can be easily performed on the fly, which eliminates any
perception of digitization. The situation changes as the stu-
dents creatively explore the musical possibilities discussed in
Sections 7 and 8. The digitization time for the most complex
student creations approaches and occasionally exceeds their
duration and thus might lead to perceptible digitization run
times. As part of our CS1 course, we conduct an annual func-
tional audio processing contest, where students compete in
achieving musical effects. Typical contest entries [18] are
covers of popular songs.

11 Results and Future Work

Our CS1 course has included sound processing since 2014.
From 2014 to 2018, the course used a hybrid approach where
functional sounds where converted to digital sounds, which
were then combined using conventional digital audio pro-
cessing techniques. We radically simplified our CS1 audio
component in 2019, with very positive student anonymous
feedback, especially in 2020: łWhat I liked about the module
[course]ž (emphasis added)

• . . . a lot of interesting problems such as runes, sounds,
curves andmanipulating these with preśdeclared func-
tions. This made the module more fun and interesting.

• . . . The many different components integrated into
source (sound, robots etc) widens the scope of learning.

• . . . The quests and missions allowed us to revise our
concepts and also allowed us to apply our skills on
realślife concepts, like audio processing and video imag-
ing processing.

• . . . Interesting assignments that use sound, graphics. . .
The annual sound contest is established as one of the high-
lights of our first-semester programme.
The extreme simplicity of functional audio processing

makes it possible to integrate itÐalong with other experien-
tial domains such as graphics and roboticsÐinto a functional-
first CS1 course for computer science first-year students. The
inherent limitation to additive sound processing does not
cause problems in this context, and the potential runtime
limitations imposed by complex musical creations have not
negatively affected students. As devices continue to increase
in speed, we expect functional audio processing to become
more feasible for audio processing and software courses
other than first-year CS1. We are currently exploring the
parallelization of the digitization process and expect signifi-
cant speedups due to the inherent embarrassing parallelism
of the wave function generated with the abstractions pre-
sented in this paper.
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