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Abstract. We report on a machine-checked Coq proof of correctness
for Dijkstra’s one-to-all shortest path algorithm. We prove full func-
tional correctness. We use classic textbook code written in CompCert
C, and since our code is executable and realistic our verification must
deal with real-world complications. In particular, we encounter and ex-
plain an overflow issue in Dijkstra’s algorithm. The precise bound in the
relevant precondition is nontrivial: we show that the intuitive guess fails
and provide a workable refinement. This work fits into an ongoing explo-
ration of verified graph-manipulating algorithms in a realistic setting.
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1 Introduction

Dijkstra’s eponymous shortest-path algorithm [1] finds the cost-minimal paths
from a distinguished source vertex source to all reachable vertices in a finite
directed graph. The algorithm is classic and ubiquitous, appearing widely in
textbooks [2] and in real routing protocols. Further, the algorithm has been in
use for over 60 years, suggesting that for all practical purposes its safety and
correctness have been verified by decades of application.

Here we verify a C implementation of Dijkstra’s one-to-all shortest path
algorithm. We implement textbook C code [2] in CompCert C [3] so that we can
use the Verified Software Toolchain [4] and Wang et al.’s recent framework for
verifying graph algorithms [5] to state and prove the full functional correctness
of the code using the Coq proof assistant [6]. We expose a subtle overflow issue in
the C code and make a nontrivial refinement to the precondition of the algorithm
so that users know when the code will calculate the correct paths.

The remainder of this paper is organized as follows:

82 We briefly present and explain our C implementation of Dijkstra’s algorithm
and the key loop invariants we use to certify its specification.

83 We explain how overflow can occur and give a refinement to the precondition
of the function that restricts edge weights appropriately in the context of a
concrete definition for infinity to prevent said overflow.

84 We conclude this short paper by putting this result in the context of our
previous and ongoing work, discussing related work in certifying Dijkstra’s
algorithm, and summarizing some presentations from algorithms textbooks.

Our code is available at https://github.com/anshumanmohan /VerifDijkstra.


https://github.com/anshumanmohan/VerifDijkstra
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#define INF INT_MAX — INT_MAX/SIZE
void dijkstra (int graph[SIZE][SIZE], int src,
int xdist, int xprev) {
// { DijkGraph(y) = array(dist, -) * array(prev, ,)}
int pgl[SIZE]; int i, 3j, u, cost;
for (i = 0; 1 < SIZE; i++)
{ dist[i] = INF; prev[i] = INF; pqgql[i] = INF; }
dist[src] = 0; pglsrc] = 0; prev[src] = src;

o // { 3priq, dist, prev. DijkGraph(v) * PQ(pq, priq) = array(dist, dist) * }

19

20

21

array(prev, prev) A dijk_correct(vy, src, prev, dist, priq)
while (!pg_emp (pq)) f
u = popMin (pq) ;
dprev’, dist’, priq’. DijkGraph(y) * PQ(pq, priq’) * array(dist, dist’) *
// array(prev, prev’) A u € popped(priq’) A
dijk_correct_weak (v, stc, prev’, dist’, prig’, i, 1)
for (i = 0; 1 < SIZE; i++) {
cost = graphlu] [i];
if (cost < INF) {
if (dist[i] > dist[u] + cost)
{ dist[i] = dist[u] + cost; prev[i] = u; pqgl[i] = dist[i]; }
Aprev’, dist’, prig’. DijkGraph(v) * PQ(pq, priq’) * array(dist, dist’) *
y// { array(prev, prev’) A digk_correct_weak(~y, src, prev’, dist’, prig’, i,u) }
Iprev’, dist’, prig’. DijkGraph(v) * PQ(pq, priq’) * array(dist, dist’) *
b/ { array(prev, p'r'c'l/) A dijk_correct(y, src, prev’, dist’, p7"/lq/) }
priq, dist, prev. DijkGraph(v) * PQ(pq, prig) = array(dist, dist) *
y// array(prev, prev) AVdst € priq. prig[dst] £ INF A
digk_correct(vy, src, prev, dist, priq)
return; }

Fig. 1: Clight code and proof sketch for Dijkstra’s Algorithm

2 Verified Dijkstra in C

Figure 1 shows the code and proof sketch of Dijkstra’s algorithm. Our code is
implemented exactly as suggested by CLRS [2] so we refer readers there for a
general discussion of the algorithm. The adjacency-matrix-represented graph -~
of SIZE vertices is passed as the parameter graph along with the source ver-
tex src and two allocated arrays dist and prev. The details of the spatial
predicates array(x, v), connecting an array pointer x with its contents v, and the
internals of the priority queue PQ are unexciting. Our spatial graph predicate is
more interesting in that it nests arrays and connects the concrete memory values
to an abstract mathematical graph «y, which in turn exposes an interface in the
language of graph theory (vertices, edges, labels, etc.).

list _addr((block, offset), index) = (block, offset + (index x sizeof(int) X SIZE))
list_rep(, i, base_ptr) 2 array(graph2matrix(~y)[i], list_addr(base_ptr, i))

graph_rep(y, g_addr) 2 kv list_rep(vy, v, g-addr)
veEYy
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In general these spatial representations are simple enough that they pose no spe-
cial challenge in the proof and so we will not focus on issues such as e.g. making
sure an array dereference is in bounds in our discussion below.

The key to the verification is the pure part of the loop invariants on lines 9
and 12. The while invariant dijk_correct(y, src, prev, dist, priq) has three parts:

Vdst. 0 < dst < SIZE — inv_popped (v, src, prev, dist, priq, dst) A
inv_unpopped (7, src, prev, dist, prig, dst) A
inv_unseen(y, prev, dist, priq, dst)

A destination vertex dst falls into one of three categories:

1. inv_popped: dst has been fully processed, and has been popped from the
priority queue. A globally optimal path from src to dst exists, the cost of
this path is logged in the dist array, and all the vertices visited by the path
are also popped. Further, the links of this path are logged in the prev array.

2. inv_unpopped: dst is reachable in one hop from a popped “mom” vertex.
This route is locally optimal: we cannot improve the cost with a different
popped vertex. The prev array logs mom as the best-known way to reach
dst, and the dist array logs the path cost via mom as the best-known cost.

3. inv_unseen: no path is currently known from src to dst.

After popping the lowest-cost vertex in line 11, we reach the invariant of the
for loop digk_correct_weak(y, src, prev, dist, prig, i, u):

Vdst. 0 < dst < SIZE — inv_popped (7, src, prev, dist, priq, dst) A
inv_unseen(y, prev, dist, priq, dst) A

Vdst. 0 < dst < 1 — inv_unpopped (v, src, prev, dist, prig, dst) A

Vdst. i < dst < SIZE — inv_unpopped_weak(7y, sre, prev, dist, prig, dst, u)

We now have four cases, many of which are familiar from dijk_correct:

1. inv_popped: dst has been fully processed, and has been popped from the

priority queue. For all popped vertices except for u this is trivial from

dijk_correct; for u itself we reach the heart of Dijkstra’s correctness: the
cost to the fringe vertex with minimum cost cannot be further improved.
inv_unseen: no path is known from src to dst. Trivial from dijk_correct.

3. inv_unpopped (less than 1): dst is reachable in one hop from a “mom” vertex,
which is itself popped. Initially this is trivial since 1 = 0 and we restore it
as i climbs by updating costs when they can be improved in line 17.

4. inv_unpopped_weak (between than i and SIZE): dst is reachable in one hop
from a popped “mom” vertex. However, the path to dst specifically does not
go via u. This fact is key to restoring inv_unpopped as i increments.

N

The formal definitions for the above predicates can be found in appendix 4.

At the end of the for loop, the fourth case will fall away (i = SIZE),
allowing us to infer the while invariant dijk_correct from dijk_correct_weak and
thus continue the while loop. The while loop will break precisely when no item
in the priority queue has cost less than INF. The second clause of the while loop
invariant dijk_correct then falls away: all reachable vertices have been optimized,
and the rest are unreachable altogether. We are done.
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Fig.2: A graph that will result in overflow on a 3-bit machine

3 DI’m sorry Dave, I’'m afraid I can’t do that: Overflow

A little thought makes it clear that Dijkstra’s algorithm cannot work when

the cumulative path cost is greater than or equal to INT_MAX. A reasonable

INT.MAX
SIZE—1 |?

since the longest path can have no more than SIZE—1 links and so the maximum
cumulative path cost will be no more than INT_MAX. However, this has two flaws.
First, since are writing real code in C, rather than pseudocode in an idealized
setting, we must reserve some concrete int value for “infinity” INF, which has
the special semantics that when a vertex x’s distance is INF then z must be
unreached; if a reached destination vertex could have a legitimate path cost of
INF then we would have an unpleasant ambiguity. Second, even though path
costs start at INF and only decrease, the code can overflow in lines 16 and 17.
Consider applying Dijkstra’s algorithm on a hypothetical 3-bit unsigned ma-
chine to the graph in figure 2. The SIZE of the graph is 3 nodes, and so the

INTMAX | __ 7
SIZE—1 | — | 3-1

in figure 2. Indeed, a glance at the diagram is enough to tell that the true dis-
tance from the source A to vertices B and C are 3 and 6, respectively—both of
which are representable with 3 bits, and so naively all seems well. Indeed, after
processing vertices A and B, 3 and 6 are the costs reflected in the dist array
for B and C, respectively—but unfortunately vertex C is still in the priority queue
pa. After vertex C is popped on line 11, we fetch its neighbors in the for loop;
vertex B’s cost of 3 will be fetched on line 14. On line 16 the currently optimal
cost of B (3) is compared against the sum of the optimal cost of C (6) plus the
just-retrieved cost of the edge from C to B (3). Since 6 + 3 overflows in 3-bit
arithmetic, the comparison is not between 3 and 9 but in fact between 3 and 1!
Thus the code decides that a new cheaper path from A to B exists (in particular,
A~~B~»C~~B) and then trashes the dist and prev arrays on line 17.

Our code uses signed int rather than unsigned int so we have undefined
behavior rather than defined-but-wrong behavior, but the essence of the overflow
is identical. Our solution is twofold. First, we restrict the maximum edge cost to
| LELMEX | which in the 3-bit setting just described forces an edge cost of no more

SIZE
than 2. Second, on line 1 we choose INF to be INT_MAX — | 2X=22% | 'which in the
3-bit setting is 5. Consider modifying figure 2 to have edge weights of 2 rather
than 3. After processing vertices A and B, the distances to B and C are no more
than 2 and 4, respectively. When we process vertex C, the comparison on line 16
is thus between the previous best cost to B of 2, and the candidate best cost

to B via C of 6; there is no overflow and the code behaves as advertised.

restriction would seem to be allowing edge costs to be no more than L

naive edge-weight upper bound is { = 3, exactly as pictured
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4 Concluding thoughts: Future and Related Work

Our previous work. We have long been interested in the verification of graph-
manipulating programs written in C [7]. We fortified our techniques to handle
realistic (CompCert [3]) C to a machine-checked level of rigour [5]. Novel fea-
tures of the present result include a previously-untried adjacency matrices spatial
graph representation as well as non-trivial edge labels between graph nodes.

Ongoing and future work. We are investigating techniques to increase the au-
tomation of such verifications. Although we benefit from some automation at
the Hoare-logic level provided by the Verified Software Toolchain [4], building
these proofs is still highly labor intensive. We see potential for automation in
four areas: (A) the Hoare level; (B) the spatial level; (C) the mathematical
level; and (D) the interface between the spatial and the mathematical levels.
Our ongoing work on these challenges include (A) improved tactics for VST for
common cases we encounter in graph algorithms; (B) an expanded library of
existing graph constructions such as the adjacency-matrix representation used
in this result, as well as associated lemmas; (C) better lemmas about common
mathematical graph patterns, investigations into reachability techniques based
on regular expressions over matrices and related semirings [8,9,10,11]; and (D)
improved modularity in our constructions and automation of common cases, e.g.
we often compare C pointers to heap-represented graph nodes for equality, and
due to the nature of our representations this equality check will be well-defined
in C when the associated nodes are present in the mathematical graph. The key
advantage of having end-to-end machine-checked examples such as the one we
presented above is that they guide the automation efforts by providing precise
goals that are known to be strong enough to verify real code.

Other verifications of shortest-path. Chen verified Dijkstra in Mizar [12], Gordan
et al. formalized the reachability property in HOL [13], Moore and Zhang verified
it in ACL2 [14], Mange and Kuhn verified it in Jahob [15], and Klasen verified
it in KeY [16]. Liu et al. took an alternative SMT-based approach to verify a
Java implementation of Dijkstra [17]. In general the above work operates within
idealized formal environments and thus gloss over certain real-world issues, and
so as best we can tell do not e.g. handle the overflow issue we identified.

Shortest-path in algorithms textbooks. We were not able to find a standard text-
book that gives a robust, precise, and full description of the overflow issue we
describe in §3. The landmark CLRS [2] does not address overflow, although—
arguably—this is unnecessary in pseudocode. Sedgewick’s book on graph algo-
rithms in C [18] likewise does not address overflow, and moreover gives C code
that contains exactly the bug we identify. Skiena’s Algorithm Design Manual
likewise glosses over the issue, both in pseudocode and C [19]. To its credit,
Heineman et al.’s Algorithms in a Nutshell [20] mentions overflow as a possi-
bility and proposes casting certain computations to long to avoid them in C.
However, Heineman et al. do not give a nontrivial bound on the input edge
weights, leaving users in the fog for exactly when the algorithm works.
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A Formal definitions used in decorated proof

In this appendix we put more formal and complete versions of the definitions
discussed in the paper proper. Figure 3 shows how we represent graphs in mem-
ory using adjacency matrices. Figure 4 shows the pure mathematical definitions
that were discussed in §2, and exposes several of the internal definitions that
make them work.

list_addr((block, offset), index) = (block, offset + (index x sizeof(int) X SIZE))
list_rep(v, ¢, base_ptr) 2 array(graph2matrix(v)[¢], list_addr(base_ptr, 1))
graph_rep(~, g_addr) 2 % v list_rep(~, v, g_addr)

veEY

Fig. 3: Spatial representation of the graph
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path_correct(v, src, prev, dist, mom, p) 2 valid_path (v, p) A path_ends(y, p, src, dst) A
path_cost(vy, p) # INF A dist[dst] = path_cost(vy,p) AVa,b. (a,b) € p— prev[b] = a

path_globally _optimal(~y, src, dst, p) 2 Vp'. valid_path(~y, p') — path_ends(v, p’, src, dst) —
path_cost(y, p) < path_cost(~y, p")

all_hops_in_popped(p, priq) 2 Va,b. (a,b) € p — a € popped(priq) A b € popped(priq)

2 Va,b. (a,b) € p— a € popped(prig) N

b € popped(prig) Na ZuAb#u

all_hops_in_popped _weak(p, prig, u)

dijk _correct(vy, src, prev, dist, priq) =
Vdst. 0 < dst < SIZE — inv_popped (v, src, prev, dist, priq, dst) A
inv_unpopped(, src, prev, dist, priq, dst) N\

inv_unseen(y, prev, dist, priq, dst)

dijk _correct _weak(y, sre, prev, dist, prig, i,u) 2
Vdst. 0 < dst < SIZE — inv_popped(v, src, prev, dist, priq, dst) A
inv_unseen(y, prev, dist, priq, dst) A
Vdst. 0 < dst < 1 — inv_unpopped (7, src, prev, dist, prig, dst) A
Vdst. 1 < dst < SIZE — inv_unpopped _weak(~, src, prev, dist, prig, dst, u)

inv_popped (v, src, prev, dist, prigq, dst) 2 dst e popped (priq) —
Ip2dst. path_correct(ry, sre, prev, dist, dst, p2dst) A
all_hops_in_popped(p2dst, priq) A path_globally_optimal(vy, src, dst, p2dst)

inv_unpopped (v, sre, prev, dist, priq, dst) A prig[dst] < INF —
let mom := prev[dst] in Ip2mom. path_correct(y, src, prev, dist, mom, p2mom) A
all_hops_in_popped (p2mom, priq) A path_globally _optimal(vy, src, mom, p2mom) A
Ymom', p2mom’. path_correct(vy, src, prev, dist, mom’, p2mom”) —
all_hops_in_popped (p2mom’, priq) — path_globally_optimal (v, src, mom', p2mom’) —
path_cost(p2mom + (mom, dst)) < path_cost(p2mom’ + (mom/, dst))

inv_unpopped_weak (7, src, prev, dist, priq, dst) 2 prigq[dst] < INF —
let mom := prev[dst] in Ip2mom. path_correct(y, src, prev, dist, mom, p2mom) A
all_hops_in_popped _weak (p2mom, priq) A path_globally_optimal(~y, src, mom, p2mom) N\
Ymom', p2mom’. path_correct(vy, src, prev, dist, mom’, p2mom’) —
all_hops_in_popped _weak (p2mom’, prig) — path_globally_optimal (v, src, mom’, p2mom”) —
path_cost(p2mom + (mom, dst)) < path_cost(p2mom’ + (mom’, dst))

inv_unseen(y, prev, dist, priq, dst) 2 prig[dst] = INF — (dist[dst] = INF A prev[dst] = INF)

Fig. 4: Key mathematical used in the decorated proof
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