

Honours Year Project Report

TiddlyCalendar

A Collaborative Event Scheduling

Calendar Tool

By

Lin Liansen, Michael

Department of Information Systems

School of Computing

National University of Singapore

2007/2008

Honours Year Project Report

TiddlyCalendar

A Collaborative Event Scheduling

Calendar Tool

By

Lin Liansen, Michael

Department of Information Systems

School of Computing

National University of Singapore

2007/2008

Project No: H041160

Advisor: Associate Professor Martin Henz

Deliverables:

 Report: 1 Volume

 Program: 1 CD-ROM

i

Abstract
TiddlyCalendar is a PIM calendar application developed entirely in Javascript,

DHTML and CSS. Unlike traditional Javascript calendar which mainly displays

monthly calendar information (much as physical calendar) or is used to select dates

(date-pickers in forms), TiddlyCalendar offers features and functions that is

comparable to desktop and server calendar applications such as Microsoft Outlook

and Google Calendar, allowing users to manage their schedules and appointments

through the TiddlyCard platform, which provides a workspace for collaborative work.

TiddlyCalendar has introduced innovative features in arranging common

appointments. The main highlight is the Appointment Polling system which solves a

long-standing stagnant problem in current calendar applications when arranging for a

common appointment/meeting date/time. Its Public Appointment Sharing feature

allows easy notifications to changes to shared appointments to all users, eliminating

unnecessary steps such as repeated export/import of appointment. These features

increase efficiency and effectiveness, especially when collaborating with multiple

parties.

Subject Descriptors:

D.2.13 Reusable Software Reusable libraries

H.3.5 Online Information Services Data sharing

H.4.1 Office Automation Time management

H.5.3 Group and Organization Interfaces Computer-supported cooperative work

 Web-based interaction

Keywords:

Calendar, Schedule, Time Management, Collaboration, Personal Information

Management (PIM)

Implementation Software:

Javascript, DOM, DHTML, CSS, web-browsers

ii

Acknowledgement
I would like to extend my thanks and gratitude to my project supervisor Associate

Professor Martin Henz for his patience, guidance, advice and support throughout the

entire period of this project.

I would like to extend my thanks to Mr Melvin Zhang for his comments and

suggestions and the TiddlyCard Developer Community for their effort and assistance,

in particular:

a. Mr. Daryl Seah for providing backend support & infrastructure

b. Mr. Lek Hsiang Hui for implementing modified Comet architecture

c. Mr. Siva Subramanian for integration with Asalta

d. Mr. Tang Tung Leh for feedback and suggestion to TiddlyCalendar

e. Mr. Tran Khoa Nguyen for audio support for TiddlyCalendar Alarm

f. Ms. Wang Shangshang for integration with TiddlyRSS

iii

List of Figures

Figure 1: Tiddler (View Mode) .. 2

Figure 2: PlasticCalendar Macro ... 2

Figure 3: Components of TiddlyCalendar ... 9

Figure 4: Calendar Window ... 10

Figure 5: Week View Window .. 10

Figure 6: Instantaneous Sharing with Synchronisation (when connectivity is available)

.. 13

Figure 7: TiddlyCalendar Update Control Mechanism ... 13

Figure 8: Multiple Date/Time Slots for Event Polling... 14

Figure 9: Collated Responses for Poll ... 15

Figure 10: Integrated Week View .. 15

Figure 11: Administrative Control ... 16

Figure 12: Appointment Tiddler Linking to Agenda Tiddler 17

Figure 13: Embedding Appointment Information in Minutes Tiddler 17

Figure 14: TiddlyCalendar Integration with API Library .. 18

Figure 15: Importing through iCal File .. 19

Figure 16: Importing through Appointment Tiddlers .. 20

Figure 17: Importing Appointments from Remote Files using XMLHttpRequest 23

Figure 19: Modified Comet with Persistent Store ... 24

Figure 18: Comet Architecture .. 24

Figure 20: JSON Representation of Appointment Datastore 25

Figure 21: Iterative and Incremental Development Process .. 27

Figure 22: TiddlyCalendar MVC Architecture .. 28

Figure 23: Horizontal Week View ... 32

Figure 24: Vertical Week View ... 32

Table of Contents

Abstract ... i

Acknowledgement ... ii

List of Figures .. iii

1. Introduction .. 1

1.1 TiddlyCard ... 1

1.1.1 Overview of TiddlyCard .. 1

1.1.2 Foundation of TiddlyCard ... 1

1.1.3 Objectives of TiddlyCard .. 2

1.1.4 Components of TiddlyCard ... 3

1.2 The Calendar System ... 3

1.2.1 Overview of Calendar .. 3

1.2.2 History of Solar Calendars .. 4

1.2.3 Calendar Usage and Revolution .. 5

2. TiddlyCalendar .. 6

2.1 Overview of TiddlyCalendar .. 6

2.2 Motivation of TiddlyCalendar .. 6

2.2.1 Public Shared Appointment Importing/Exporting ... 6

2.2.2 Common Appointment Scheduling Among Multiple Parties........................ 8

2.2.3 Integration .. 8

2.2.4 Requirement of TiddlyCard ... 9

2.3 Components of TiddlyCalendar ... 9

2.3.1 Calendar Manager .. 10

2.3.2 Appointment Manager ... 11

2.3.3 Alarm Manager .. 11

2.3.4 API Library .. 11

3. Innovation and Highlights .. 12

3.1 Public Appointment Sharing .. 12

3.2 Appointment Polling .. 14

3.3 Integration with TiddlyCard Components .. 16

3.3.1 Integration with Wiki Component ... 16

3.3.2 Integration with Asalta Component ... 18

3.3.3 Integration with TiddlyRSS Component ... 19

3.4 Multiple Import Mechanisms ... 19

3.4.1 Importing Appointments through iCal .. 19

3.4.2 Importing Appointment through Appointment Tiddlers 19

4. Design and Development ... 21

4.1 Language, Technologies and Formats .. 21

4.1.1 Javascript ... 21

4.1.2 XMLHttpRequest .. 22

4.1.3 Comet... 23

4.1.4 JavaScript Object Notation (JSON) ... 24

4.1.5 Calendar Algorithms .. 25

4.1.6 iCalendar .. 26

4.2 Software Development Process .. 27

4.3 Design Pattern .. 28

4.4 UML Use Case Diagram .. 30

5. Lessons Learnt ... 31

5.1 Collaboration .. 31

5.2 Standards and Formats ... 31

6. Recommendations for Future Works ... 33

6.1 User Interface ... 33

6.1.1 Single Window Design .. 33

6.1.2 Drag-and-drop Capability .. 33

6.2 Feature Improvements .. 34

6.2.1 Appointment Polling.. 34

6.2.2 Public Appointment Sharing ... 34

6.2.3 Export Selection .. 34

6.3 Feature Additions ... 35

6.3.1 Comet Queue ... 35

6.3.2 Free/Busy Time Notification ... 35

6.3.3 Others... 35

7. Comparison and Conclusion .. 36

References ... iv

Text References ... iv

Code References ... v

Appendix A .. vii

1

1. Introduction

1.1 TiddlyCard

1.1.1 Overview of TiddlyCard
TiddlyCard is a browser-based platform that is written entirely in Javascript. Inspired

by HyperCard (HyperCard, 2007), TiddlyCard aims to provide a cross-browser

environment for rapid application development, enabling developers to create and

deploy applications that are client-centric, server supported and platform independent.

From standalone applications to the rapid adoption of the web, the software industry

has seen a change in choice of medium preferred by users. This phenomenon has

continued to evolve and a new trend has emerged with technologies such as Adobe

AIR (Adobe Labs, 2006) slated for release in the near future (currently in beta 2).

This trend is a leap in making applications available to users, providing continuous

functionality and operability regardless of time, platform and device.

Unlike traditional web-based applications which require uninterrupted server

connectivity, TiddlyCard applications are client-centred and remain functional with or

without connectivity, enabling users to use the applications anytime without

disruption. When a network connection is available, TiddlyCard applications may

make use of the server capabilities to perform tasks such as synchronisation of content

repository (automatically or at user’s discretion) and collaboration.

Built entirely on Javascript and a browser-based framework, TiddlyCard is platform

independent, enabling users to access TiddlyCard applications through desktop

computers, laptops and any browser-enabled devices including Personal Digital

Assistants (PDAs) and mobile phones regardless of the underlying operating system.

 1.1.2 Foundation of TiddlyCard
TiddlyCard is an extension of the increasingly popular TiddlyWiki (Ruston, 2004), a

free single-page application that is written entirely in Javascript, HTML and CSS. It

allows anyone to create personal self-contained hypertext documents that can be

posted to a web-server, sent via email or kept on a thumbdrive.

2

TiddlyWiki makes use of micro-content known as ‘tiddlers’ (Figure 1) to store small

fragments of content which are linked using wiki style and referenced through

hyperlinks, which users can click to progressively display the content although the

page is loaded all at once.

Figure 1: Tiddler (View Mode)

TiddlyWiki also allows the creation of special tiddlers known as ‘plugins’ and

‘macros’ to extend the capabilities of TiddlyWiki. Plugins can contain Javascript

codes which can be written by the user/developer or pre-defined Javascript functions

provided by the TiddlyWiki API Library while macros execute the code in plugins

and display the resulting behaviours. An example of a macro is the PlasticCalendar

(Soares, 2006) which is used to create the calendar shown below (Figure 2).

Figure 2: PlasticCalendar Macro

1.1.3 Objectives of TiddlyCard
The main objectives of TiddlyCard are:

3

a. Platform independence – Provides freedom of choice of operating systems

and browser

b. Ease of configurability – Provides ability to customise features and

integrate components easily

c. User empowerment – Provides capability to create, control and manipulate

data without reliance on application or content providers

d. Security – Provides protection of privacy and reduction of vulnerabilities

to malicious users

e. Collaborative Workspace – Provides a suite of applications to assist in

collaboration tasks to facilitate communication, content creation and

sharing

1.1.4 Components of TiddlyCard
Components of TiddlyCard include:

a. Asalta – a WYSIWYG designing tool

b. Debugger – a debugging tool for TiddlyCard

c. Form Generation and Handling – a tool for automatic form generation

d. Messenger – an Instant Messaging tool for TiddlyCard

e. Multimedia Resource Manager – a multimedia player

f. Plugin System – a framework to support TiddlyCard plugins

g. TiddlyCalendar – a collaborative event scheduling calendar tool

h. TiddlyRSS – a RSS reader

i. Version Control and Server-Side Support – backend supporting framework

1.2 The Calendar System

1.2.1 Overview of Calendar
A calendar is a system for keeping track of time using units of days, weeks, months

and years. These divisions of time are based on the movements of the earth, the moon

and the sun.

A day is the amount of time it takes for the sun to rise, set and rise again. This is

determined by the rotation of the earth on its axis and the position of the sun. The

sequence of 7 days (Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, and

Saturday) is grouped into units of weeks (please refer to Table A1 in Appendix A for

4

the origins of English week day names). Where the norm start day is Sunday, ISO

8601 Week Date (Nen, 2000) specifies Monday as the first day of the week and

Sunday as the last. (Santino, 1994)

A month is the amount of time it took for the moon to complete its cycle of phases –

from new moon to full moon and back to new moon. The word month comes from

moon. The origins of English naming for calendar months can be found in Table A2

in Appendix A. (Santino, 1994)

A year is the amount of time it takes the earth to complete one revolution around the

sun. It is determined by astronomers to be 365 days, 5 hours, 48 minutes and 46

seconds. (Santino, 1994)

1.2.2 History of Solar Calendars
The Roman calendar, Julian calendar and Gregorian calendar are the three most

significant in the history of solar calendars.

The ancient Roman calendar initially had only 10 months and the year began in

March (when farmers began work for growing season) before it was changed to a 12-

month system with January as the beginning of the year. It consisted of 355 days with

March, May, July and October with 31 days, while February has 28 days and the rest

with 29 days. This year did not fit with the actual solar year, leading to an extra period

(known as Intercalaris) of 22-23 days being added to make the calendar more correct.

However, over time, this calendar became wildly out of sequence. (Santino, 1994)

In 46 B.C, Julian Caesar introduced a new calendar that had 365 days, with one day

added every fourth year (leap year). He distributed the additional 10 days among the

29-day months, establishing the calendar that is identical to todays. This calendar is

named Julian calendar after its inventor. (University of Chicago, 1993)

Conversely, this correction of one day in every four years made the calendar year

longer than the year of the seasons and in 1582, the vernal equinox (beginning of

spring) occurred on March 11 instead of the correct date March 21. (University of

Chicago, 1993)

Pope Gregory XIII dropped 10 days from the calendar in 1582 (October 4, 1582 is

followed by October 15, 1582) to make it correspond more closely to the seasons

5

(University of Chicago, 1993). He also directed that leap years that occur in century

years be omitted unless it is divisible by 400 i.e. omit 3 leap years every 400 years.

(Santino, 1994). This calendar became known as the Gregorian calendar. Although it

did not gained immediate acceptance, it was gradually accepted over 3 centuries and

became the most common form of calendar in use today.

1.2.3 Calendar Usage and Revolution
Traditional calendar has been used primarily as a tool mainly to identify days to

inform about or agree on a future event and record an event that has happened. Its

significance lies in the ability to depict days of importance in civil, religious and

social contexts. For example, a calendar provides a way to determine which days are

civil and religious holidays, which days mark the beginning and end of business

accounting periods and which days have legal significance such as contract expiry

date.

Over the years, the calendar gradually evolved from merely informing dates to

become part of the Personal Information Management (PIM) application: a tool that

helps people to manage their personal schedule, time and activities. Users are able to

refer to their calendar to check time availability prior to confirmation of an

appointment and be reminded about upcoming events amidst their busy schedule so

that tasks are not missed and appointments are not forgotten.

With rapid globalisation and the need for collaboration among individuals, the

calendar takes a stride in another new direction with calendar sharing. While calendar

applications developed for the personal computer uses the internet and web

technologies such as email as a channel for users to share their calendar information

through the use of standardised file formats such as iCalendar (iCal), XML documents

and even CSV text files, web calendars such as Google Calendar provided its users a

more convenient and integrated method of event tracking and notification through the

use of public shared calendars that is available online.

6

2. TiddlyCalendar

2.1 Overview of TiddlyCalendar
TiddlyCalendar is a PIM application developed entirely in DHTML, Javascript and

CSS for TiddlyCard. TiddlyCalendar aims to bring TiddlyCard one step closer to

fulfilling its objective of creating a collaborative workspace by allowing users to

create and share common appointments, meetings and events while maintaining their

own personal schedule of events for easy referencing.

Initially developed as a plugin for TiddlyWiki, TiddlyCalendar has evolved from a

prototype similar to PlasticCalendar that is limited in capabilities to become a near

full-fledged calendar application that is rewriting a new chapter in Javascript

calendars. TiddlyCalendar has features comparable to that of desktop calendar

applications such as Rainlendar (Rainy, 2007) and Microsoft Outlook in contrast to

the conventional calendar display and date-picker found in Javascript calendars.

In addition, TiddlyCalendar retains the benefits provided by TiddlyWiki which allows

linkages to existing TiddlyCard content through wiki links, allowing calendar events

to be linked to tiddler content which may, for example, contain meeting agenda and

minutes to provide a more comprehensive picture of the event instead of just

presenting the date and time.

2.2 Motivation of TiddlyCalendar

2.2.1 Public Shared Appointment Importing/Exporting
Although the calendar has taken giant leaps; from a physical piece of paper to become

a PIM application and eventually, sharing of calendars over the web, the current

method of calendar sharing still presents inconvenience and hassle to the user. This

can be illustrated with the existing way to perform calendar sharing.

Current calendar sharing is based on importing and exporting calendar events in

standardised file formats such as iCal, XML documents and even CSV files. The

following steps are performed in sequence:

1. User A creates/edits a public appointment

7

2. User A exports the calendar file and uploads it onto a web server or ‘publish’

the calendar to a WebDav-enabled server (Whitehead, 2007) which supports

the CalDav protocol (Dusseault, 2005)

3. User B can either download the iCal file onto local computer and imports the

events into his/her calendar (method A) or subscribe to the published calendar

(method B)

This method of calendar sharing (import/export mechanism) presents a number of

difficulties and inconvenience:

Method A

1. The entire export (user A) and import (user B) process has to be repeated for

every single public appointment that has changed

2. User A has to notify user B explicitly about the calendar change and request

for user B to import the updated calendar file

3. Information (e.g. additional details) may be lost when user B overwrites his

existing local copy of the appointment with the imported appointment

information

Method B

4. Subscribed calendars provide a single centralised copy of the appointments

which are updated automatically by the calendar client. However, subscribed

appointments are read-only and does not allow any form of editing

The above gets more cumbersome as more parties are involved e.g. if 5 people are

interested in each other’s activities, they will have to repeat the entire export/import

process 4 times (1 time for each different user).

In addition, changes to a public shared event often depended on a single user to

perform the update. Additional details/information either cannot be added or edited by

other parties (subscribed calendars) or requires the repeat of the entire import/export

process and notifications sent to all relevant parties. As there is no central single

source (method A), the calendar’s integrity is compromised when multiple parties

update the same appointment and send out notifications simultaneously.

8

2.2.2 Common Appointment Scheduling Among Multiple Parties
Multiple users are often perplexed and frustrated when trying to find a suitable

date/time for an appointment e.g. a group of students deciding on a meeting date/time

using the process below:

a. Meeting coordinator proposes an initial date/time for meeting and sends

notification (email, SMS, etc) to all team mates to request for confirmation of

attendance

b. Meeting coordinator waits for responses

c. Team-mates receive notification and inform meeting coordinator of attendance

d. Meeting coordinator collates responses and inform the result (meeting

confirmed, reschedule, etc) to everyone

In the event that the date/time cannot be agreed upon, the process is repeated. This

process imposes a toll on the meeting coordinator and the process creates unnecessary

delays (mainly from collating of results and repetition of the scheduling process)

before the finalisation of the appointment date/time.

Not only does it take long to finalise, the above presents another problem. If the

process is carried out over other channels such as email and SMS, team-mates may

forget about the appointment and appointment details are prone to human errors (e.g.

enter wrong date/time, incorrect venue, etc). The process is highly inefficient and

ineffective.

2.2.3 Integration
Current applications are often created as standalone applications with limited

integration capabilities. This holds true especially for calendar-related applications

and usage. This can be illustrated by an example of a meeting. Prior to meeting,

date/time slot for the meeting is often discussed via channels such as emails, SMS or

Instant Messaging programs. The agenda of the meeting is often created as a text

document and sent to the relevant parties. After the meeting, the minutes are

distributed in the same manner as well.

In the above example, 3 different applications are required; a word processing

application (for creating agenda and minutes document), an email client or instant

messaging program (for sending notification and arranging the date/time of meeting)

9

and a calendar application (keep track of appointment details and provide

reminder/alert before the meeting).

These applications provide no way to reference the content of each other easily,

resulting in users having to revert to different documents and programs for related

information e.g. when user is reminded of meeting in the calendar application, he has

to open the agenda document in a separate word processing application.

Besides this, the information that is stored in a calendar application cannot be readily

accessed by other applications (e.g. meeting date/time must be re-entered into the

agenda document using plain text).

2.2.4 Requirement of TiddlyCard
TiddlyCard’s goal is to provide a common workspace for users to collaborate

effectively using one single platform. TiddlyCalendar provides an event scheduling

tool for users to keep track of appointments that are relevant to the collaboration effort

such as meeting appointments and project deadlines. In addition, it also allows the

user to keep track of their personal events in one single calendar to better manage

their schedule and arrange appointment dates and times.

2.3 Components of TiddlyCalendar

TiddlyCalendar

Other TiddlyCard Applications

Calendar Manager Appointment

apptstore

pollstore

Alarm Manager

alarmstore

API Library

Figure 3: Components of TiddlyCalendar

10

TiddlyCalendar consists of 4 main components, namely the Calendar Manager, the

Appointment Manager, the Alarm Manager, the Datastores and the TiddlyCalendar

API Library (Figure 3).

2.3.1 Calendar Manager

The Calendar Manager is responsible for displaying information on appointments to

the user. It consists of:

a. Event List window which shows a summarised list of upcoming appointments

for the following 14 days from today’s date

b. Calendar window (Figure 4) which highlights the dates with appointments for

the selected month/year (see Section 4.1.5)

Figure 4: Calendar Window

c. Week View (Figure 5) window which displays the list of appointments for the

selected week (see Section 4.1.5)

Figure 5: Week View Window

11

d. Summary window which displays summary of appointments for a date

e. Detail window which displays details of selected appointment

2.3.2 Appointment Manager

The Appointment Manager performs all tasks/operations related to appointment. Such

tasks/operations include:

a. Add/Edit/Delete Appointment

b. Search Appointment

c. Load/Save Appointments

d. Public Events Sharing (see Section 3.1)

e. Event Polling (see Section 3.2)

f. Import/Export Appointments (see Section 3.4)

2.3.3 Alarm Manager

The Alarm Manager keeps track of reminders and alerts for appointments. It displays

notification of upcoming appointments and can be run independently from Calendar

Manager and Appointment Manager. This allows the user to continue to receive

notification even if TiddlyCalendar is not fully loaded with all the components.

2.3.4 API Library

The API Library provides a suite of commands which can be executed by external

TiddlyCard applications to perform calendar-related tasks such as showing/hiding of

calendar window to check schedule from another application. This interface

encapsulates the different functions of TiddlyCalendar, making changes invisible to

the external application and ensuring continuous functioning of calendar operations

from external applications without the need for external application developer to

modify any code.

12

3. Innovation and Highlights

3.1 Public Appointment Sharing
In order to counter the problem of having a coordinator to update and reflect all

changes to an appointment, TiddlyCalendar introduced a new system of public event

sharing. Traditionally, any changes to an appointment involve the exporting of the

newly updated calendar and the importing of the new appointment by the various

parties. Although this situation can be avoided through the use of calendar

subscription, this solution is rigid as it does not allow the users to edit any details due

to its read-only nature.

TiddlyCalendar’s new public appointment sharing system resolves this issue through

the use of a peer distribution system. Through this system, each shared public

appointment is cloned on each individual’s calendar, granting every user the ability to

control and coordinate the calendar appointment. Changes to the calendar

appointment can be performed by anyone instead of having to rely on a coordinator.

Appointments are communicated through the peer distribution system instantaneously.

Using a modified version of the Comet (see Section 4.1.3) architecture (Comet

(programming), 2007), TiddlyCalendar allows users (who are previously offline) to

perform synchronisation of calendar appointments which can be stored, retrieved and

updated much like MSN offline messages (Figure 6). This eliminates the need to

export/import calendar files, providing a more efficient way of public appointment

sharing.

Unlike the export/import mechanism where edited calendar appointments directly

overwrites the existing calendar appointment (e.g. Rainlendar) or create a new public

appointment instead of updated the existing calendar appointment (e.g. Microsoft

Outlook 2007), TiddlyCalendar provides a control mechanism which allows the user

to specify the action when such an update occurs (Figure 7). When a public

appointment is updated, the user is able to compare the differences between the

updated appointment and the existing copy before deciding whether to accept the

changes or preserve the existing copy, thereby ignoring the change and saving the

appointment as a private appointment where additional private details can be added.

13

Figure 6: Instantaneous Sharing with Synchronisation (when connectivity is available)

Figure 7: TiddlyCalendar Update Control Mechanism

14

3.2 Appointment Polling
TiddlyCalendar has initiated a new polling system that is built upon Doodle (Inturico

Engineering, 2006) in calendar applications. Contrary to the conventional method of

fixing an appointment through repetitive request for date/time slot in conflicting

schedule situations, TiddlyCalendar’s polling system allows the appointment

coordinator to specify a number of date/time slots when creating the appointment poll

(Figure 8), thereby allowing the participants to select their desired slots from those

proposed.

Figure 8: Multiple Date/Time Slots for Event Polling

When participants receive the appointment poll, they are presented with information

about the appointment details such as Summary, Location, Details and Category as

well as a list of responses (collated automatically by TiddlyCalendar) from other

participants who have voted for their desired slots (Figure 9). This collated list may be

used by the appointment coordinator to make decision on the final selected date/time

slot based on user-specified criteria e.g. based on majority attendance or attendance of

specific individual(s) as priority.

15

Figure 9: Collated Responses for Poll

To facilitate the date/time slot voting process, TiddlyCalendar provides an integrated

week view which displays the current appointments of the participant, making it easy

for the participant to identify any conflicting date/time slots and decide his/her

availability (Figure 10). The use of colour schemes (purple depicts poll options while

other colours depict appointments of different categories) aids in quick identification

of the date/time slots.

Figure 10: Integrated Week View
Conflicting Schedule Non-conflicting Option

16

Such polling system provides the appointment coordinator with updated information

on users’ selection and thereby assists the coordinator in making a final decision on

the appointment date/time quickly and easily. Once the coordinator is satisfied, he/she

may finalise the poll using the Administrative Control (Figure 11). Upon confirmation,

a new public event is created and sent to all participants automatically, reducing the

need to notify all the participants and the number of steps to complete the scheduling

process.

Figure 11: Administrative Control

3.3 Integration with TiddlyCard Components

3.3.1 Integration with Wiki Component
TiddlyCalendar aims to provide an integrated method of appointment scheduling by

eliminating the need to revert to multiple applications. Through the public

appointment sharing feature, TiddlyCalendar has removed the need for a third party

application such as an email application to notify the participants of new or updated

events. To take this one step further, TiddlyCalendar integrates with the Wiki

component of TiddlyCard which is used to create, store and transfer content such as

agenda and meeting minutes by maintaining references to the content tiddler in the

calendar. This is possible through the creation of appointment tiddlers (Figure 12)

which “wikifies” the appointment content.

17

Figure 12: Appointment Tiddler Linking to Agenda Tiddler

Through the use of the Event Macro, it is also possible to include the appointment
information in a tiddler through the use of Embed Link (Figure 13)

Figure 13: Embedding Appointment Information in Minutes Tiddler

18

The benefits of integration of TiddlyCalendar with the Wiki component are

summarised below:

a. Eliminate third party applications such as word processing applications for

creating appointment-related content such as Agenda and Minutes

b. Provide ability to embed appointment information in content tiddlers (e.g.

Minutes) for easy referencing

c. Provide ability to link appointment information and appointment related

content tiddlers (e.g. Agenda)

3.3.2 Integration with Asalta Component
TiddlyCalendar provides an API Library which enables Asalta to provide calendar

feature to the webpage that Asalta is building. This enables a web designer or

developer to deploy TiddlyCalendar quickly within the application he/she is building

simply by clicking the Add Calendar button (Figure 14). This also allows Asalta to

perform changes on TiddlyCalendar’s properties e.g. resizing, changing of colour

schemes, etc, enabling developers to customise the TiddlyCalendar’s appearance

while preserving its functionalities.

Figure 14: TiddlyCalendar Integration with API Library

19

3.3.3 Integration with TiddlyRSS Component
TiddlyCalendar integrates with TiddlyRSS by making use of TiddlyRSS’s API to

generate RSS feeds when the calendar is changed. This RSS file may then be

uploaded to a webserver which can be subscribed to by another user.

While other RSS readers display the feed as normal updates, TiddlyRSS can detect

special <event> </event> tags which contain appointment details and call the

TiddlyCalendar API to perform updates to the calendar. This allows user to be freed

from having to manually check for changes to a calendar of interest as the TiddlyRSS

retrieves updates and imports new/changed appointments automatically.

3.4 Multiple Import Mechanisms
TiddlyCalendar supports 2 primary different methods of importing appointments.

a. Importing appointments through iCal file format (see Section 3.4.1)

b. Importing appointment though appointment tiddlers (see Section 3.4.2)

3.4.1 Importing Appointments through iCal
TiddlyCalendar supports importing appointments in iCal format in both local and

remote iCal files. iCal files can be downloaded to the local computer system before

being added to the calendar or loaded directly using the HTTP protocol (Figure 15).

Figure 15: Importing through iCal File

3.4.2 Importing Appointment through Appointment Tiddlers
This import method allows appointment to be imported via tiddlers. It works based on

tiddlers that are tagged with a special tag called “TiddlyCal_Appointment”. It

searches local or remote tiddlers marked with this special tag and allows users to

select specific appointments to import into TiddlyCalendar (Figure 16).

This import method can be performed in 2 easy steps:

20

a. Specific the URL or local file path

b. Select the appointments to import from the list of appointment tiddlers

Figure 16: Importing through Appointment Tiddlers

21

4. Design and Development

4.1 Language, Technologies and Formats

4.1.1 Javascript
The use of Javascript dated back to the early days of the internet when it is mainly

used as a client-based tool to perform tasks such as data validation in order to reduce

web traffic to-and-fro the server. As bandwidth increases and connection speeds get

faster and faster, many companies switched back to server-side processing which cuts

down the use of Javascript heavily. However, the language is regaining its popularity

with the increasing use of the Document Object Model (DOM), which enables

browsers to create content dynamically on the client without the need to request such

information from the server.

Javascript is chosen as the language for development for TiddlyCalendar for the

following reasons:

a. Server and connectivity independence

Javascript eliminates the need for server and internet connectivity as it is able

to operate ceaselessly in a browser. This enables users to use TiddlyCalendar

continuously, even if connectivity is broken midway.

b. Lightweight

Javascript files occupy a small footprint (typically few hundred kilobytes to

less than one megabyte) compared to other languages. This makes it easy for

users to port TiddlyCalendar to other machines/systems together with its data

files.

c. Platform independence

All modern browsers provide native support for Javascript. This enables

Javascript code to be executed with the need for installation of any runtime

environments or Software Development Kit (SDK). Javascript platform

independence allows it to be used on any device (PCs, laptops, PDAs or

mobile phones) running on any operating system (Windows, Linux, Symbian).

d. OOP in Javascript

Although Javascript is not completely object-oriented, it provides a high level

of support by being object-based. This allows TiddlyCalendar to create

22

reusable objects and classes which can be shared among different classes and

even applications. An example is the Appt class:

thisClass.Appt = function(){

 this.apptId = 0;

 this.apptUID = "";

 this.apptEvent = "";

 this.apptLoc = "";

 this.apptDateCreated = new Date();

 this.apptDateModified = new Date();

 this.apptStartDateTime = new Date();

 this.apptEndDateTime = new Date();

 this.apptAllDay = false;

 this.apptDetail = "";

 this.apptCategory = "";

 this.apptType = "";

 return this;

}

4.1.2 XMLHttpRequest
XMLHttpRequest is an important Ajax web development technique that provides an

API that can be used by Javascript to transfer XML and other text data to and from a

webserver using HTTP by establishing an independent and asynchronous

communication channel between the client and the server (XMLHttpRequest, 2007).

TiddlyCalendar’s import mechanisms use XMLHttpRequest to retrieve the contents

of other TiddlyCard/TiddlyWiki appointment tiddlers as well as appointments that are

stored in iCal files that are hosted on other webservers. This enables clients to import

appointments by specifying the URL of the file containing the appointments instead

of having to download the file before importing the appointments (Figure 17).

23

Figure 17: Importing Appointments from Remote Files using XMLHttpRequest
(source: http://www.modelworks.com/ajax.html)

4.1.3 Comet
TiddlyCalendar makes use of the Comet architecture which enables the server to send

data to clients asynchronously without the client explicitly requesting for it. Typically,

Comet applications use long-lived HTTP connections between the client and server,

providing an opened channel for clients and servers to send/receive messages. When

client A sends a message, the server relays the message to all clients that are online

and connected to the server (Figure 18).

The Comet architecture used by TiddlyCalendar is a modified version where a

persistent store is created to store messages sent by clients. This allows clients to

retrieve history of messages that are sent to the server while they are offline and

allows them to perform synchronisation (Figure 19).

TiddlyCalendar

URL of iCal file

iCal file content

Import and save

Update display

24

The public event and polling features of TiddlyCalendar make use of Comet to push

new/updated events/polls to the clients so that clients can receive updates and perform

synchronisation when connectivity is available. However, the normal operations of

TiddlyCalendar are not hindered in any way when connectivity is not available.

Figure 19: Modified Comet with Persistent Store

4.1.4 JavaScript Object Notation (JSON)
JSON has been chosen as the file format used by TiddlyCalendar’s datastores. Based

on subset of Javascript, JSON provides a light-weight data-interchange format that is

Figure 18: Comet Architecture

Client A Client B Client C Client A Client B Client C

Server

Time

Connection Initialisation Msg A

Msg A Msg A Msg A

Client A

Time

Msg A

Message Store

Client B Client C

Msg A Msg A Msg A

Server

Client D

Connection
Initialisation

getHistory Msg A

25

easy for human to read/write and machines to parse and generate (Introducing JSON,

n.d).

JSON makes it easy for Javascript to access the data and objects stored in a JSON file

as the internal representations for data structures like strings, arrays, and objects are

exactly the same characters (Figure 20). Objects can be restored back to their original

state (including variable values) by simply using the eval() function. This eliminates

the complexity of storing the data in other formats e.g. XML which introduces

overheads and requires parsing before the objects can be retrieved and reinstated in its

original state.

[{"apptId": "8553265", "apptUID": "8553265", "apptEvent": "Testing",

"apptLoc": "Home", "apptDateCreated": new Date(1193889543665),

"apptDateModified": new Date(1193889543665), "apptStartDateTime": new

Date(1193760003665), "apptEndDateTime": new Date(1193767203665),

"apptAllDay": false, "apptDetail": "Some test details",

"apptCategory": "1", "apptType": 0}]

Figure 20: JSON Representation of Appointment Datastore

4.1.5 Calendar Algorithms
The month display window uses a unique algorithm (Cross browser javascipt calendar,

n.d.) to display the days in the calendar month. Extracts of the main steps in the code

are illustrated below:

//1. Declare array containing number of days in month
var calDaysNo = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31];

//2. Leap year calculation and set number of days in month to 29 if
leap year
if (selectedMonth == 1) { //Testing for February
 if ((selectedYear % 4 == 0 && selectedYear % 100 != 0) ||
selectedYear % 400 == 0){
 monthDayNo = 29;
 }
}

//3. Day Number Filling for selected month/year
for(var k=0;k<=6;k++){ //j = week rows, k = day cols
 if(day<=monthDayNo && (k>=((firstDay-1)%7) || j>0)){
 cell.innerHTML = day;
 ++day;

//4. Day Number Filling for previous month
...
}else{
 if(k<((firstDay-1)%7) && j==0){ //must be first row
 cell.innerHTML = pastDate.getDate();

26

//5. Day Number Filling for next month
...
if(day>monthDayNo){
 cell.innerHTML = nextMonthDate.getDate();
...

The week number of the calendar window and week view window is calculated based
on the ISO 8601 Week standard and uses a special algorithm derived from Reingold
and Dershowitz (2001).

thisClass._computeWeek = function(year,month,day){
 day = day/1;
 year = year/1;
 month = month/1+1; //use 1-12
 var a = Math.floor((14-(month))/12);
 var y = year+4800-a;
 var m = (month)+(12*a)-3;
 var jd = day + Math.floor(((153*m)+2)/5) +

(365*y) + Math.floor(y/4) - Math.floor(y/100) +
Math.floor(y/400) - 32045; // (gregorian calendar)

 var d4 = (jd+31741-(jd%7))%146097%36524%1461;
 var L = Math.floor(d4/1460);
 var d1 = ((d4-L)%365)+L;
 var NumberOfWeek = Math.floor(d1/7) + 1;
 return NumberOfWeek;
}

4.1.6 iCalendar
TiddlyCalendar supports the use of iCal file format that is widely popular in calendar

sharing. TiddlyCalendar provides an export mechanism that allows users to export

their TiddlyCalendar appointments to iCal format for compatibility with other

calendar applications such as Microsoft Outlook and Rainlendar. The reverse is

possible as well where appointments created in other calendar applications can be

imported via the iCal format for cross-application interoperability. TiddlyCalendar

achieves this through conforming to RFC 2445 which provides the iCalendar

specification (Dawson and Stenerson, 1998).

27

4.2 Software Development Process
Although the majority of the requirements specification for the TiddlyCalendar is

drafted in the early stage of the project period, TiddlyCalendar followed the iterative

and incremental development process (Priestley, 2003) instead of the waterfall model

as development and delivery is broken down into small increments (Figure 21).

This draft specification provided a baseline to conceptualise the end result of the

development, providing input from which future feature improvements can build upon

on during later stages of development.

Core functionalities such as display of the calendar, appointment manager can be

produced early in the project life and released to potential users for testing and

feedback gathering. This produces working code that can be refined continuously

throughout the project, leading to lower risk of failure with abundant testing

throughout the entire project period. Although it may seem that the work is repetitive

and may cause delays in development progress, the contrary is true instead as slack

time between development phases is reduced by performing bug fixing.

The iterative and incremental development process allows prototypes to be build to

test for feasibility and to gather feedback from the TiddlyCard Developer Community.

Suggestions can be noted and slated for incremental development later.

Figure 21: Iterative and Incremental Development Process

Requirements

Analysis

Design

Coding

Testing

Requirements

Analysis

Design

Coding

Testing

Requirements

Analysis

Design

Coding

Testing

Increment 1 Increment 2 Increment 3

28

The development of each incremental phase in TiddlyCalendar is shown below:

Increment 1: Develop calendar display which shows the calendar for selected

month/year

Increment 2: Develop Appointment Manager to provide Add/Update/Delete/Search

functions

Increment 3: Integrate calendar display with Appointment Manager. Develop new

event list window in calendar display to show upcoming appointments

Increment 4: Develop Alarm Manager to provide alarm and reminder for

appointments

Increment 5: Develop Public Appointment Sharing feature

Increment 6: Develop Appointment Polling feature

* Testing and bug fixes occur throughout the entire development process, mainly between phases

4.3 Design Pattern
TiddlyCalendar employs the Model-View-Controller (MVC) (Dass, 2006) design

pattern in its development (Figure 22).

Interface (View) Control (Controller) Data (Model)

Calendar Display Manager

• Month view

• Week view

• Event List view

• Detail view

• Summary view

Appointment Manager

• Add/edit/delete appt

• Search appt

• Import/export

• Polling

Appointment

Poll

Alarm Manager

• Add/edit/delete

• Search

• Time tracking

• Alarm notification

Alarm

Figure 22: TiddlyCalendar MVC Architecture

29

The model stores all data about the object and corresponds to the Datastores. These

include:

a. Appt

b. Poll

c. Alarm

The view manages the graphical display of the application. The calendar display

manager handles this aspect, displaying the calendar month (highlighting dates with

appointments), the event list window (displaying upcoming appointments), week view

and details window. The calendar display manger is always notified when changes to

the models occur.

The appointment manager and alarm manager are the controllers for TiddlyCalendar.

They are responsible for responding to user requests such as creating new

appointments/alarms/polls and requests from the view (e.g. search appointments list

for appointments in display range). Changes to the models are performed by the

controllers.

The MVC design pattern provided several benefits to the development of

TiddlyCalendar:

a. Increased modularity - Each individual component can be designed and

developed independently of each other. Changes to component have a less

likely impact on other components e.g. model can be changed easily without

major changes to the calendar display manager (view)

b. Improved flexibility – It is easy to change the UI of TiddlyCalendar by

changing the view e.g. Asalta is able to perform changes to the display of

TiddlyCalendar (e.g. colour scheme) without affecting the operations of

TiddlyCalendar

c. Increased testability – Individual components can be tested separately from the

UI. For example, tests can be performed on the appointment manager to check

if search results (from models) are correctly returned before integrating with

the calendar display manager

30

4.4 UML Use Case Diagram

31

5. Lessons Learnt

5.1 Collaboration
Although the project is individual-based, being a part of a bigger development

community presented the opportunity to collaborate with others. Frequent discussions

and meetings about the direction of TiddlyCard are held when each developer

contributed actively, often working out expectations and resolving conflicts before

finalising any decisions which may affect each other’s work. An example will be the

change of the file IO library from synchronous read/write to asynchronous read/write,

which broke existing TiddlyCalendar code before it was changed to include callbacks.

Cooperation between developers also proved beneficial to the entire project. An

example will be the Comet architecture that was modified to include a persistent store.

Though initially discussed as a possible tool for TiddlyCalendar, this modification

eventually allowed other applications such as the Messenger to benefit as well.

5.2 Standards and Formats
TiddlyCalendar follows the ISO 8601 Week and iCal standards. By basing

development on such standards, TiddlyCalendar has a strong foundation to base its

work on, where the specifications provided guidelines for development and aid in

ensuring compatibility with existing calendar applications (which also makes use of

the same standards). Apart from making use of existing standards, TiddlyCalendar

also defined its own format to allow tiddlers to be used as a channel for the import

mechanism between TiddlyCalendar applications.

The week view of TiddlyCalendar was initially designed to have a horizontal layout

(Figure 23). However, this user interface soon encountered resistance as it conflicted

with the vertical layout (Figure 24) format which is ingrained in calendar usage.

32

Figure 23: Horizontal Week View

Figure 24: Vertical Week View

Although the horizontal layout provided a compact view which is able to provide a

clearer landscape of the user’s weekly events, users’ perspectives and acceptance

level of the new introduction should not be over-estimated (e.g. Qwerty and Dvorak

keyboard layout). This led to the consideration and eventual adoption of the idea to

allow users to switch between the two views, which provided an ease of transition for

the users to the new layout while preserving the vertical layout for change-resistant

users.

33

6. Recommendations for Future Works

6.1 User Interface

6.1.1 Single Window Design
TiddlyCalendar currently contains 7 different windows to perform various tasks.

These are:

a. Calendar month display window

b. Event list window

c. Week view window

d. Add/Update event window

e. Poll window

f. Import window

g. Export window

This multiple window interface clutters the workspace and creates an untidy and

messy interface. In addition, the user has to close the windows one by one in order to

fully exit TiddlyCalendar.

It is recommended to design and implement a single window interface where all the

functions are housed in one single window for easy operability. This single window

design will allow users to access TiddlyCalendar functions from one location, while

maintaining the tidiness of the workspace.

6.1.2 Drag-and-drop Capability
TiddlyCalendar supports moving of windows through the use of drag-and-drop

function. Different windows can be arranged in the workspace by simply dragging

and dropping the window to the destination location, while the window maintains

visibility to allow user to see the exact location after movement.

This drag-and-drop capability can be extended to appointments in the week view to

allow changing of date/time of the appointment. This provides added convenience to

the user by eliminating the need to change the date/time through the add/update event

window.

34

6.2 Feature Improvements

6.2.1 Appointment Polling
The innovative polling system allows the poll administrator to specify multiple

date/time slots for the appointment. However, the decision making process of the

selection of the slots is still based on one single individual i.e. poll administrator. This

system can be improved by introducing the “Call for Options” stage, which allows the

administrator to send out a request for free time slots from each participant, thereby

creating date/time slots that are more likely to be accepted.

Poll options are currently presented in one single colour (purple) in the week view

integrated in the poll window. It is suggested that different options adopt different

colours to allow the user to identify the options quickly without the need to perform a

“mouse-over” the option to view the option details.

6.2.2 Public Appointment Sharing
When a public appointment is updated, the entire appointment object is changed and

all users sharing the event are updated. This scenario might not be desired if the user

wishes to include individual notes, preferences e.g. alarm or details. This can be

improved by allowing the user to state if TiddlyCalendar should notify all users who

are sharing this appointment. In this way, users can perform actions such as adding

alarms (at different timings) based on individual preferences without affecting others.

In order to facilitate this behaviour, it is also suggested that changes to shared

appointments are based on attributes rather than entire objects. Instead of updating the

entire appointment object when changes are made, TiddlyCalendar should allow

changing of individual fields which will be updated without affecting other fields e.g.

changing the time of the public appointment will only send an update to change the

time for other users, while preserving their individual notes such as personal

additional details/alarms.

6.2.3 Export Selection
The current mechanism exports all appointments in the user’s TiddlyCalendar. This

action might not be desirable as certain appointments might be private which the user

does not wish to disclose.

35

A possible solution is to allow the user to specify the appointments to be exported.

This can be aided by the inclusion of filters, which assists the user in selecting the

appointments e.g. all public appointments only, all appointments of Meeting category,

etc.

Sorting mechanisms such as Summary alphabetical sort, Date/Time sort, Category

sort, etc will also support the export mechanism, allowing users to select the

appointments to be exported easily.

6.3 Feature Additions

6.3.1 Comet Queue
Currently, all public appointments and polls are only communicated and shared if

they are created at a time when the user is online. Due to the Comet architecture, the

messages are published to the server immediately after creating the appointment/poll.

This meant that when an offline user creates a public appointment/poll, the

information is “lost” as it cannot be sent to the server, disallowing other users to

access the appointment information.

It is suggested that a offline queue be implemented which will store the messages to

be sent to the Comet server. A network monitor can then be installed to track network

connectivity. If a connection becomes available, the messages in the queue can then

be sent to the server.

6.3.2 Free/Busy Time Notification
This feature can be added to allow users to notify other users their free/busy time

periods explicitly. This helps meeting coordinators to plan date/time slots more

effectively, reducing the number of interactions required to find suitable time slots for

appointments.

6.3.3 Others
The following features may be considered for implementation as well.

a. Multiple Calendars

b. Day View

c. Recurring Appointments

d. Category Rules e.g. yearly recurrence for Anniversary and Birthday events

36

7. Comparison and Conclusion

TiddlyCalendar has written a new chapter in the history of Javascript calendars.

Unlike traditional Javascript calendar which only aims to display calendar month

information (much like physical calendar) and allow users to select dates i.e. date-

pickers in forms, TiddlyCalendar provides PIM calendar features that is comparable

to state-of-the-art desktop and server applications such as Microsoft Outlook and

Google Calendar which allows user to manage their schedules in an integrated

environment through the TiddlyCard platform, allowing seamless integration between

content and schedule.

Although calendar is in a well-developed and matured field, TiddlyCalendar has

presented innovative ideas in sharing of appointments and scheduling of public

appointments with the Public Appointment Sharing and Appointment Polling features,

breaking the stagnant state in PIM calendar applications.

TiddlyCalendar provides a scheduling tool that is integrated with TiddlyCard to

provide seamless integration between content and schedule.

Its innovative appointment polling/sharing features make it easy for users to arrange

appointments/meetings and collaborate on tasks using the same platform. Users can

share appointment information with each other easily using a large variety of

mechanisms such as Comet, iCal files, Appointment tiddlers and even RSS feeds.

TiddlyCalendar has been integrated with other TiddlyCard applications such as Asalta

and TiddlyRSS easily through the use of Libraries and APIs. This use of libraries and

APIs allows future integration with other applications (e.g. embedding appointment

information in email application), which can aid in collaborative efforts among

multiple users, allowing greater efficiency and effectiveness in group work.

Although TiddlyCalendar has not fulfilled all the features implemented in a matured

calendar application such as Microsoft Outlook due to the time span of the HYP

period, improvements to existing TiddlyCalendar has been suggested in Section 6 to

realise its full potential in future developments, bringing calendar applications to new

heights.

iv

References

Text References
Adobe Labs. (2006). Adobe AIR. Retrieved October 25, 2007, from Adobe Labs:

http://labs.adobe.com/technologies/air/

Comet (programming). (2007, October 25). Retrieved October 29, 2007, from

Wikipedia: http://en.wikipedia.org/wiki/Comet_(programming)

Dass, K. (2006). MVC Acrhitecture. Retrieved November 2, 2007, from

IndiaWebDevelopers.com:

http://www.indiawebdevelopers.com/technology/java/mvcarchitecture.asp

Dawson, F., & Stenerson, D. (1998, November 1). Internet Calendaring and

Scheduling Core Object Specification (iCalendar).

Dusseault, L. (2005, March 7). Welcome to CalDav Resources. Retrieved October 26,

2007, from CalDav: http://ietf.osafoundation.org/caldav/index.html

HyperCard. (12 October, 2007). Retrieved 25 October, 2007, from Wikipedia:

http://en.wikipedia.org/wiki/HyperCard

Introducing JSON. (n.d.). Retrieved November 1, 2007, from JSON: www.json.org

Inturico Engineering. (2006). Doodle. Retrieved October 1, 2007, from Doodle:

http://www.doodle.ch

Nen, L. V. (Ed.). (2000, December 15). Data elements and interchange formats –

Information interchange –. ISO8601:2000(E) (2). International Organization for

Standardization.

Priestley, M. (2003). Software Development Processes. In M. Priestley, Practical

Object-Oriented Design with UML (2nd Edition ed., p. 46). UK: McGraw Hill

Education.

Rainy. (2007). Rainlendar - A customizable desktop calendar. Retrieved October 25,

2007, from Rainlendar: http://www.rainlendar.net/cms/index.php

v

Reingold, E. M., & Dershowitz, N. (2001). Calendrical Calculations: The Millennium

Edition. Cambridge: Press Syndicate of The University of Cambridge.

Ruston, J. (2004, December 10). TiddlyWiki. Retrieved October 25, 2007, from

TiddlyWiki: http://www.tiddlywiki.com/

Santino, J. F. (1994). Calendar. The New Book of Knowledge (Vol. 3, pp. 11-17) .

United States of America: Grolier Incorporated.

Soares, P. (2006, January 4). PlasticCalendarPluginDoc. Retrieved October 25, 2007,

from TiddlyWiki 2.2.6 Addons:

http://www.math.ist.utl.pt/~psoares/addons.html#PlasticCalendarPluginDoc

University of Chicago. (1993). Calendar. Compton's Encyclopedia (Vol. 4, pp. 28-30) .

Chicago, United States of America: Compton's Learning Company.

Whitehead, J. (2007, July 22). Welcome to WebDav Resources. Retrieved October 26,

2007, from WebDAV Resources: http://www.webdav.org/

XMLHttpRequest. (2007, October 31). Retrieved November 1, 2007, from Wikipedia:

http://en.wikipedia.org/wiki/XMLHttpRequest

Code References
Cross browser javascript calendar . (n.d.). Retrieved March 12, 2007, from

dtmlgoodies.com: http://www.dhtmlgoodies.com/scripts/js_calendar/js_calendar.html

Hunlock, P. (2006, December 02). Javascript Drag and Drop. Retrieved March 20,

2007, from The Javascript Reference Series:

http://www.hunlock.com/blogs/Javascript_Drag_and_Drop

Jenci, K. (2005, October 05). JavaScript validate 'as you type'. Retrieved September

05, 2007, from mredkj.com: http://www.mredkj.com/tutorials/validate2.js

Larson, J. (2005, May 4). Clipboard Copy. Retrieved September 15, 2007, from

Jeffothy's Keyings: http://www.jeffothy.com/weblog/clipboard-copy/

Oster, J. (2007, August 26). Javascript Toolkit. Retrieved September 20, 2007, from

Wingo Bay: http://www.wingo.com/jt_/index.html

vi

Reingold, E. M., & Dershowitz, N. (2001). Calendrical Calculations: The Millennium

Edition. Cambridge: Press Syndicate of The University of Cambridge.

vii

Appendix A

Current Name Historical Name Meaning
Monday Monandag Day of the Moon
Tuesday Tiesdag Tiu, God of War
Wednesday Wodnesdag Woden, Ruler of Gods
Thursday Thorsdag Thor, Controller of Thunderbolt
Friday Frigadag Frigga. Wife of Woden
Saturday Saeternesdag Saturn, God of Agriculture
Sunday Sunnandag Day of the Sun
Table A1: Origins of English Week Day Names

Current Name Historical Name Origin
January Januarius Janus, God of Beginnings &

Doorways
February Februarius Februa, Feast of Purification
March Martius God Mars
April Aprilis Goddess Venus (Aphrodite)
May Maius Goddess Maia
June Junius God Juno
July Julius Julius Caesar
August Augustus Julius Augustus
September Septem Seven
October Octo Eight
November Nove Nine
December Decem Ten
Table A2: Origins of English Month Names

