
Honours Year Project Report

Semantics and Implementation of the Plankalkül

By

Jimmo Barrion Petisme

Department of Computer Science

School of Computing

National University of Singapore

2003/04

Honours Year Project Report

Semantics and Implementation of the Plankalkül

By

Jimmo Barrion Petisme

Department of Computer Science

School of Computing

National University of Singapore

2003/04

Project No: H41080

Advisor: Asst. Prof. Martin Henz

Deliverables:

Report: 1 Volume

Program: 1 Disk

Abstract

The semantics of the Plankalkül, the first high-level programming language, is investigated in this

project. This is done through a linear representation of the language which is called linPlank. At the

same time, the bit-centric data model of the Plankalkül is studied and a simple type system is formulated.

The semantics and data model serve as a base for an implementation of linPlank. The implementation

highlights a number of interesting aspects and shortcomings of the Plankalkül. The semantics and imple-

mentation developed here allow for a detailed assessment of the historical significance of the language.

Subject Descriptors:

D.3.3 Language Constructs and Features

F.3.2 Semantics of Programming Languages

F.3.3 Studies of Program Constructs

K.2 History of Computing

Keywords:

Semantics of the Plankalkül, Implementation of the Plankalkül

Acknowledgements

First of all, I would like to thank God for giving me an opportunity to prove myself through this project.

He has given me a lot of courage and support, and I know that’s He’s always there watching.

I would also like to thank my mother, who is constantly praying for my health and safety, and my

father, who’s probably having fun Up There. Without them, I won’t exist.

Next I would like to thank Dr Martin Henz, my very knowledgeable supervisor. Even though he is

very busy with academic responsibilities as well as his role in FriarTuck Corporation, he still manages

to help me with the best that he could.

Then I would like to thank Yuliana Wiyono for her encouragement and countless support througout

the completion of this thesis.

Last but not the least, I would like to thank the following: The 6th Management Committee of

the NUS Students’ Computing Club, for understanding that I might not be able to fully perform my

responsibilities due to this project; the Academic Liaison Committee for being such understanding and

supportive people; the NUS Filipino Community – you’re the best gang ever; and of course Keppel

Offshore and Marine Ltd, for giving me an opportunity to study here in the wonderful world of NUS.

Table of Contents

1 Introduction 1

1.1 Konrad Zuse and the History of Computing . 1

1.2 The Plankalkül . 2

1.2.1 Background . 2

1.2.2 Features . 2

1.2.3 Status and Issues . 3

1.2.4 The 2000 Implementation . 5

1.3 Objectives of this Project . 6

2 A Semantics for the Plankalkül through linPlank 7

2.1 linPlank– The Linear Representation of the Plankalkül 7

2.1.1 Preliminaries . 7

2.1.2 Rewriting Plankalkül Programs in linPlank . 8

2.1.3 Methodology in Defining the Semantics of linPlank 8

2.2 linPlank0 - A Bit-Calculator Language . 9

2.2.1 Syntax . 9

2.2.2 The Semantic Framework . 10

TABLE OF CONTENTS iii

2.2.3 Assessment . 14

2.3 linPlank1 - Extending the Language with Loops . 14

2.3.1 Extensions to the Syntax . 14

2.3.2 Additions to the Semantic Framework . 16

2.3.3 Assessment . 17

2.4 linPlank2 - A More Practical Subset of linPlank . 18

2.4.1 Extensions to the Syntax . 18

2.4.2 Additions to the Semantic Framework . 19

2.4.3 Assessment . 23

2.5 Concluding Remarks . 24

3 A Type System for linPlank 25

3.1 Motivation . 25

3.2 Some Assumptions . 26

3.3 Types in the Semantic Domain and the Type Translation Relation 26

3.4 Type Environments . 26

3.5 Well-typedness of Expressions . 27

3.6 Well-typedness of Statements . 29

3.7 Well-typedness of Programs . 30

3.8 Concluding Remarks . 31

4 An Implementation of linPlank 32

4.1 Overview . 32

4.2 Implementation Design Issues . 32

4.2.1 Interpreter as the Nature of the Implementation 32

TABLE OF CONTENTS iv

4.2.2 Java as Choice of Language . 33

4.2.3 Overall System Design . 33

4.3 Modules . 33

4.3.1 Preprocessor . 33

4.3.2 Parser . 35

4.3.3 Parse Tree Transformer . 35

4.3.4 Type System . 35

4.3.5 Run-time Evaluator . 36

4.4 Concluding Remarks . 36

5 Conclusion 38

5.1 The Effects of the Plankalkül in the History of Computing 38

5.2 Limitations of this Project and Suggestions for Further Study 39

References 40

List of Figures

2.1 Conceptual visualization of stores . 14

4.1 Overall Implementation Design . 34

4.2 Transformation of List Size Expression Parse Trees . 37

4.3 Computation of Values of List Size Variables . 37

Chapter 1

Introduction

1.1 Konrad Zuse and the History of Computing

Konrad Zuse (1910-1995) is well-known as one of the pioneers of computing in Germany. He is most

attributed to the development of the computers Z1 to Z4, sophisticated machines that can be said to be

quite ahead of his time back then. Being a civil engineer, he started building computing machines in

order to ease him from the burden of manually solving tons of tedious equations – a motivation that had

shaped his whole career.

The Z1 to Z4 computers, which were each developed in sequence between 1936 and 1945, made

use of binary digits, which is similar to the representation of data in modern computers. In fact, the

architecture of these computers were very similar to the modular component architecture of modern

processors, except for the fact that the latter are larger. Additionally, the Z1 and Z2 computers made

use of mechanical contraptions to implement storage, while the Z3 and Z4 made use of a combination

of mechanical storage and relays. However, during World War II, the machines, along with the design

papers, were destroyed, except for the Z4, which was transfered to the small town of Hinterstein in 1945.

After the war, the Z4 was used in the Institute of Applied Mathematics at the Eidgenössische Technische

Hochschule (ETH) at Zürich, Switzerland, and it was Heinz Rutishauser, one of the pioneers of Algol,

who programmed it (Zuse, 1980, n.d.; Bauer, 1980).

It is quite astonishing to note that Zuse made these developments without knowledge of the happen-

ings in other countries, not even in Germany itself. He had not known of the earlier work of Charles

Chapter 1 – Introduction 2

Babbage until some time later, nor had he heard of the research of John von Neumann and others during

that time.

1.2 The Plankalkül

1.2.1 Background

During World War II, when Konrad Zuse took refuge in Hinterstein, along with his pregnant wife and

the not-yet-finished Z4, he took the time to write some papers regarding his theory of computation. Two

of these are the “Statements of a Theory of General Calculation” and “The Plankalkül”. The former

described the use of binary numbers to represent different kinds of data, as well as the Calculus of

Propositions (also known as Propositional Logic) and its use to conduct more complicated operations

like arithmetic and algebra. The latter, on the other hand, described a way to represent algorithms or, in

Zuse’s terms, “plans for calculation” (Bauer, 1980; Zuse, n.d., 1980, 1989).

1.2.2 Features

The Plankalkül is disputably the first high-level programming language ever designed. It had most of

the features of a modern procedural language like C or Pascal, except that pointers, global variables and

recursive functions are not supported. Programs written in the Plankalkül can be said to be black boxes

that accept some input values and return some output values. Take for example the following program,

taken from Zuse (1989):

P1.72

V

S

∣
∣
∣
∣
∣
∣
∣
∣
∣

V ≤ V ⇒ R

0 1 0

1.n 1.n 0

W1(n)

V

K

S





V ⇒ Z V ¿ V ⇒ Fin2

0 0 0 1

i i i

0 0 0 0





Z ⇒ R

0 0

0 0

The program above describes the procedure for testing whether V0 ≤ V1 is true or false. At first

glance, one may be overwhelmed by the matrix-like notation used. However, this two-dimensional

Chapter 1 – Introduction 3

syntax is supposedly for ease of reading, and every Plankalkül program can be rewritten using a linear

representation, as this project will demonstrate.

Aside from this peculiar feature, the Plankalkül is also able to perform Predicate Logic operations,

such as checking whether all possible values for a variable that satisfies a particular condition, and list

operations, such as collecting all the possible values for a variable that satisfies a particular condition in

a list. In his book “The Plankalkül”, Zuse demonstrated the power of the language by writing a chess-

playing program. Also, because of these features, Giloi suggested in his paper (1997) that the Plankalkül

had the expressibility the language APL, or even Lisp, had.

Despite all these powerful features, the Plankalkül was not embraced in its entirety; nor had the ideas

revolving around it made its way into Algol, even though Rutishauser and some others involved in the

project knew of the Plankalkül.

1.2.3 Status and Issues

Scarce Documentation

Most of the material about the Plankalkül is written in German. However, an English translation of “The

Plankalkül” has been published by the Germany-based Gessellschaft für Mathematik und Datenverar-

beitung (GMD) in 1989. It is to be noted that this translation uses a lot of ambiguous wording, and

decyphering the statements in the book can cause headaches.

A few papers were written about the language. In Bauer and Wössner (1972), the various features

of the Plankalkül are highlighted, and translations of some of the programs into Algol 68 are presented.

Giloi (1997), already mentioned in the previous section, assesses the features of the Plankalkül and

relates it to both von Neumann and non-von Neumann languages. In addition, Knuth and Trabb Pardo

(1980) explores the language along with other programming languages conceptualized between 1945

and 1958. They compared each of the languages by writing their chosen algorithm – which they aptly

named the TPK algorithm – in each of the languages.

Unusual Two-Dimensional Syntax

One of the issues hindering the development of an implementation of the Plankalkül is the unusual

syntax used, which used multiple lines to express the different elements of the language. Until now, the

standard input and output of a computer is still based on line feed, meaning that characters are still read

Chapter 1 – Introduction 4

line by line and it is not possible to read them vertically without storing them in a large buffer. However,

it is noticeable that the Plankalkül’s syntax seems to be of a visual nature. With the improvement of

the graphics capabilities of computers and the increasingly establishing studies on GUIs, using visual

editors to write Plankalkül programs is a very feasible approach.

Zuse (1989) also mentions that in order to realize an implementation of the Plankalkül, it has to be

converted into a linear form first. And indeed, even though the language’s syntax is not mainstream,

it can be observed that parse trees can still be constructed from it, which is typical of context-free

grammars. Thus, any program written in the Plankalkül can be rewritten using a linear representation.

Recognition for Zuse’s Works

Zuse was more focused on the hardware aspects of his endeavors rather than the software. He founded

a company called Zuse KG which is the first computer company in Germany, and through this company

he was able to design different computers. Their first task was the restoration of the Z4 and its delivery

to ETH Zürich.

Actually, he considered implementing the Plankalkül in one of his computers, but due to the limited

resources (monetary and human) he decided not to (Giloi, 1997; Zuse, 1989). And so, for a long period

of time, the pieces of paper containing the specifications of the language was kept in Zuse’s drawer.

On another note, in (Zuse, 1989), it can be seen that Zuse wanted recognition for his work on the

Plankalkül. He was bitter over his claim that Rutishauser, Bauer and the others involved in the birth of

Algol who knew of his work ignored the concepts contained in the Plankalkül. He wrote:

The indifference towards the PK [Plankalkül] was somewhat disappointing for me, when

the official discussions about Algol started in 1955. Some of the participants had sufficient

knowledge of the PK to cooperate and in my opinion it would only have been fair if they

had openly announced and utilized the ideas anticipated in the PK.

In (Bauer, 1980), more statements by Zuse are mentioned, which are translated here from German for

convenience.

The languages Fortran and Algol were developed around 1955. These were also primarily

geared towards numerical calculations, but otherwise correspond to the Plankalkül. It is

hard to determine today, to what extent ideas of the Plankalkül were adopted.

And in another statement, Zuse said:

Chapter 1 – Introduction 5

I myself was at that time busy building the company and only occasionally could have con-

versations with the creators of Algol, such as Rutishauser and Bauer. Most often we were

talking at cross purposes. The basic idea of the Plankalkül – to build a programming lan-

guage systematically from the ground up – seemed excessive or was perceived as a burden.

Bauer then rebutted:

The Algol procedure concept, the type concept with specifications, the assignment concept

was conceptually based on similar ideas in the Plankalkül. Quite frequently, this was done

by the European Algol members subconsciously.

And also, he said (with omissions):

Certainly, for numerical work, and this was mainly the purpose of Algol 58, there was

neither a need nor an advantage for describing algorithms down to the bit. Moreover, the

Plankalkül had a horrible notation, absolutely unsuited for the input to a compiler. . . Moreover,

Rutishauser had already in 1952 found the convenient notation for a for-clause, which is

lacking in the Plankalkül together with many other helpful notational devices. Concep-

tually the Plankalkül has had its maximal influence on the European Algol development;

fortunately for Algol, it has left no scars on Algol notationally.

And by this, Bauer concludes that the Plankalkül had actually influenced the history of programming

languages through Algol.

After the death of Zuse in 1995, his son Horst, along with a group of people headed by Raúl

Rojas, spread his legacy though the Internet. An Internet archive of Zuse’s works can be found in

http://www.zib.de/zuse. Also, Horst Zuse wrote a biography of his father, which can be found

in Zuse (n.d.).

1.2.4 The 2000 Implementation

Rojas et al. (2000) mentions the development of what can be said as the first implementation of the

Plankalkül. There were two parts to their implementation: a visual editor which allowed the user to

write the program using the two-dimensional Plankalkül syntax and then translates it into a linear repre-

sentation, and an implementation of the linear representation of the language. Furthermore, the latter is

implemented as a compiler which emits virtual machine code that they devised. However, they have only

Chapter 1 – Introduction 6

implemented a subset of the language, without support for the predicate calculus and list operations, as

well as support for variable-sized lists.

It is to be noted that they had made some assumptions in the development of their implementation.

To implement a simple type system, they required that all variables have their type declared, and that

these variables cannot be casted between types. In addition, in case there are multiple ways to represent

components of the language, e.g. bits, they only chose one. However, their implementation has not been

totally consistent with the original syntax of the Plankalkül, as they have represented the notation for list

structures differently (n.0 as opposed to the original 1.n for the an n-sized list of bits and n.σ as opposed

to n × σ for an n-sized list of data with type σ).

1.3 Objectives of this Project

As a consequence of its lack of acceptance, not a lot of information on the Plankalkül is available.

A formal semantics of the language is needed to thouroughly assess its significance in the history of

computing. Only with such a formal approach can we be able to verify or falsify Zuse’s claims, which,

unfortunately, was not done by him. This project attempts to fill this gap.

This project investigates the semantics of a subset of the Plankalkül, which contains most of the

its procedural language features, in Chapter 2. This is achieved through a linear representation called

linPlank, whose syntax is claimed to be in one-to-one correspondence with the syntax of the Plankalkül.

This linear representation is consistent with the syntax and semantics of the Plankalkül, and by deriving

its semantics, the semantics of the Plankalkül can be similarly conceptualized. In Chapter 3, a simple

type system for linPlank will be presented. An implementation of linPlank shall be discussed in Chapter

4, and issues regarding the development of the implementation will be addressed. Finally, in the con-

cluding Chapter 5, the significance of the Plankalkül will be assessed in light of the new discoveries

presented in the thesis. In addition, the limitations of the project will be highlighted, and details of what

is needed to be done to conclude the historical assessment of the Plankalkül will be given.

Chapter 2

A Semantics for the Plankalkül through

linPlank

2.1 linPlank– The Linear Representation of the Plankalkül

2.1.1 Preliminaries

As mentioned in the previous chapter, one of the problems in the development of an implementation of

the Plankalkül is its two-dimensional syntax. Konrad Zuse himself mentioned in The Plankalkül (1989)

that if an implementation of the Plankalkül is to be undertaken, there is a need to design an intermediate

language which is linear in nature. And indeed, as (Rojas et al., 2000) proposes, an implementation

would require two parts: an “editor” which translates raw Plankalkül syntax to the linear representation,

and the core implementation of the linear language.

In this section linPlank, my proposed linear representation of the Plankalkül, is presented. In de-

signing this language, certain factors need to be carefully considered. First of all, it should closely

resemble the raw Plankalkül syntax. Also, the semantics of the language should be similar to that of the

Plankalkül. Thus, it should be sufficient to provide the semantics of linPlank in order to get an idea of

what programs written in the Plankalkül would mean.

Chapter 2 – A Semantics for the Plankalkül through linPlank 8

2.1.2 Rewriting Plankalkül Programs in linPlank

The two-dimensional nature of the Plankalkül is due to the representation of variables. Consider the

following notation:

V ∧ Z ⇒ R

V 0 0 0

K 0

S 1.n 0 0

The last three lines are labeled V, K, and S, which signify the address, component index, and structure

of the variable or expression respectively. In linPlank, the statement above is written as:

V0[:0:]:1.n & Z0:0 => R0:0;

The V component is put beside the variable name (either V, Z, R or i, see later sections), the K component

is enclosed with square brackets and colons, and the S component follows a colon. In case a component

is not provided in the Plankalkül notation, this component, along with its delimiters, will also not be

present in the linPlank representation. As we go along, the various features of the Plankalkül and how

they are translated to linPlank notation will be presented.

2.1.3 Methodology in Defining the Semantics of linPlank

There are different methods in presenting the semantics of programming languages. The three most es-

tablished methods are Axiomatic Semantics, Operational Semantics and Denotational Semantics. Read-

ers are referred to Schmidt (1988) to know the differences between the three.

Presenting the semantics of linPlank using Denotational Semantics is chosen, mainly because of its

expressive power and the ease of developing an implementation based on it. The denotational semantics

of linPlank will be presented using the notations of Stoy (1977) and Schmidt (1988).

The semantics will be presented using an incremental approach, meaning that the presentation will

start from a minimal subset of the language, gradually adding features through every iteration. This way

the reader can grasp the concepts easily, just like how a baby has to be fed smaller spoonfuls so that he

can easily digest the food.

Chapter 2 – A Semantics for the Plankalkül through linPlank 9

2.2 linPlank0 - A Bit-Calculator Language

2.2.1 Syntax

linPlank0 is a simple language, only supporting bit values and types (denoted ”S0” in the Plankalkül),

as well as boolean expressions and assignment and conditional statements. Also, programs written in

this language subset will only have one subprogram, that is, the main subprogram, as this subset does

not have support for subprogram calls.

Like the Plankalkül, variables in linPlank0 are also classified as input (V), output (R), or local (Z)

variables. Right now, they can only have bit values, meaning they can only have the structure (or type,

in modern terminology) S0.

In the Plankalkül, there are two ways of representing bit values. One way is by using the symbols

“+” for a true value and “−” for a false value, and the other is by using the symbols “L” for a true value

and “o” for a false value. The latter is used, as it is more similar to modern bit representations. However,

this similarity will only be evident later, when bit strings are already supported.

Assignment statements in the Plankalkül take the form E ⇒ V , where E is an expression and V is a

variable. Meanwhile, conditional statements take the form E −→· S where E is an expression and S is a

statement. Since the symbols used in the notations are not supported in standard ASCII, linPlank0 uses

the symbols => and -.> instead of ⇒ and −→· respectively.

There are six boolean operations supported in the Plankalkül, which are conjunction (AND, ∧),

disjuction (OR, ∨), negation (NOT, ¬, or E, where E is an expression), implication (IMPLIES, →), bit

equality (XNOR, ∼), and bit inequality (XOR, ¿). However, in linPlank0, the symbols &, |, !, ->, ˜,

and !˜ are used for the respective operations.

To summarize, below is the abstract syntax definition for linPlank0:

• P ∈ Programs

Sp ∈ Subprograms

fid , idx ∈ N

I ∈ InputVariableLists

O ∈ OutputVariableLists

S ∈ Statements

E ∈ Expressions

Var ∈ Variables

Chapter 2 – A Semantics for the Plankalkül through linPlank 10

V ∈ InputVariables

R ∈ OutputVariables

Z ∈ LocalVariables

B ∈ {0, L}

• P −→ Sp

Sp −→ P fid R(I) => (O) [S]

I −→ V, I | V

O −→ R, O | R

S −→ E =>Var | E -.> [S] | S1; S2

E −→ B | Var | E1&E2 | E1|E2 | !E | E1->E2 | E1˜E2 | E1!˜E2 | (E)

Var −→ V | R | Z

V −→ V idx

R −→ R idx

Z −→ Z idx

Notice that the statement inside the conditional in the definition above is enclosed with square brack-

ets. This signifies that this statement is contained in a block in the abstract syntax. This is implied in

Zuse (1989). For now, it is sufficient to define the block as a group of statements. However in the next

subset of the language, its purpose will be revealed.

2.2.2 The Semantic Framework

After defining the syntax, the semantic framework shall now be laid out. The framework is presented by

first introducing the semantic domains, defining their nature and identifying operations between elements

of these said domains. After that the semantic functions will be defined over the syntactic elements of

linPlank0.

Semantic Domains

Basic Values As linPlank0 only supports bit values, the only basic values defined for this language

subset are bit values. In the semantic framework, these bit values can have the value 0 or 1. Over this

domain, six operations are defined, namely and, or, not, implies, xnor and xor. As these operations are

the standard bit operations, their behavior will not be explicitly defined.

Chapter 2 – A Semantics for the Plankalkül through linPlank 11

• Domain: DV = BV + {⊥}

• Domain: BV = {0, 1}

Operations:

– and : BV × BV → BV

– or : BV × BV → BV

– not : BV → BV

– implies : BV × BV → BV

– xnor : BV × BV → BV

– xor : BV × BV → BV

Notice that {⊥} is included in the definition of the domain of denotable values (DV). This is the set

containing the error value ⊥. We define that all operations involving denotable values are irrecoverable,

meaning that if any one of the inputs to a particular operation is the error value, the result is still the error

value.

Stores Stores are the representations of the computer memory allocation system. For simplicity of

implementation, the store in linPlank0 is defined as a triple, consisiting of three substores, one for each

of the types of variables. These substores, usually represented using the greek characters ν, ρ and ζ for

the input, output and local stores respectively, each have two operations: σ[n 7→ v], where the store σ

is extended with a mapping for the location n to the value v; and σ(n), where the value mapped to the

location n in store σ is returned. Also, the symbol ∅ represents an empty store.

• Domain: VSto = (N→ DV) + {⊥}

Operations:

– ∅ : VSto

– 7→: VSto → N→ DV → VSto

• Domain: RSto = (N→ DV) + {⊥}

Operations:

– ∅ : RSto

Chapter 2 – A Semantics for the Plankalkül through linPlank 12

– 7→: RSto → N→ DV → RSto

• Domain: ZSto = (N→ DV) + {⊥}

Operations:

– ∅ : ZSto

– 7→: ZSto → N→ DV → ZSto

• Domain: Sto = VSto × RSto × ZSto

For store access operations, the error value ⊥ is returned if there is no value stored under the given

index. On the other hand, if a store is updated with an error value, the error value is returned. Again,

operations involving error values are irrecoverable.

Semantic Functions

The semantic functions for linPlank0 will now be defined.

• P : Program −→ DV × DV × · × DV −→ DV × DV × · × DV

– PJSpK(α1, α2, . . . , αn) = SJSpK(α1, α2, . . . , αn)

• S : Subprogram −→ DV × DV × · × DV −→ DV × DV × · × DV

– SJP fid R(V0, V1, . . . , Vn)=>(R0, R1, . . . , Rm) [S]K(α1, α2, . . . , αn+1) =

(ζ ′(0), ζ ′(1), . . . , ζ ′(m)), where (ν ′, ρ′, ζ ′) = X JSK(ν,∅,∅) and

ν = ∅[0 7→ α1][1 7→ α2] . . . [n 7→ αn+1]

• X : Statement −→ Sto −→ Sto

– X JE=>V idxK(ν, ρ, ζ) = (ν[idx 7→ EJEK(ν, ρ, ζ)], ρ, ζ)

– X JE=>R idxK(ν, ρ, ζ) = (ν, ρ[idx 7→ EJEK(ν, ρ, ζ)], ζ)

– X JE=>Z idxK(ν, ρ, ζ) = (ν, ρ, ζ[idx 7→ EJEK(ν, ρ, ζ)])

– X JE-.>[S]Kσ =







X JSKσ if EJEKσ = 1

σ otherwise

– X JS1; S2Kσ = X JS2Kσ
′, where σ′ = X JS1Kσ

Chapter 2 – A Semantics for the Plankalkül through linPlank 13

• E : Expression −→ Sto −→ DV

– EJBKσ = BJBK

– EJV idxK(ν, ρ, ζ) = ν(idx)

– EJR idxK(ν, ρ, ζ) = ρ(idx)

– EJZ idxK(ν, ρ, ζ) = ζ(idx)

– EJE1&E2Kσ = and(EJE1Kσ, EJE2Kσ)

– EJE1|E2Kσ = or(EJE1Kσ, EJE2Kσ)

– EJ!EKσ = not(EJEKσ)

– EJE1->E2Kσ = implies(EJE1Kσ, EJE2Kσ)

– EJE1˜E2Kσ = xnor(EJE1Kσ, EJE2Kσ)

– EJE1!˜E2Kσ = xor(EJE1Kσ, EJE2Kσ)

While linPlank0 only allows for one main subprogram, and the use of two semantic functions to give

meaning to this might seem redundant, we use two semantic functions P and S in preparation for the

extensions presented in the following sections.

An interesting thing to note is the execution of subprograms of a subprogram, represented by the

semantic function S . It includes a mapping from each of the input variables to each of the respective

input values in an empty store before executing the body of the subprogram. After execution of the body,

the values of the output variables in the store are retrieved and returned.

Note that the definitions of E for the boolean expressions (AND, OR, etc.) use the operations for

bit values. While it might be alright at this stage, things will get messy when we introduce tuple values

in linPlank2, the third subset of the language. By convention, if input values to an operation is not a

member of the domain, the error value is returned, as if there is a wrapping function which checks for

compatibility. However, it is the job of the type system, which will be conceptualized in Chapter 3, to

ensure that input values to an operation are members of the domains in which that operation is defined.

Finally, the semantic function B translates Plankalkül bit strings (and numeric constants later in

linPlank2) to their semantic data model representations. It shall not be explicitly defined here.

Chapter 2 – A Semantics for the Plankalkül through linPlank 14

Instance of P1

V0 V1 V2 V3 V4 . . .

Z0 Z1 Z2 Z3 Z4 . . .

R0 R1 R2 R3 R4 . . .

Instance of P2

V0 V1 V2 V3 V4 . . .

Z0 Z1 Z2 Z3 Z4 . . .

R0 R1 R2 R3 R4 . . .

Figure 2.1: Conceptual visualization of stores

2.2.3 Assessment

At this point, it can be seen that the semantics of linPlank (and of the Plankalkül) is similar to that of

procedural programming languages such as C and Pascal. However, the notion of global variables are

not defined in the Plankalkül which is why every instance of the execution of a subprogram will have its

own store.

Moreover, while usually the store is defined as mappings from variables to memory locations, the

semantics defined in this chapter does not reflect memory management. This is because the scope

of all variables are local to a subprogram, and consequently no cross-references to memory locations

between subprograms are present. It is sufficient to say that the stores for instances of the execution

of subprograms are allocated some non-overlapping region in the memory, and this region is further

partitioned to hold values for the different types of variables (see Figure 2.1). However, the semantics

defined above can still be rewritten such that memory management is taken into account.

2.3 linPlank1 - Extending the Language with Loops

2.3.1 Extensions to the Syntax

linPlank1 is the next incremental subset to linPlank. The subset adds loops and an instruction to exit

blocks, which will also be redefined in this section, and loops.

Loops in linPlank1 come in the form of W[S], where S is a statement or a group of statements.

Normally S would consist of a groups of conditionals, the last one being the complement of all the

Chapter 2 – A Semantics for the Plankalkül through linPlank 15

previous cases, as illustrated below (Plankalkül notation on the left, linPlank on the right):

W

V

S

V

S

V





V −→· Z ⇒ R

0 0 0

0 0 0

V −→· Z ⇒ R

1 1 0

0 0

V ∧ V ⇒ Fin2

0 1





W [

V0:0 -.> Z0:0 => R0:0;

V1:0 -.> Z1:0 => R0;

!V0 & !V1 => Fin 2;

]

In fact, this last complementing condition may be omitted, and thus an implementation would be required

to intelligently add the said statement to the body of a loop.

On the other hand, Fin statements are the instructions to exit blocks and loops. A Fin statement exits

the current block. However, the Fin statement can also include a number which indicates the number of

blocks it will exit. Fin statements are also used to terminate loops, being used as the executing statement

in the last complementing conditional statement inside a loop. It has to be noted that the semantic

interpretation of loops is like that two levels of blocks, as illustrated below:

W[S] ⇒ [[S][S][S] . . .],

which is the reason why the Fin statement used in in the last complementing conditional statement is of

the second degree, i.e. Fin 2. Therefore, a Fin statement and a Fin 2 statement within the scope of

the loop corresponds to the continue and break statements of C and Pascal.

Notice also that the last complementing statement inside the loop (such as the previous example) uses

a different notation than the conventional conditional statement. This is the conditional Fin statement, a

single statement in which the effects of the Fin statement only happens if the condition included is met.

One would wonder why a separate definition for a conditional Fin statement is needed. Remember in

section 2.2 that the executing statement of a conventional conditional statement is enclosed in a block.

Therefore the effect a Fin statement inside that conditional is limited to the scope of that block, i.e. the

Chapter 2 – A Semantics for the Plankalkül through linPlank 16

statement E-.>Fin does not make sense.

However, the exact behavior of the Fin statement is not clear, based alone on what is written in Zuse

(1989). It appears that what is decribed above corresponds to the behavior Zuse wanted to imply when

he wrote the specification of the Plankalkül. But then, some of the example programs seem to contradict

this claimed behavior. To be consistent with Zuse’s implied behavior and the one descibed above, those

programs, though significant in number, are labeled as incorrect.

One last thing to note is that blocks can appear anywhere. It can be used to group together a number

of statements, which is useful when one of the statements is a Fin statement, in which the execution of

the Fin statement is limited to the scope of the block. Thus, one can explicitly define control through

the use of blocks and Fin statements, similar to the goto statement of programming languages such as

Pascal and BASIC.

The syntax of linPlank1 will have the following extensions to the syntax of linPlank0:

• S −→ . . . | W[S] | Fin idx | E=>Fin idx | [S]

Note that the these syntactic structures are added to the structures for S given is section 2.2 as

indicated by the ellipsis. The last production in the above definition represents the general block, as

mentioned earlier.

2.3.2 Additions to the Semantic Framework

The fin Flag

First of all, there is a need for a mechanism to exit blocks and loops. This is achieved with the use of the

fin flag. The behavior of the fin flag is as follows:

• When a Fin statement is encountered, the fin flag is set to the value of the index included with that

Fin statement.

• If the fin flag is not 0, the statements following the currently executing statement in the same block

are not executed.

• At the end of a block, if the fin flag is not zero, its value will be decremented by 1.

However, this mechanism, while it is quite intuitive, also takes up space in the store. Thus, there is a

need to include the fin flag in the definition of the store.

Chapter 2 – A Semantics for the Plankalkül through linPlank 17

• Domain: Sto = VSto × RSto × ZSto × N

In the semantic function definitions, the fin flag is represented by the Greek symbol φ.

New Definitions for the Semantic Functions

Reflecting on the points discussed in the sections above, the following are the extensions made to the

semantic framework.

• X JW[S]K(ν, ρ, ζ, φ) =







X JW[S]K(ν ′, ρ′, ζ ′, φ′) if φ′ = 0

X JW[S]K(ν ′, ρ′, ζ ′, φ′ − 1) if φ′ = 1

(ν ′, ρ′, ζ ′, φ′ − 1) otherwise

where (ν ′, ρ′, ζ ′, φ′) = X JSK(ν, ρ, ζ, φ)

• X JFin idxK(ν, ρ, ζ, φ) = (ν, ρ, ζ, idx)

• X JE=>Fin idxK(ν, ρ, ζ, φ) =







(ν, ρ, ζ, idx) if EJEK(ν, ρ, ζ, φ) = 1

(ν, ρ, ζ, φ) otherwise

• X JS1; S2K(ν, ρ, ζ, φ) =







X JS2K(ν
′, ρ′, ζ ′, φ′) if φ′ = 0

(ν ′, ρ′, ζ ′, φ′) otherwise

where (ν ′, ρ′, ζ ′, φ′) = X JS1K(ν, ρ, ζ, φ)

• X J[S]K(ν, ρ, ζ, φ) =







(ν ′, ρ′, ζ ′, φ′) if φ′ = 0

(ν ′, ρ′, ζ ′, φ′ − 1) otherwise

where (ν ′, ρ′, ζ ′, φ′) = X JSK(ν, ρ, ζ, φ)

• X JE-.>[S]Kσ =







X J[S]Kσ if EJEKσ = 1

σ otherwise

• All other definitions are rewritten to include φ, the fin flag.

2.3.3 Assessment

It has been seen that the looping constructs of the Plankalkül are similar to that of procedural program-

ming languages such as C and Pascal. However, the general loop defined in this section is semantically

Chapter 2 – A Semantics for the Plankalkül through linPlank 18

defined to loop forever, only stopping when the fin flag is set. In addition, functionality similar to break,

continue, and goto statements are achieved using the Fin statement.

At the same time, one of the inconsistencies with the specification of the Plankalkül is encountered,

which is the behavior of the Fin statement. This is addressed with the assumption that the examples

given in Zuse (1989) are not entirely correct.

An alternative solution to providing the semantics of these control constructs is by using continua-

tions. However, as it is intended to provide a simple semantics of the Plankalkül, the approach presented

in this section is preferred.

2.4 linPlank2 - A More Practical Subset of linPlank

2.4.1 Extensions to the Syntax

The language defined in linPlank1 has no practical use, except for a few bit manipulations. This language

will be extended in linPlank2 with arrays, tuples, more loops and subprogram definitions and calls.

Arrays in the Plankalkül are denoted with the structure Sn × σ, where σ is another Plankalkül

structure. A special case is bit arrays, which are denoted with the structure S1.n. Tuples, on the other

hand, are denoted with the structure S(σ1, σ2, . . . , σn), where each σi is a Plankalkül structure. The

individual components or array and tuple values are accessed using the K row of the Plankalkül syntax.

In linPlank, we denote V0[:k :] :s as the component k of the variable V0 having the structure s.

In the previous subset, the general loop was introduced. In linPlank2, additional loops are supported,

and they are aptly names W0 to W4. The W0 loop executes the statement the number of times equal

to the argument supplied with the loop. The W1, on the other hand, behaves like the W0 loop, but also

opens up access to a loop variable which is initialised to 0 and gets incremented during every iteration.

The W2 to W4 loops behave like W1, but have differences in the way the attached loop variable behaves.

For instance, the W2 loop’s variable decrements during every iteration starting from one less that the

value of the argument supplied, while the W3 loop’s variable starts with the value of the first argument,

and increments every iteration until it is equal to the value of the second argument. The loop variable

of W4 does the reverse. From the behavior of the loop variables, it can be concluded that loop variables

always have numeric values.

linPlank2 also supports multiple subprograms. In a set of subprograms, the last one is the main pro-

gram. Also, a subprogram cannot call itself; it can only call subprograms above it. This way, recursion

Chapter 2 – A Semantics for the Plankalkül through linPlank 19

is eliminated.

The syntax of linPlank2 will have the following extensions to linPlank1:

• St ∈ Structures

K ∈ Components

N ∈ N

B ∈ Bitstrings = L((0|L)(0|L)∗)

• P −→ Sp P | Sp

S −→ . . . | W0(E)[S] | W1(E)[S] | W2(E)[S] | W3(E1, E2)[S] | W4(E1, E2)[S]

E −→ . . . | N | Var [:K :] :St | i idx | i idx [:K :] | N(E) | R fid(E1, E2, . . . , En)idx

| (E1, E2, . . . , En)

St −→ 0 | St ′ | ε

St ′ −→ 1.NExp | NExp ∗ St ′ | (St1,St2, . . . ,Stn)

NExp −→ N | NVar | NExp1 + NExp2 | NExp1 − NExp2 | (NExp)

NVar −→ n | nN

K −→ E | ε

2.4.2 Additions to the Semantic Framework

Tuple Values

There is a need for a data model to support values inside arrays and tuples. A few considerations need

to be taken into account 1:

• Are the structures S2 × 1.3 and S(1.3, 1.3) one and the same? In general, is a structure Sn × σ

equivalent to the structure S(σ, σ, . . . , σ
︸ ︷︷ ︸

n

)?

• How can arrays be assigned values without accessing their individual components?

To address both issues, tuple values are introduced in the semantic domain, in which they are re-

garded as denotable values. Tuple values can be classified into two groups: homogeneous and heteroge-

neous tuple values. Homogeneous tuple values are tuple value whose elements have the same structure,

1Although the notion of tuple values appear to address these issues, the type system eventually does not permit transparency
between list types and tuple types. More details by the end of Section 3.5.

Chapter 2 – A Semantics for the Plankalkül through linPlank 20

as in the case of arrays. Heterogeneous tuple values, on the other hand, are tuple values whose elements

have different structures, as in the case of general tuples.

There are a few operations involving tuples. The operation maketuple takes a set of denotable values

and turns them into a tuple. The operation getcomponent, on the other hand, gets the i-th component of

a tuple value, for some number i less than the size of the tuple. Meanwhile the operations converttotuple

and converttonumber makes conversions between numberic and tuple values. However, converttonum-

ber is not defined for every tuple value: it is only defined for homogeneous tuples whose elements are

bit values. Finally, the getsize operation returns the size of a tuple value.

• Domain: TV = DV × DV × . . . × DV

Operations:

– maketuple : DV × DV × . . . × DV → TV

– getcomponent : TV → N→ DV

– converttotuple : N→ TV

– converttonumber : TV → N

– getsize : TV → N

• Domain: DV = BV + TV + {⊥}

The Loop Variable Store

The nature of loop variables were discussed in the section above. As all variables, the values these hold

require some space in memory, and thus would require its own store. Like the other stores, the loop

variable store is denoted as the Greek letter ι, and have the same operations. The only difference is that

the loop variable store is a mapping from numeric values to numeric values, as loop variables always

have numeric values.

• Domain: ISto = (N→ (N+ {⊥})) + {⊥}

Operations:

– ∅ : ISto

– 7→: ISto → N→ N → ISto

Chapter 2 – A Semantics for the Plankalkül through linPlank 21

The level Flag

To facilitate the access restriction to the loop variable store when executing any of the loops W1 to W4,

the level flag is introduced. In the semantic framework, it is denoted by the Greek letter τ . Whenever a

loop of any of the types W1 to W4 is executed, the level flag is incremented to allow access for the next

loop variable in the store. Upon termination of execution of that loop, the level flag is decremented to

disallow access to the loop variable just used by the loop.

Like the fin flag introduced in the previous subset, the level flag takes some space in the computer’s

memory. With this and the loop variable store, the definition of the store is modified as below:

• Domain: Sto = VSto × RSto × ZSto × ISto × N× N

Function Stores

To facilitate subprogram calls, a store is needed to remember the information about each subprogram.

This store is called the function store, and has the same operations as the previously defined stores.

However, while the extension of the previous stores modifies them, extension of the function store is

non-destructive. This means that a copy of the function store is made and that copy is then modified

with the extension.

• Domain: FSto = N→ DV × DV × . . . × DV → DV × DV × . . . × DV

Operations:

– ∅ : FSto

– 7→: FSto → N→ (DV × DV × . . . × DV → DV × DV × . . . × DV) → FSto

The function store is denoted by the Greek symbol δ in the semantic framework.

New Definitions for the Semantic Functions

Having laid out the necessary tools needed to extend the framework, the modifications to the semantic

functions are as follows:

• PJP fid R(V0, V1, . . . , Vn)=>(R0, R1, . . . , Rm) [S] P Kδ(α1, α2, . . . , αn+1) =

PJP Kδ′(α1, α2, . . . , αn+1),

where δ′ = δ[fid 7→ (SJP fid R(V0, V1, . . . , Vn)=>(R0, R1, . . . , Rm) [S]Kδ)]

Chapter 2 – A Semantics for the Plankalkül through linPlank 22

• PJSpKδ(α1, α2, . . . , αn+1) = SJSpKδ(α1, α2, . . . , αn+1)

• X JW0(E)[S]Kδσ = X J[[S][S] . . . [S]
︸ ︷︷ ︸

n

]Kδσ where n = EJEKδσ

• X JW1(E)[S]Kδ(ν, ρ, ζ, ι, φ, τ) = (ν ′, ρ′, ζ ′, ι′, φ′, τ),

where (ν ′, ρ′, ζ ′, ι′, φ′, τ ′) = X ′JW1(E)[S]Kδ(ν, ρ, ζ, ι[τ 7→ 0], φ, τ + 1)

X ′JW1(E)[S]Kδ(ν, ρ, ζ, ι, φ, τ) =







X ′JW1(E)[S]Kδ(ν ′, ρ′, ζ ′, ι′[τ − 1 7→ ι′(τ − 1) + 1], φ′, τ),

if ι(τ − 1) < n and φ′ = 0

X ′JW1(E)[S]Kδ(ν ′, ρ′, ζ ′, ι′[τ − 1 7→ ι′(τ − 1) + 1], φ′ − 1, τ),

if ι(τ − 1) < n and φ′ = 1

(ν ′, ρ′, ζ ′, ι′, φ′ − 1, τ),

if ι(τ − 1) < n and φ′ > 0

(ν, ρ, ζ, ι, φ, τ),

if ι(τ − 1) ≥ n

where (ν ′, ρ′, ζ ′, ι′, φ′, τ ′) = X JSKδ(ν, ρ, ζ, ι, φ, τ)

and n = converttonumber(EJEKδ(ν, ρ, ζ, ι, φ, τ))

The loops W2 to W4 can be similarly defined.

• EJNKδσ = BJNK

• EJV idx [:E :]Kδ(ν, ρ, ζ, ι, φ, τ) = getcomponent(ν(idx), EJEKδ(ν, ρ, ζ, ι, φ, τ))

• EJR idx [:E :]Kδ(ν, ρ, ζ, ι, φ, τ) = getcomponent(ρ(idx), EJEKδ(ν, ρ, ζ, ι, φ, τ))

• EJZ idx [:E :]Kδ(ν, ρ, ζ, ι, φ, τ) = getcomponent(ζ(idx), EJEKδ(ν, ρ, ζ, ι, φ, τ))

• EJi idxKδ(ν, ρ, ζ, ι, φ, τ) =







converttotuple(ι(idx)), if idx < τ

⊥, otherwise

• EJi idx [:E :]Kδ(ν, ρ, ζ, ι, φ, τ) =







getcomponent(converttotuple(ι(idx)), n),

if idx < τ

⊥,

otherwise

where n = EJEKδ(ν, ρ, ζ, ι, φ, τ)

Chapter 2 – A Semantics for the Plankalkül through linPlank 23

• EJN(E)Kδσ = converttotuple(getsize(EJEKδσ))

• EJR fid(E1, E2, . . . , En)idxKδσ = getcomponent(t, idx)

where t = maketuple(δ(fid)(EJE1Kδσ, EJE2Kδσ, . . . , EJEnKδσ))

• EJ(E1, E2, . . . , En)Kσδ = maketuple(EJE1Kδσ, EJE2Kδσ, . . . , EJEnKδσ)

• All the other definitions are modified to include δ, the function store, ι, the loop variable store,

and τ , the level flag, when appropriate.

While the meaning of W0 loops might seem unclear, it just means that its meaning is equivalent to a

block-bounded finite sequence of [S]. The meaning of W1 to W4 loops, however, is defined using two

semantic functions. The first one takes care of the behavior of the level flag, while the other defines the

execution of each iteration of the loop, as well as the behavior of the loop variable.

2.4.3 Assessment

One of the design decisions made when this semantics was formed is to have a bit-centric data model,

which was intended by Zuse from the beginning (Zuse, 1989). This means that the only native operations

in the semantic framework are boolean operations. Thus, the arithmetic operations between numbers

have to be expressed in terms of series of boolean operations.

One problem with this design is illustrated by the following. Take for example the program for

adding 1 to an argument:

P4 R(V0:1.n) => (R0:1.(n+1), R1:0) [

L => Z0:0;

W1(N(V0)) [

V0[:i:] => Z1:0;

Z0 !˜ Z1 => R0[:i:];

Z0 & Z1 => Z0;

]

Z0 => R0[:N(V0):];

Z0 => R1;

]

Chapter 2 – A Semantics for the Plankalkül through linPlank 24

Note that this program is defined using a W1 loop, where the loop variable i is incremented by 1 every

iteration. There are two problems with this. One is that the Plankalkül does not support recursive calls.

And even if the Plankalkül did support recursive calls, this program will not terminate. This clearly

shows a design flaw, which uses addition in its own definition.

The solution presented by the provided semantics is to represent values for loop variables as numeric

values and allow arithmetic and comparison operations on these values. Conversion between numeric

values and tuple values are also provided to ensure compatibility with the bit-centric data model. Ap-

parently, this is also the reason why the loops W0 to W4 cannot be rewritten as variations of the W

loop.

2.5 Concluding Remarks

At this point there is a basic idea how the semantics of the Plankalkül is like. The semantics revolved

around the procedural aspects of the language, which is quite similar to that of modern procedural

languages such as C, Pascal, and BASIC.

However there are a few issues not taken into account. One of them is memory management, where

assumptions regarding memory handling are made. A more serious issue is the assurance that values are

compatible with the underlying operations, e.g. the boolean operations under the domain of bit values.

An attempt to solve this is presented in the next chapter, where the type system is discussed.

Chapter 3

A Type System for linPlank

3.1 Motivation

After defining the denotational semantics for linPlank, which defines how programs in linPlank and, in a

similar way, the Plankalkül behave, a type system for linPlank will be designed. Knowing the structural

nature of the data model of the Plankalkül, it is only natural that an attempt to design a type system for

it would be undertaken.

There are three major structures in the Plankalkül: the bit type, denoted as S0; the list type, denoted

by S1.n for an array of bits and Sn × σ for an array of data of type σ; and the tuple type, denoted by

S(σ1, σ2, . . . , σn) for a tuple consisiting of data of types σ1, σ2, etc. These structures, according to Zuse

(1989), are able to define most data.

While it is indeed possible to define most data using compositions of these basic structures, there

are issues involved. One of which is that it is possible for variables to appear in these structures, which

may imply that some form of polymorphism or type inference is involved. Another is that while the

types of V and R variables are declared in the marginal data abstract of the subprogram, it is possible

for Z variables to appear with no type declaration whatsoever. Again this may imply some form of

polymorphism or type inference.

Chapter 3 – A Type System for linPlank 26

3.2 Some Assumptions

To address the issues mentioned above, particularly the second, some assumptions are made. For in-

stance, it is assumed that the first instance of any Z variable shall have its type declared. It is also

assumed that if only a component of a Z variable has its type declared, the type of the Z variable is an

array with components having the same type as the type declaration.

3.3 Types in the Semantic Domain and the Type Translation Relation

The types in the semantic domain are defined as follows:

t ::= b | array(t) | (t1, t2, . . . , tn),

where the array type refers to an array of undefined size.

As one may notice, this definition is not the same as the syntactic type definition mentioned above.

Thus, a translation relation, ⇒, is introduced. σ ⇒ τ means that the syntactic type σ translates to the

semantic type τ . In particular, the translation between syntactic types of linPlank and the semantic types

defined above are as the following inductive rules:

S0 ⇒ b S1.n ⇒ array(b)

σ ⇒ τ

Sn∗σ ⇒ array(τ)

σ1 ⇒ τ1 σ2 ⇒ τ2 · · · σn ⇒ τn

S(σ1, σ2, . . . , σn) ⇒ (τ1, τ2, . . . , τn)

3.4 Type Environments

Type environments work like stores in the denotational semantics of linPlank. However, unlike stores,

type environments are mappings from variable names to semantic types. In the type system of the

linPlank, there are two type environments, one for subprograms and one for variables. They are denoted

as Γs and Γv respectively.

The operations involving type environments are access and extension. Type environment access,

denoted by Γ(Var), where Var is a variable name, returns the type of the argument, provided that a

mapping between the argument and some type exists in the environment. Type environment extension,

Chapter 3 – A Type System for linPlank 27

on the other hand, includes a mapping for the given variable name to the given type, and is denoted by

Γ[Var 7→ t]. This operation is non-destructive, which means that a copy of the type environment is first

made, and this new copy is then extended.

3.5 Well-typedness of Expressions

The main point of having a type system is to ensure that elements in a program written in some language

is well-typed. Well-typedness ensures that the data behaves as it is supposed to be; when a conditional

statement requires its conditional expression to have type S0, then any expression used in a conditional

statement should have type S0 for it to be well-typed.

The relation for well-typedness of expressions is defined as

(Γs, Γv) ` E I t | Γ′

v

where E is an expression, t is the type of the expression and Γ′

v is the returned type environment for

variables due to the test of the well-typedness of E.

One may wonder why there is a need to return a type environment along with the type of the expres-

sion when checking its well-typedness. This is because there are no separate type declaration constructs

in the Plankalkül; variables are declared as they appear in an expression. Since the type environment

is modified after the check and inductive rules are used to define the well-typedness of expressions,

returning a type environment along with the type is the solution.

Below are the definitions for well-typedness of the various expressions in linPlank:

(Γs, Γv) ` 0 I b | Γv (Γs, Γv) ` L I b | Γv

b ∈ Bitstrings
(Γs, Γv) ` b I array(b) | Γv

n ∈ N

(Γs, Γv) ` n I array(b) | Γv

∃t (V idx , t) ∈ Γv V ∈ {V, R, Z}

(Γs, Γv) ` V idx I t | Γv

(Γs, Γv) ` i idx I array(b) | Γv

∀t (V idx , t) /∈ Γv V ∈ {V, R, Z} σ ⇒ τ

(Γs, Γv) ` V idx :σ I τ | Γv[V idx 7→ τ]

Chapter 3 – A Type System for linPlank 28

(Γs, Γv) ` E1 I b | Γ′

v (Γs, Γ
′

v) ` E2 I b | Γ′′

v

(Γs, Γv) ` E1 θ E2 I b | Γ′′

v

where θ ∈ {&,|,->,˜,!˜}

(Γs, Γv) ` E I b | Γ′

v

(Γs, Γv) ` !E I b | Γ′

v

(Γs, Γv) ` V idx I array(τ) | Γ′

v V ∈ {V, R, Z, i}

(Γs, Γv) ` V idx [:E :] I τ | Γ′

v

∀t (V idx , t) /∈ Γv V ∈ {V, R, Z} σ ⇒ τ

(Γs, Γv) ` V idx [:E :] :σ I τ | Γv[V idx 7→ array(τ)]
(based on second assumption)

(Γs, Γv) ` V idx I (t1, t2, . . . , tn) | Γ′

v V ∈ {V, R, Z}

(Γs, Γv) ` V idx [:n :] I tn | Γ′

v

(Γs, Γv) ` E I array(t) | Γ′

v

(Γs, Γv) ` N(E) I array(b) | Γ′

v

(Γs, Γv) ` E1 I t1 | Γ
[1]
v (Γs, Γ

[1]
v) ` E2 I t2 | Γ

[2]
v · · · (Γs, Γ

[n−1]
v) ` En I tn | Γ

[n]
v

(Γs, Γv) ` (E1, E2, . . . , En) I (t1, t2, . . . tn) | Γ
[n]
v

(Γs, Γv) ` E1 I t1 | Γ
[1]
v (Γs, Γ

[1]
v) ` E2 I t2 | Γ

[2]
v · · · (Γs, Γ

[n−1]
v) ` En I tn | Γ

[n]
v

Γs(fid) = (t1, t2, . . . , tn) → (t′1, t
′

2, t
′

m)

(Γs, Γv) ` R idx (E1, E2, . . . , En) fid I t′
idx

| Γ
[n]
v

Note that since the array type has an undefined size, we cannot determine in the type-checking stage

if two expressions have an array type with the same size. Array size checks are therefore checked in

runtime.

At this point, the questions raised in Section 2.4.2 will be addressed. Take a look at the second to

the last typing rule above, which is the rule for type-checking tuple expressions. If we allow the list

structure Sn × σ to be equivalent to the tuple structure S(σ, σ, . . . , σ
︸ ︷︷ ︸

n

), the following rule can be added:

(Γs, Γv) ` E1 I t | Γ
[1]
v (Γs, Γ

[1]
v) ` E2 I t | Γ

[2]
v · · · (Γs, Γ

[n−1]
v) ` En I t | Γ

[n]
v

(Γs, Γv) ` (E1, E2, . . . , En) I array(t) | Γ
[n]
v

However, as the definition of the array type does not care for sizes, i.e., a bit array with size 5 is

type-equivalent to another bit array of size 3, the expression (V0:1.5, V1:1.3) would be typed

Chapter 3 – A Type System for linPlank 29

as array(array(b)), which is misleading. Thus, the claim that Sn×σ is equivalent to the tuple structure

S(σ, σ, . . . , σ
︸ ︷︷ ︸

n

) is false.

3.6 Well-typedness of Statements

Statements in linPlank have no type. However, like the check for well-typedness of expressions, the

check for well-typedness of statements need to return the type environment for variables, since it is

possible for new mappings to be included in that environment as expressions are included in some

expressions.

The relation for well-typedness of statements is defined as

(Γs, Γv) ` S | Γ′

v

where S is a statement and Γ′

v is the returned type environment for variables due to the test of the

well-typedness of S.

Below are the definitions for well-typedness of the various statements of linPlank:

(Γs, Γv) ` E I t | Γ′

v (Γs, Γ
′

v) ` V idx I t | Γ′′

v V ∈ {V, R, Z}

(Γs, Γv) ` E => V idx | Γ′′

v

(Γs, Γv) ` E I b | Γ′

v (Γs, Γ
′

v) ` S | Γ′′

v

(Γs, Γv) ` E -.> [S] | Γ′′

v

(Γs, Γv) ` S | Γ′

v

(Γs, Γv) ` W[S] | Γ′

v

(Γs, Γv) ` E I array(b) | Γ′

v (Γs, Γ
′

v) ` S | Γ′′

v

(Γs, Γv) ` W0(E)[S] | Γ′′

v

(Γs, Γv) ` E I array(b) | Γ′

v (Γs, Γ
′

v) ` S | Γ′′

v

(Γs, Γv) ` W1(E)[S] | Γ′′

v

(Γs, Γv) ` E I array(b) | Γ′

v (Γs, Γ
′

v) ` S | Γ′′

v

(Γs, Γv) ` W2(E)[S] | Γ′′

v

Chapter 3 – A Type System for linPlank 30

(Γs, Γv) ` E1 I array(b) | Γ′

v (Γs, Γv) ` E2 I array(b) | Γ′′

v (Γs, Γ
′′

v) ` S | Γ′′′

v

(Γs, Γv) ` W3(E1, E2)[S] | Γ′′′

v

(Γs, Γv) ` E1 I array(b) | Γ′

v (Γs, Γv) ` E2 I array(b) | Γ′′

v (Γs, Γ
′′

v) ` S | Γ′′′

v

(Γs, Γv) ` W4(E1, E2)[S] | Γ′′′

v

(Γs, Γv) ` Fin n | Γv

(Γs, Γv) ` E I b | Γ′

v

(Γs, Γv) ` E => Fin n | Γ′

v

(Γs, Γv) ` S1 | Γ
′

v (Γs, Γ
′

v) ` S2 | Γ
′′

v

(Γs, Γv) ` S1; S2 | Γ′′

v

(Γs, Γv) ` S | Γ′

v

(Γs, Γv) ` [S] | Γ′

v

3.7 Well-typedness of Programs

Finally, the well-typedness of programs, as well as that of its subprogram components, shall be dis-

cussed. For the well-typedness of subprograms, the function type is introduced. The function type is a

mapping from a tuple of basic types to another tuple of basic types, i.e.,

tf ::= (t1, t2, . . . , tn) → (t′1, t
′

2, . . . , t
′

m)

At the same time, the relation for well-typedness of subprograms is as follows:

Γs ` Sp : tf

where Sp is a subprogram and tf is a function type. Note that no environment is returned. The definition

for well-typedness of subprograms is as follows:

(Γs, Γv) ` S | Γ′

v σ1 ⇒ τ1 σ2 ⇒ τ2 · · · σn+1 ⇒ τn+1

σ′

1 ⇒ τ ′

1 σ′

2 ⇒ τ ′

2 · · · σ′

m+1 ⇒ τ ′

m+1

Γs ` P fid R(V0 :σ1, V1 :σ2, . . . , Vn :σn+1) => (R0 :σ′

1, R1 :σ′

2, . . . , Rm :σ′

m+1)[S]

I (τ1, τ2, . . . , τn+1) → (τ ′

1, τ
′

2, . . . , τ
′

m+1)

where Γv = ∅[V0 7→ τ1][V1 7→ τ2] . . . [Vn 7→ τn+1][R0 7→ τ ′

1][R1 7→ τ ′

2] . . . [Rm 7→ τ ′

m+1]. This

Chapter 3 – A Type System for linPlank 31

explains the need for a separate type environment for variables and for subprograms, as the type envi-

ronment for variables only gets filled upon entry into a particular subprogram.

For the well-typedness of programs, the following relation is considered:

Γs ` P

and is defined by the following definitions:

Γs ` P fid R(V0 :σ1, V1 :σ2, . . . , Vn :σn+1) => (R0 :σ′

1, R1 :σ′

2, . . . , Rm :σ′

m+1)[S] I tf

Γs[fid 7→ tf] ` P

Γs ` P fid R(V0 :σ1, V1 :σ2, . . . , Vn :σn+1) => (R0 :σ′

1, R1 :σ′

2, . . . , Rm :σ′

m+1)[S] P

Γs ` Sp I tf
Γs ` Sp

Finally, the check for well-typedness of the whole program is achieved by:

∅ ` P

` P

This just means that the type system starts with an empty type environment for subprograms to check

for the well-typedness of the program P .

3.8 Concluding Remarks

This chapter described a simple type system for the Plankalkül. However, the bit-centric data model

of the language suggests a more complicated type system that might involve polymorphism or type

inference. The simple type system ignores the complications by not taking into account the sizes of

list values, and lets the run-time semantics take care of it. This will be discussed in the next chapter,

particularly Section 4.3.5, which discusses issues regarding the implementation of the language.

Chapter 4

An Implementation of linPlank

4.1 Overview

In this chapter, an attempt on an implementation of linPlank will be discussed. This implementation is

based on the theories formulated in the last two chapters, and problems encountered with applying these

theories will be addressed.

Note that the implementation of linPlank is only part of the full implementation of the Plankalkül.

The other part, which is the translation of Plankalkül programs to their respective linear representations

in linPlank, is not covered in this thesis. Furthermore, only a subset of the Plankalkül, which was defined

in the previous chapters, is implemented.

4.2 Implementation Design Issues

4.2.1 Interpreter as the Nature of the Implementation

Interpreters are implementations that directly execute statements of the target language. This is the

type of implementation that this project has opted for, mainly because the semantics formulated in the

previous chapters can be directly used as the basis for the implementation.

The semantics of linPlank presented in Chapter 2 does not handle memory management, and by

developing an interpreter, the memory management capabilities of the language used in the development

can be exploited to realize this.

Chapter 4 – An Implementation of linPlank 33

However, it is to be noted that it was the intention of Zuse to compile Plankalkül programs into

the native machine language of the computers he designed (Zuse, 1989, 1980; Knuth & Trabb Pardo,

1980). He planned to design a special computer that translates Plankalkül code into some native machine

language, which he called “Planfertigungsgerät”. This has the same function as the compilers we use

today.

4.2.2 Java as Choice of Language

Since Denotational Semantics makes use of domains and operations between them, it is only natural to

use an object-oriented programming language in the development of the interpreter. This is because the

theory can be directly applied without worrying too much about software design. For example, stores

can be represented as object classes, having methods to allow access to its contents as well as insertion

of data.

Furthermore, as mentioned in the previous section, the language used in the development of the

interpreted has to have good memory management capabilities, since the semantics, and thus the imple-

mentation, does not explicitly handle memory management. The Java programming language, which

is endorsed by Sun Microsystems, is reputed to have good memory management capabilities, as it can

perform garbage collection on the memory every now and then.

Based on these arguments, as well as the fact that it is one of the simplest among the object-oriented

programming languages, the Java programming language is chosen as the development language of the

interpreter.

4.2.3 Overall System Design

The interpreter uses a modular design, in which most of the components are partially independent of

each other. Figure 4.1 shows the process flow for the implementation.

4.3 Modules

4.3.1 Preprocessor

The preprocessor in the interpreter adds the standard subprograms needed to execute some constructs,

such as arithmetic and comparison operators. These subprograms are written in linPlank as well, to

demonstrate the capabilities of the bit-centric data model of the Plankalkül. These are labeled as P1 to

Chapter 4 – An Implementation of linPlank 34



yProgram¶

µ

³

´
Preprocessor



yProgram with included standard subprograms¶

µ

³

´
Parser



yAbstract Syntax Tree¾

½

»

¼
Parse Tree

Transformer



yAST with braches for complementing conditions in W-loops¶

µ

³

´
Type System



yType-compatible AST¶

µ

³

´
Evaluator

Figure 4.1: Overall Implementation Design

Chapter 4 – An Implementation of linPlank 35

P11, and thus any other program must be labeled as P12 or higher. Other than this, there are no serious

issues involved.

4.3.2 Parser

The parser is done using the Java CUP parser generator and the JLex lexical analyzer. The nodes of

the abstract syntax tree generated, for each of the constructs of linPlank, are represented as classes.

It is interesting to note that the notion of inheritance is exploited here. Statements and expressions

are represented by interfaces, and each kind of statement or expression implements either one of the

interfaces.

4.3.3 Parse Tree Transformer

In Section 2.3.1, it was mentioned that the body of W-loops is usually composed of a sequence of

conditional statements. Furthermore, the complementing conditional statement, which is the negation of

all the previous conditions, can be omitted and assumed present. This module attempts to find out the

complementing conditional statement based on the collected conditions inside a loop.

The first step done by the Parse Tree Transformer is to find all the W-loops inside the tree. For each

of these W-loops, the body is scanned for conditional statements and their conditions are gathered in a

vector. The complementing condition is generated by getting the conjunction of the negations of each of

the conditions in the vector. For example, for the following loop,

W [

C1 -.> S1;

C2 -.> S2;

]

the complementing conditional statement generated is !C1 & !C2 => Fin 2.

4.3.4 Type System

The type system module is directly based on the type system formulated in Chapter 3. Type environments

are represented by objects which have the behavior of hashtables. These hashtables map variable names

and indices to types, which we represented as classes separate from the abstract syntax tree node classes.

Chapter 4 – An Implementation of linPlank 36

Again, the notion of inheritance is exploited here.

4.3.5 Run-time Evaluator

The evaluator is based on the semantic functions described in Chapter 2. At the same time, this module

addresses the issue not handled by the type system defined in Chapter 3 – array size compatibility.

To address this issue, tuple values are allowed to be non-fixed, meaning that it is possible for non-

fixed tuple values to be casted to have a fixed size. This is used to evaluate numeric constants, which

we defined to be tuple values with variable size, and also used to create values for variables which we

assumed to be of the list type, but do not know its size (refer to Section 3.2 for the explanation).

Casting is done on two occasions. One is during evaluation of the assignment statement, where the

type and size of the variable at the right hand side of the statement is known. The other is during the

execution of subprograms, where values for any list size variables are computed based on the list size

expressions in the structures of the input variables and the nature of the passed arguments.

Size expressions are limited to addition and subtraction because allowing multiplication and division

can complicate the computation of the values of list size variables 1. So how are the values for list size

variables computed? First the list size expression parse trees are simplified, such that all variables are in

the left side of the tree, as in Figure 4.2. Then the right branch of the tree is cut off and the value of the

node at those branches are subtracted from or added to, depending on the sign of the root node, the size

of the given tuple value argument. This is done until the tree only contains variables, and if the parse

tree only contains one variable, that variable is assigned the value of the manipulated size (See Figure

4.3). Finally, the set of list size expressions, being a system of linear diophantine equations, is converted

to a matrix and then solved using an algorithm described in Blankinship (1966).

4.4 Concluding Remarks

This chapter roughly explained an implementation of linPlank and addressed certain issues involved.

One of these issues is list size compatibility, in which list sizes should be the same upon assignment and

upon passing to subprograms as arguments. A related issue would be computation of the values of list

size variables in which a rough methodology was developed.

1In particular, it is possible to arrive at a situation similar to Hilbert’s Tenth Problem, which is proven unsolvable by Yuri
Matiyasevich in 1970. This problem has something to do with the solution to Diophantine equations.

Chapter 4 – An Implementation of linPlank 37

n

1 n

­­ JJ

+

½
½ JJ

−

3 n

­­ JJ

+ 2

­­
Z
Z

−

©©©
HHH

+

=⇒

n n

­­ JJ

+ n

­­
Z
Z

− 3

­­
HHH

+ 1

­­
PPPPP

− 2

­­
XXXXXX

−

Figure 4.2: Transformation of List Size Expression Parse Trees

n n

­­ JJ

+ n

­­
Z
Z

− 3

­­
HHH

+ 1

­­
PPPPP

− 2

­­
XXXXXX

−

= 6 =⇒

n n

­­ JJ

+ n

­­
Z
Z

−

= 6 + 2 + 1 − 3

Figure 4.3: Computation of Values of List Size Variables

Chapter 5

Conclusion

5.1 The Effects of the Plankalkül in the History of Computing

The Plankalkül, being the first high-level programming language, can be said to be feature-rich. It has the

capabilities of modern procedural programming languages such as C, Pascal and BASIC. Furthermore,

the bit-centric data model of the language implies a sophisticated type system that might have involved

polymorphism or type inference, though it was simplified in this thesis. This bit-centric data model can

represent most data, as presented by Zuse in his “Statements of a Theory of General Calculation” (Zuse,

1989).

However, claims that the Plankalkül was a complete high-level programming language are question-

able. This is because there are internal inconsistencies with respect to primitive arithmetic operations

(see Section 2.4.3). At the same time, the implicit type system can only be made to work with serious

restrictions (see Section 3.2). Otherwise, a more complicated type system has to be used.

Based on the findings gathered in this project, the Plankalkül might have some influence over suc-

ceeding procedural languages, in particular, Algol. However, this influence, if there was any, was limited

for several reasons. One of these is that the language was much too ambitious, in the sense that it had a

complicated type system, and at the same time it employed a two-dimensional syntax, at the time when

the study of parsers and the whole area of compiler design had not yet been born. Also, there was no

proper design, even for a subset of the language, ready for implementation. The formal methods of

defining the semantics of programming languages only came much later. In particular, the denotational

Chapter 5 – Conclusion 39

semantics approach was only devised in the late 1970s (Stoy, 1977). Finally, there were errors in the

documentation, such as program “bugs”, and inconsistencies with the definitions of terms (see Section

2.3.1).

From these, we can conclude that Zuse was bound to fail in his Plankalkül, but he failed in an ex-

tremely interesting way. This is because he had the courage to take a user-centric approach in the design

of the language, at a time when the formal study of programming languages did not exist. Nevertheless,

the visionary nature of the Plankalkül deserves recognition, not from a practical, but from a historical

point of view.

There is still one question to ask: what if the Plankalkül had actually been published during its period

and people knew about it? In my opinion, people might have been able to embrace its procedural aspects

and might have applied it to existing computers. However, the advanced features of the language, such

as constructs for predicate calculus, might have been too far ahead of their time, and might not have been

applicable so soon.

5.2 Limitations of this Project and Suggestions for Further Study

The implementation of the Plankalkül presented in this thesis is far from complete. Not every feature

of the language was covered, such as the predicate calculus constructs. A better picture of the language

can be visualized if a formal description of the semantics these features were formulated. Furthermore,

memory management could be described in the formal semantics as well, to give a better picture of how

an implementation would behave.

Also, it would be better if the Plankalkül was implemented using a compiler that generates machine

code for one of Zuse’s computers. A virtual machine that uses this machine code can then be developed.

This can give a good simulation of what history would have been if the Plankalkül was implemented in

one of Zuse’s computers.

Finally, a study about how programs written in the Plankalkül’s raw syntax can be translated into the

linear representation linPlank can be undertaken. As the Plankalkül suggests a visual syntax, a visual

editor could be of good use.

References

Bauer, F. L. (1980). Between Zuse and Rutishauser – the early development of digital computing in

Central Europe. In A history of computing in the twentieth century (pp. 505–524). New York:

Academic Press, Inc.

Bauer, F. L., & Wössner, H. (1972). The “Plankalkül” of Konrad Zuse: A forerunner of today’s

programming languages. Communications of the ACM, 15(7).

Blankinship, W. A. (1966). Algorithm 288: Solution of simultaneous linear diophantine equations.

Communications of the ACM, 9(7).

Giloi, W. K. (1997). Konrad Zuse’s Plankalkül: The first high-level, “non von Neumann” programming

language. IEEE Annals of the History of Computing, 19(2).

Knuth, D. E., & Trabb Pardo, L. (1980). The early development of programming languages. In A history

of computing in the twentieth century (pp. 197–273). New York: Academic Press, Inc.

Rojas, R., et al. (2000). Plankalkül: The first high-level programming language and its implementation

(Tech. Rep. No. B-3/2000). Berlin: Freie Universität Berlin Institut für Informatik.

Schmidt, D. A. (1988). Denotational semantics: A methodology for language development. Dubuque,

Iowa: Wm. C. Brown Publishers.

Stoy, J. E. (1977). Denotational semantics: The Scott-Strachey approach to programming language

semantics. Cambridge, Massachusetts: MIT Press.

Zuse, H. (n.d.). The life and work of Konrad Zuse. Retrieved from

http://www.epemag.com/zuse.

Zuse, K. (1980). Some remarks on the history of computing in Germany. In A history of computing in

the twentieth century (pp. 611–627). New York: Academic Press, Inc.

Zuse, K. (1989). The Plankalkül: Beritche der Gesellschaft für Mathematik und Datenverarbeitung Nr.

175. München; Wien: Oldenbourg.

