
On the Power of Randomization in Distributed Algorithms in
Dynamic Networks with Adaptive Adversaries*

Irvan Jahja
National University of Singapore

irvan@comp.nus.edu.sg

Haifeng Yu
National University of Singapore

haifeng@comp.nus.edu.sg

Ruomu Hou
National University of Singapore
houruomu@comp.nus.edu.sg

Abstract

This paper investigates the power of randomization in general distributed algorithms in dynamic net-
works where the network’s topology may evolve over time, as determined by some adaptive adversary.
In such a context, randomization may help algorithms to better deal with i) “bad” inputs to the algorithm,
and ii) evolving topologies generated by “bad” adaptive adversaries. We prove that randomness offers
limited power to better deal with “bad” adaptive adversary. We define a simple notion of prophetic ad-
versary for determining the evolving topologies. Such an adversary accurately predicts all randomness in
the algorithm beforehand, and hence the randomness will be useless against “bad” prophetic adversaries.
Given a randomized algorithm P whose time complexity satisfies some mild conditions, we prove that
P can always be converted to a new algorithm Q with comparable time complexity, even when Q runs
against prophetic adversaries. This implies that the benefit of P using randomness for dealing with the
adaptive adversaries is limited.

1 Introduction

Background. Understanding the power of randomization has long been a key goal in algorithms research.
Over the years, researchers have obtained many interesting results on the power of randomization, such as
in centralized algorithms (e.g., [25]), in parallel algorithms (e.g., [21]), and in algorithms in static networks
(e.g., [7, 8, 10, 11, 22]). This paper aims to gain deeper insights into the power of randomization in general
distributed algorithms in dynamic networks with adaptive adversaries. Dynamic networks [4, 6, 19, 23]
model communication networks whose topologies may change over time, and has been a growing research
topic in distributed computing. While randomization has been used extensively to solve various specific
problems in dynamic networks (e.g., [17, 19]), prior works have not focused on the power of randomiza-
tion in general distributed algorithms in dynamic networks (i.e., to what extent randomized algorithms can
outperform deterministic ones).

Our setting. We consider a synchronous dynamic network with a fixed set of n nodes. The network topology
in each round is some arbitrary connected and undirected graph as determined by an adaptive adversary,

*The first two authors of this paper are alphabetically ordered. This is the technical report version of [13]. The final authenticated
version is available online at https://doi.org/10.1007/978-3-030-57675-2 24.

1

and we adopt the following commonly-used model [16, 18, 26]: The adaptive adversary decides the round-r
topology based on the algorithm’s coin flip outcomes so far (i.e., up to and including round r). The adaptive
adversary does not see the coin flip outcomes in round r + 1 or later. We follow the communication model
in [14, 26]: In each round, a node may choose to either send an O(log n) size message (i.e., the broadcast
CONGEST model [24]) or to receive. A message sent is received, by the end of that round, by all the
receiving neighbors of the sender in that round. Each node has some input of arbitrary size and a unique
id between 0 and n − 1. We consider general distributed computing problems modeled as some arbitrary
function of the n input values (as an input vector). The output of the function is also a vector of length n, and
node i should output the (i+1)-th entry of that vector. There is no constraint on the output size. An algorithm
in this paper always refers to some algorithm for solving some distributed computing problem as modeled
in the above way. Note that many problems that are not typically defined as functions, such as computing a
unique minimum spanning tree (of some input graph) and token dissemination [9, 17], can nevertheless be
modeled as a function. The time complexity is defined to be the number of rounds needed for all nodes to
output. An algorithm P ’s time complexity, denoted as tcP (n, d), corresponds to its time complexity under
the worst-case scenario. Here the worst-case scenario consists of i) the worst-case input (vector), and ii)
the worst-case adaptive adversary for generating dynamic networks with at most n nodes and at most d
dynamic diameter. The dynamic diameter [18] of a dynamic network, intuitively, is the minimum number
of rounds needed for a node u to causally influence another node v, when considering the worst-case u and
v in the dynamic network. Section 2 gives a full description of the model.

Randomness in dynamic networks. For any given deterministic algorithm, informally, let us call its cor-
responding worst-case scenario as a “bad” scenario. A “bad” scenario for one deterministic algorithm may
very well not be a “bad” scenario for other deterministic algorithms. Since a randomized algorithm is a
distribution of deterministic algorithms, intuitively, randomization potentially helps to better deal with all
those “bad” scenarios. For algorithms in dynamic networks, a “bad” scenario consists of a “bad” input and
a “bad” adaptive adversary.

For dealing with “bad” inputs in dynamic networks, it is not hard to see that randomization can help to
reduce the time complexity exponentially. For example, consider the two-party communication complexity
(CC) problem EQUALITY [20]. Let m be the size of the input, then EQUALITY has a randomized CC of
O(logm) bits, and a deterministic CC of Ω(m) bits [20]. Under our setting of dynamic networks with
congestion, this exponential gap in the CC of EQUALITY directly translates to an exponential gap in the
time complexity.

A quick conjecture? For dealing with “bad” adaptive adversaries, on the other hand, one may quickly
conjecture that randomness has limited power: On the surface, since the randomness in round r is already
visible to the adaptive adversary when it chooses the round-r topology, such randomness offers no help for
better dealing with the round-r topology. But a deeper look shows that the randomness in round r could
potentially help the algorithm to better deal with round-r′ (1 ≤ r′ < r) topologies: Consider an example
algorithm that uses the first r− 1 rounds to flood a certain token in the network, where r− 1 can be smaller
than the network’s dynamic diameter d. Let S be the set of nodes that have received the token by the end
of round r − 1. In round r and later, the algorithm may want to estimate the size of S (e.g., to estimate
whether the token has reached some constant fraction of the nodes). The adaptive adversary can influence
S, by manipulating the topologies in the first r − 1 rounds. But by the end of round r − 1, the set S will be
fixed — effectively, the adaptive adversary has now committed to S. The algorithm’s randomness in round
r and later is independent of S. Thus for the remainder of the algorithm’s execution (i.e., the part starting
from round r), S can be viewed as a “midway input”. The randomness in the remainder of the algorithm’s
execution can potentially help to better deal with such “midway inputs”, and hence help indirectly to better

2

deal with the adaptive adversary’s “bad” behavior in the first r − 1 rounds.
Given such possibility, it is unclear whether the earlier quick conjecture holds or whether it may even be

wrong. Resolving this will be our goal.

Our results for LV algorithms. As our main novel result, we prove that the earlier conjecture does hold,
subject to some mild conditions on the algorithm’s time complexity. (We will fully specify these mild
conditions later.) As one will see later, proving this conjecture is far from trivial. We first need to expose
the power of randomization for dealing with adaptive adversaries, and in particular, to properly isolate such
power from the power of randomization for dealing with inputs. It is not immediately obvious how to do
this since the same randomness may be used for dealing with both inputs and adaptive adversaries. To this
end, we define a simple notion of prophetic adversary for determining the dynamic network. A prophetic
adversary first sees (accurately predicts) all coin flip outcomes of a randomized algorithm in all rounds, and
then decides the dynamic network (i.e., topologies in each round). This enables a prophetic adversary to
always choose the worst-case dynamic network for the given coin flip outcomes. Hence the randomness in
the algorithm can never help to better deal with dynamic networks generated by “bad” prophetic adversaries.

Now let us consider adaptive adversaries that generate dynamic networks with at most n nodes and
at most d dynamic diameter. Let P be any Las Vegas (LV) algorithm whose time complexity (under the
worst-case among all such adaptive adversaries) is tcP (n, d) = Θ(f(n) · g(d)), for some f(n) and g(d)
where there exists some constant a such that Ω(1) ≤ f(n) ≤ O(na) and Ω(d) ≤ g(d) ≤ O(da).1,2

We prove (Theorem 1 and 2) that P can always be converted into another LV algorithm Q whose time
complexity under worst-case prophetic adversaries isO(polylog(n)) · tcP (n, d). This means that even when
the adversary accurately predicts all randomness in Q, Q’s time complexity is still only O(polylog(n)) ·
tcP (n, d). In turn, the benefit of randomization (in P) for dealing with the adaptive adversaries is at most
to reduce the complexity by a O(polylog(n)) factor. This proves the earlier conjecture affirmatively (under
the previous mild conditions).

The more general version (Theorem 2) of our results actually hold for P as long as P ’s time complexity
is upper bounded by some polynomial — namely, as long as there exists some constant a such that Ω(1) ≤
tcP (n, n) ≤ O(na), and without any other constraints on tcP (n, d). Here for any given LV algorithm P , we
can construct another LV algorithmQ whose time complexity under prophetic adversaries isO((d log3 n)×
tcP (n, a′ log n)) for some constant a′. Hence in this more general case, our results imply that the power
of randomization (in P) for dealing with adaptive adversaries is at most a O(d log3 n) multiplicative factor
when d ≥ a′ log n.

Finally, the above shows that for dealing with adaptive adversaries, the power of randomization is in-
herently limited. This suggests that if an algorithm is not using randomness for better dealing with the
inputs, we should be able to derandomize it efficiently. We show how this can be done for LV algorithms in
Section 4.2.

Our results for MC algorithms. We have also obtained similar results for Monte Carlo (MC) algorithms.
We defer the details to Appendix G, and provide a summary here. Consider any constant ε ∈ (0, 1 − δ)
and any δ-error Monte Carlo (MC) algorithm P such that tcP (n, d) = Θ(f(n) · g(d)), where there exists
some constant a such that Ω(n) ≤ f(n) ≤ O(na) and Ω(d) ≤ g(d) ≤ O(da). Then we can always
construct another (δ + ε)-error MC algorithm Q for solving the same problem and whose time complexity
under worst-case prophetic adversaries is O(polylog(n)) · tcP (n, d). A more general version of this result
holds for P as long as there exists some constant a such that Ω(1) ≤ tcP (n, n) ≤ O(na), and without any

1Throughout this paper, Ω(h1(x)) ≤ h2(x) ≤ O(h3(x)) means h2(x) = Ω(h1(x)) and h2(x) = O(h3(x)).
2Some quick examples of tcP (n, d) satisfying such a condition include Θ(d logn), Θ(dn log d), and Θ(d1.1n1.5). On the other

hand, tcP (n, d) = Θ(d2 +
√
n) does not satisfy the condition.

3

other constraints on tcP (n, d). In this more general version, our algorithm Q will have a time complexity of
O((d log3 n)× tcP (n, a′ log n) + n log2 n).

Our techniques. To obtain Q from P , we essentially need to “derandomize” the part of P ’s randomness
used to deal with the adaptive adversaries. It turns out that such randomness is less amenable to typical de-
randomization methods such as pairwise independence, conditional expectation, or network decomposition.
This motivated us to take a rather different route from prior derandomization efforts [5, 7, 8, 10, 11, 21, 22,
25].

Specifically, we will have Q simulate the execution of P against some adaptive adversary αε,t that we
construct. (Namely, Q simulates both P and αε,t.) To work against prophetic adversaries, Q will perform
the simulation by only doing simple floodings. We will carefully design αε,t so that: i) Q can efficiently
simulate the execution of P against αε,t via simple floodings, ii) the dynamic networks generated by αε,t will
have O(log n) dynamic diameter with at least 1− ε probability, and iii) there are some sufficient conditions,
which can be efficiently checked in a distributed fashion, for guaranteeing the O(log n) dynamic diameter.
Next, a central difficulty in the simulation is that Q does not know the dynamic diameter of the dynamic
network over which it runs, which will cause various problems in the floodings. While Q can naturally use
the standard doubling-trick to guess the dynamic diameter, the challenge is that Q cannot easily tell whether
the guess is correct. As a result, we will carefully reason about the properties of the simulation when the
guess is wrong, and design Q correspondingly.

Other types of adversaries. The adaptive adversaries in this paper (also called strongly adaptive adver-
saries [2, 9, 16, 18]) are not the only type of adversaries in dynamic networks. A more general notion is
z-oblivious adversaries [1], which can see all randomness up to and including round r − z when deciding
the round-r topology. Prophetic adversaries and strongly adaptive adversaries correspond to z-oblivious ad-
versaries with z = −∞ and z = 0, respectively. Researchers have also considered 1-oblivious adversaries
(also called weakly adaptive adversaries [9, 12]) and∞-oblivious adversaries (also called oblivious adver-
saries [2, 3, 12]). The results in this paper are only for 0-oblivious adversaries, but our proofs are already
non-trivial. The power of the algorithm’s randomization will likely increase as z increases. On the other
hand, we suspect that our conjecture could potentially be extended to 1-oblivious adversaries — we leave
this to future work.

Related Work. Randomization has been extensively used for solving various specific problems in dynamic
networks (e.g., [17, 19]). However, prior works have not focused on the power of randomization in general
distributed algorithms in dynamic networks. On the other hand, there have been many works on the power
of randomization in other settings, and we discuss the most relevant ones in the following.

In centralized setting, an online algorithm processes a sequence of requests, one by one. In this context,
an adaptive adversary generates the i-th request after seeing the algorithm’s behavior (and coin flips) on
request 1 through i − 1. It is well-known [5] that randomized online algorithms against adaptive adver-
saries can always be effectively derandomized. However, the measure of goodness for online algorithms
is competitive ratio, and hence the derandomized algorithm can afford to have exponential computational
complexity. In our distributed setting, adopting the techniques from [5] would require us to collect all the n
input values to one node, which would result in unbounded time complexity (i.e., number of rounds) since
the sizes of our inputs are not constrained. Due to these fundamental differences, our results and techniques
are all quite different from [5].

More recently, there have been a series of breakthrough results on derandomizing distributed algorithms
in static networks [7, 8, 10, 11, 15, 22]. These derandomization results are all for local algorithms, where the
output (or the correctness of the output) of a node only depends on its small neighborhood instead of on the
entire network. In fact, many of them consider algorithms withO(1) time complexity. Such a notion of local

4

n number of nodes
d (dynamic) diameter

αε,t, βε,t specific adaptive adversaries – defined in Section 3 and Appendix D.1
γG specific adaptive adversary that always generates the given dynamic network G
τ (general) adaptive adversary
ψ (general) prophetic adversary
P (general) randomized algorithm in dynamic network
Q the randomized algorithm converted from P

I input vector
C coin flip outcomes in all rounds

C[1:r] coin flip outcomes in round 1 through r
Cr coin flip outcomes in round r

τ(P, I, C) the dynamic network generated by τ under P , I , and C
cp(P, I, τ, C) communication pattern of P when running under I , τ , and C

[r1 : r2] integers from r1 (inclusive) to r2 (inclusive)
tc(P, I, τ, C) time complexity of P when running under I , τ , and C

tcP (n, d) time complexity of P when running against adaptive adversaries with at most n nodes
and at most d diameter

tc∗Q(n, d) time complexity of Q when running against prophetic adversaries with at most n nodes
and at most d diameter

err(P, I, τ, C) error of P when running under I , τ , and C
errP (n) error of P when running against adaptive adversaries with at most n nodes and arbitrary

diameter
err∗Q(n) error ofQwhen running against prophetic adversaries with at most n nodes and arbitrary

diameter

Table 1: Key notations.

algorithms is perhaps no longer well-defined in dynamic networks, where a node’s neighborhood changes
over time. In comparison to these works, this paper considers i) general distributed algorithms that are not
necessarily local, and ii) dynamic networks instead of static networks. Also because of this, our results and
techniques are all quite different. For example, some of the key methods used in [7, 8, 10, 11, 15, 22] include
network decomposition and conditional expectations, while we mainly rely on a novel simulation against a
novel adaptive adversary.

2 Model

Table 1 summarizes our key notations.
Dynamic network and adversary. We consider a synchronous network with a fixed set of n nodes, where
the nodes proceed in lock-step rounds. Throughout this paper, we assume that n is publicly known and that
n ≥ 2. All nodes start execution, simultaneously, from round 1. The nodes have unique ids from 0 through
n − 1. Each node has some input value, and there is no constraint on the size of each input value. We will
view the n input values as an input vector of length n. We consider general distributed computing problems
where the n nodes aim to compute a certain function of the input vector. The output of the function is a

5

vector of length n, where node i should output the (i + 1)-th entry in that vector. There is no constraint on
the size of each output entry. An algorithm in this paper always refers to some algorithm for solving some
problem that can be modeled as the above way.

The topology among the n nodes may change from round to round. Following [16, 18, 26], we assume
that the topology is determined by some adaptive adversary. An adaptive adversary τ is an infinite sequence
of functions τr(P, I, C[1:r]) for r ≥ 1. Here τr takes as parameters the randomized algorithm P , the input
vector I , and P ’s coin flip outcomes C[1:r] in round 1 (inclusive) to round r (inclusive). The function τr
then outputs some connected and undirected graph with n nodes, as the topology of the network in round
r. There is no other constraint on the graph. We also call this infinite sequence of graphs (starting from
round 1) as a dynamic network, and say that τ is an adaptive adversary with n nodes. With a slight abuse of
notation, we use τ(P, I, C) to denote the dynamic network produced by τ , under algorithm P , input vector
I , and P ’s coin flip outcomes C across all rounds. (This is a slight abuse since τ is not a function.) For
any given dynamic network G = G1G2 . . . where Gr is the round-r topology of G, we define the special
adaptive adversary γG to be γGr (P, I, C[1:r]) = Gr for all r, P , I , and C[1:r]. A prophetic adversary ψ is a
function mapping the tuple (P , I , C) to a dynamic network H = ψ(P, I, C). Since ψ is a single function
(instead of a sequence of functions), ψ can see all coin flip outcomes of P in all rounds (i.e., C), before
deciding the topology in each round.

We follow the communication model in [14, 26]: In each round, a node may choose to either send an
O(log n) size message (i.e., the broadcast CONGEST model [24]) or to receive, as determined by the
algorithm running on that node. A message sent in round r is received, by the end of round r, by all the
receiving neighbors of the sender in round r.

Diameter. We adopt the standard notion of dynamic diameter [18] (or diameter in short) for dynamic
networks. Formally, we define (u, r) → (v, r + 1) if either u = v or v is u’s neighbor in round r. Let
the relation “ ” be the transitive closure of “→”. The diameter is defined as the smallest d such that
(u, r) (v, r + d) holds for all u, v, and r ≥ 1. Trivially, the diameter of a dynamic network with n
nodes is at most n − 1. Since the diameter is controlled by the adversary, it is not known to the algorithm
beforehand. The diameter of an adaptive adversary τ (prophetic adversary ψ) is the smallest d where the
diameter of τ(P, I, C) (ψ(P, I, C)) is at most d for all P , I , and C.

Time complexity and error. For the time complexity of an execution, we define the function tc(P, I, τ, C)
to be the number of rounds needed for all nodes to output in P , when algorithm P runs with input vector I ,
adaptive adversary τ , and coin flip outcomes C. For the error of an execution, we define the binary function
err(P, I, τ, C) to be 1 iff P ’s output is wrong (on any node), when P runs with I , τ , and C.

In the following, maxτ will be taken over all adaptive adversaries τ with at most n nodes and at
most d diameter. Unless otherwise specified, an algorithm in this paper can be either a Las Vegas (LV)
algorithm or a Monte Carlo (MC) algorithm. We define a randomized algorithm P ’s time complexity
against adaptive adversaries as tcP (n, d) = maxI maxτ EC [tc(P, I, τ, C)] if P is an LV algorithm, or
tcP (n, d) = maxI maxτ maxC tc(P, I, τ, C) if P is an MC algorithm. We define an MC algorithm P ’s
error against adaptive adversaries as errP (n) = maxI maxd maxτ EC [err(P, I, τ, C)].

We will need to reason about the properties of algorithmQ running against prophetic adversaries. Given
Q’s coin flip outcomes C in all rounds, since prophe-tic adversaries always see C beforehand, the worst-
case prophetic adversary can always choose the worst-case dynamic network H for such C. Hence if
Q is an LV algorithm, we define its time complexity against prophetic adversaries to be tc∗Q(n, d) =

maxI EC [maxH tc(Q, I, γH , C)]. Note that here maxH is taken after C is given, and is taken over all
dynamic networks with at most n nodes and at most d diameter. If Q is an MC algorithm, then its time
complexity / error against prophetic adversaries will be tc∗Q(n, d) = maxI maxC maxH tc(Q, I, γH , C)

6

and err∗Q(n) = maxI EC [maxd maxH err(Q, I, γH , C)], respectively.

Conventions. All logarithms in this paper are base 2. We sometimes consider round 0 for convenience,
where the algorithm does nothing and all nodes are receiving.

3 Adaptive Adversary Simulated by Q

As mentioned in Section 1, given some arbitrary randomized algorithm P , we want to construct algorithm
Q that simulates the execution of P against some novel adaptive adversary αε,t. We want αε,t to have
small diameter so that P ’s time complexity (when running against αε,t) is small. Let H be the dynamic
network over which Q runs. We further need Q to have good complexity and error guarantees, even if H is
constructed by prophetic adversaries.

3.1 Intuition

Starting point. Recall that in any given round r, an adaptive adversary knows whether each node in P will
be sending or receiving in that round (since the adaptive adversary sees Cr), before the adversary decides
the topology in that round. Let us consider the following trivial topology as a starting point. In this topology,
all nodes that are sending in the round form a clique, and all nodes that are receiving in the round form a
clique. Some of the sending nodes will be chosen as centers for that round. A center will be connected to all
other nodes (including all other centers) directly. To simulate P for one round over such a topology, we only
need to deliver the message sent by each center to each of the receiving nodes. To do so, for each center,
Q will flood the message (sent by the center) in the dynamic network H . Such flooding will obviously still
work even if H is generated by a prophetic adversary. It takes total d · x rounds to simulate one round of P ,
where x is the number of centers and d is the diameter of H .

But there are several issues. Since only sending nodes can be centers and since a node may not always be
sending in all rounds, we may be forced to keep switching the centers from round to round. This may then
cause the (dynamic) diameter of the dynamic network to be large, despite the topology in each round having
a small static diameter. One naive way to avoid this problem is to choose all sending nodes as centers. But
doing so would result in too many centers, rendering the simulation inefficient. The following explains how
we overcome these issues.

Choosing the centers. Our design of αε,t uses only a logarithmic number of centers in each round. To obtain
some intuition, consider any two consecutive rounds r − 1 and r, where r ≥ 3. We define ARSr = {u | u
receives (hence the superscript “R”) in round r − 1 and sends (hence the superscript “S”) in round r}. Here
“sends”/“receives” refers to u sending/receiving in the execution of P against αε,t. We similarly define the
remaining three sets ASSr , ASRr , and ARRr . We hope to choose the centers in such a way that for some small
d (e.g., O(log n)), we have (u, r − 1) (v, r + d − 1) for all u and v. We will soon see that it will be
convenient to consider u’s in the 4 sets separately.

For round r, we will first pick some (arbitrary) node w ∈ ARSr as a center. Such a center will ensure
that for all u ∈ ARSr and all v, we have (u, r − 1) → (w, r) → (v, r + 1). Similarly, we will pick some
(arbitrary) node w ∈ ASSr as another center, to take care of u ∈ ASSr . Next, for any u ∈ ASRr , note that u
must be in either ARSr−1 or ASSr−1. If we chose the centers in round r − 1 also according to the earlier rules,
then such a u has already been taken care of as well.

The trickier case. The case for u ∈ ARRr is trickier. In fact, to get some intuition, consider a node u that
continuously receives in round 1 through round d. We want to ensure that (u, 1) (v, d+ 1) for all v. Let

7

Sr be the set of nodes that are sending in round r and let Wr be the set of centers in round r, for 1 ≤ r ≤ d.
For all v ∈ ∪rWr, we clearly have (u, 1) (v, d + 1). For all v /∈ ∩rSr, v must be receiving in some
round i ∈ [1, d], and hence we have (u, i)→ (v, i+ 1) and we are done.

The case for v ∈ (∩rSr) \ (∪rWr) is more complicated. Such a v has always been sending, but is never
chosen as a center. Now consider such a v, and observe that if some center w in round r sends (again) in
some round i where r+ 1 ≤ i ≤ d, then we must have (u, 1) (w, r) (w, i)→ (v, i+ 1) (v, d+ 1).
Based on this observation, we will want to choose Wr from Sr such that some node in Wr will send in
some round i ≥ r + 1. But whether a node sends in future rounds may depend on future coin flip outcomes
of P , as well as the incoming messages in those rounds. An adaptive adversary (for P) does not have the
incoming messages in future rounds. It is not supposed to see future coin flip outcomes either.

Our next observation is that the adaptive adversary in round r, before deciding the round-r topology,
can actually determine the probability that a node u will be sending (again) in round r + 1, if the node u is
currently already sending in round r. The reason is that u will not receive any incoming messages in round
r, no matter what the topology is. Hence the probability is uniquely determined by u’s state at the beginning
of round r. Now given such probabilities for all the nodes in Sr, when choosing the centers, we will choose
those nodes from Sr whose probabilities (of sending in round r+ 1) are at least 0.5, and we call such nodes
as promising nodes. If we include logarithmic number of promising nodes inWr,then with good probability,
there will exist some w ∈Wr that sends in round r+ 1. Due to some technicality, the number of promising
nodes in Wr will actually need to increase with r, so that we can eventually take a union bound across even
infinite number of rounds.

Finally, it is possible that we never have a sufficient number (i.e., logarithmic number) of promising
nodes. In such a case, we will show that (∩rSr) \ (∪rWr) will be empty with good probability.

3.2 Our Novel Adaptive Adversary αε,t

We now formally define αε,t for 0 < ε < 1 and t ≥ 1. The adaptive adversary αε,t always generates a
clique as the topology for round r when r > t. If r ≤ t, then consider the given algorithm P , input vector
I , and coin flip outcomes C[1:r]. Based on Cr and the state of P at the beginning of round r, αε,t can infer
which nodes will be sending in round r, and which nodes are promising nodes. For all pairs of nodes u and
v where either they are both sending in round r or they are both receiving in round r, the adversary αε,t adds
an undirected edge between them. Next αε,t chooses up to (2 log 2r

ε + 3) nodes as centers for round r. For
every center w and every node v, αε,t adds an edge between w and v, if there is not already such an edge.

The centers are chosen in the following way. First, among all the nodes that were receiving in round
r − 1 and are sending in round r, if there are such nodes, choose the one with the smallest id as a center.
Second, among all the nodes that were sending in round r − 1 and are again sending in round r, if there are
such nodes, choose the one with the smallest id as a center. Third, among all the nodes that were centers
in round r − 1 and are sending in round r, if there are such nodes, choose the one with the smallest id as
a center. Finally, rank all the promising nodes in round r, by their ids from smallest to largest. Choose the
first 2 log 2r

ε nodes from this sequence as centers. If the sequence contains less than 2 log 2r
ε nodes, choose

all of them. Since these 4 criteria are not necessarily exclusive, a node may be chosen as a center multiple
times.

One can easily verify that the topology generate by αε,t in each round is always connected. We will be
able to eventually prove (in Appendix D) that with probability at least 1− ε, the dynamic network generated
by the adversary αε,t has a diameter of at most 8 log 8tn

ε .

8

Algorithm 1 LV-P-Converted-To-Q().
/* This algorithm Q simulates P ’s execution against αε,t. For clarity, the pseudo-code does not explicitly include the
input to Q (which is relayed to P). Without loss of generality, P ’s output on a node (when viewed as a numerical
value) is assumed to be always non-negative. A node outputs only once in this algorithm. A node will suppress output
if it previously has already outputted. */

1: ε← 0.1; k ← 2;
2: repeat forever
3: forall integers d′ ≥ 1 and t ≥ 2 where i) d′ and t are both powers of 2, ii) d′t log t ≤ k, and iii) SimulateP()

has not been previously executed for such d′ and t in Step 5 do
4: Cd

′,t ← fresh coin flips, for all rounds in P ;
5: return v← SimulateP(ε, d′, t, Cd

′,t);
6: /* See Algorithm 2 for pseudo-code of SimulateP(). */
7: if (return v ≥ 0) then output return v;
8: endforall
9: k ← 2k;

4 Conversion from LV Algorithm P to LV Algorithm Q

4.1 Pseudo-code and Intuition

Overview. Given any LV algorithm P , our algorithm Q (pseudo-code in Algorithm 1) will simulate the
execution of P against αε,t. (Effectively, Q will be simulating both P and the adversary αε,t.) We will
ensure that Q works even against prophetic adversaries. In the following, a simulated round refers to one
round of P in its simulated execution. Recall that in each simulated round, αε,t chooses O(log r

ε) centers.
For each center, Q will do a binary search (via logarithmic number of sequential floodings) to find the id of
that center. For example, for the first center, Q will use a binary search to find the node with the smallest id,
among all nodes that were receiving in the previous simulated round and are sending in the current simulated
round. Next, for each center (which must be sending in P for the current simulated round),Qwill determine
the message it should send in P . Q will then flood this message, and then feed this message into all nodes
that are receiving in P for the current simulated round.

Challenges and our solutions. A key difficulty in the above simulation is thatQ does not know the diameter
d of the dynamic network over which it runs. This means that Q does not know how long it takes for each
flooding to complete. Of course, Q can naturally use the standard doubling-trick and maintains a guess d′

for d. Recall that Q uses flooding i) for finding the centers via binary searches, and ii) for disseminating the
messages of the centers. When d′ < d, obviously both steps can be incorrect. We need to design Q so that
it can deal with such incorrect behavior.

As a starting point, for each binary search, we have a designated node (node 0) flood for d′ rounds its
result of the binary search. If a node does not see such flooding from node 0, or if its binary search result
is different, it knows that something is wrong and flags itself. Next for each center in this list, if it is not
flagged, it will flood the message (that it should send in P) for d′ rounds. Again, whoever not seeing this
flooding will flag itself. In our design, once a node gets flagged, it will not participate in any of the flooding
or binary search any more (for the current d′ value), but will nevertheless spend the corresponding number
of rounds doing nothing, so that it remains “in sync” with the non-flagged nodes.

At this point, we have three possibilities: i) d′ ≥ d and no node gets flagged, ii) d′ < d and no node gets
flagged, iii) d′ < d and some nodes get flagged. For the second case, because d′ < d, it is not immediately
clear what guarantees the simulation can offer — for example, whether the binary search still finds the

9

Algorithm 2 SimulateP(ε, d′, t, Cd
′,t).

/* This subroutine simulates P ’s execution against αε,t for t simulated rounds, while feeding coin flip outcomes Cd
′,t

into P , and while using d′ as the guess for the diameter of the dynamic network over which Q runs. Without loss of
generality, P ’s output (if viewed as a numerical value) is assumed to be non-negative. A node, once flagged, will do
nothing in all steps except Step 19 and 23, but the node will still spend the same number of rounds to go through each
step as other nodes. When the pseudo-code says a node u “floods” something for d′ rounds, it means that the flooding
originates from u, and all nodes in the system will spend exactly d′ rounds participating in this flooding. */

1: flagged← false; return v← −1;
2: for (r ← 1; r ≤ t; r ← r + 1) do
3: if I will send in the simulated round r of P then
4: simulate P ’s execution in round r using Cd

′,t
r ;

5: msg← message sent by me in P ;
6: else
7: msg← m bad;
8: endif
9: S ← ∅; center[]← GetCenters(ε, r, d′); /* GetCenters() takes Θ(d′ log r

ε log n) rounds and returns a list of
2 log 2r

ε + 3 centers. See Algorithm 3 for pseudo-code. */
10: for each j where 1 ≤ j ≤ 2 log 2r

ε + 3 do
11: node 0 floods its center[j] for d′ rounds;
12: if (I do not receive anything in the flooding at Step 11) or (my center[j] is different from what I received)

then flagged← true;
13: // At this point, the value of center[j] must be the same on all non-flagged nodes.
14: if (center[j] 6= ⊥) then the node corresponding to center[j] floods its msg for d′ rounds; else spend d′

rounds doing nothing;
15: if (center[j] 6= ⊥) and (I receive some message in the flooding at Step 14) and (the message received is

not m bad) then S ← S ∪ {message received};
16: if (center[j] 6= ⊥) and (I receive either the message m bad or no message in the flooding at Step 14) then

flagged← true;
17: endfor
18: if I will receive in the simulated round r of P then simulate P ’s execution in round r using Cd

′,t
r , with S being

the set of received messages;
19: if (flagged) then send m flag; else receive for 1 round;
20: if m flag received then flagged← true;
21: if P has output in simulated round r then return v← P ’s output;
22: endfor
23: if (flagged) then return −2; else return return v;

10

Algorithm 3 GetCenters(ε, r, d′).
/* This subroutine returns an array of 2 log 2r

ε + 3 centers, some of which can be ⊥. The centers are chosen according
to the construction of αε,t in Section 3.2. The subroutine does a binary search to find out the value for each entry in
the array. It uses d′ as the guess for the diameter of the dynamic network, and takes total d′(2 log 2r

ε + 3) log(n + 1)
rounds. */

1: let center[] be an array of size 2 log 2r
ε + 3;

2: if (I was receiving in simulated round (r−1) of P) and (I am sending in simulated round r of P) then z ←my id;
else z ← n;

3: center[1]← FindMin(z, d′); /* See Algorithm 4 for pseudo-code of FindMin(). */
4: if (I was sending in simulated round (r− 1) of P) and (I am sending in simulated round r of P) then z ← my id;

else z ← n;
5: center[2]← FindMin(z, d′);
6: if (I was a center in simulated round (r− 1) of P) and (I am sending in simulated round r of P) then z ← my id;

else z ← n;
7: center[3]← FindMin(z, d′);
8: for (i = 4; i ≤ 2 log 2r

ε + 3; i← i+ 1) do
9: if (I am a promising node in simulated round r of P) and (center[j] 6= my id for all 4 ≤ j ≤ i− 1) then z ←

my id; else z ← n;
10: center[i]← FindMin(z, d′);
11: endfor
12: for all 1 ≤ i ≤ 2 log 2r

ε + 3 if center[i] = n then center[i]← ⊥;
13: return center[];

Algorithm 4 FindMin(z, d′).
/* The input parameter z is an integer in [0, n]. This subroutine tries to use a binary search to find out the minimum
input value among all nodes. It uses d′ as the guess for the diameter of the dynamic network, and takes total d′ log(n+
1) rounds. */

1: let z’s binary form be b1b2 . . . blog(n+1), with b1 being the most significant bit;
2: for (s = 1; s ≤ log(n+ 1); s← s+ 1) do
3: x← ExistValue(bs, 0, d′); // See Algorithm 5 for pseudo-code of ExistValue().
4: if (x) and (bs 6= 0) then bs′ ← 1 for all s′ ≥ s+ 1 and bs ← 0;
5: endfor
6: return b1b2 . . . blog(n+1) as an integer;

Algorithm 5 ExistValue(z, x, d′).
/* This subroutine tries to check whether any node in the dynamic network has invoked this subroutine with z = x. It
uses d′ as the guess for the diameter of the dynamic network, and takes total d′ rounds. */

1: if (z = x) then exist← true; else exist← false;
2: repeat d′ rounds
3: if (exist) then send m exist; else receive for 1 round;
4: if I receive m exist then exist← true;
5: return exist;

11

smallest id. Fortunately, we will be able to prove that as long as no node gets flagged, the simulation is still
“correct”. Specifically, for disseminating the centers’ messages, it is obvious that if no node gets flagged,
then all nodes must have received those messages, regardless of whether d′ < d. For the binary search part,
we will be able to prove the following strong property: As long as the binary search returns the same value
on all nodes (which is a necessary condition for no nodes being flagged), the result of the binary search
must be correct, even if d′ < d. Putting these together, this means that the second case still corresponds to a
proper execution of P against αε,t.

The third case (i.e., d′ < d and some nodes get flagged) is trickier. The challenge is that the non-flagged
nodes may think everything is fine and then happily generate a potentially wrong output. To deal with this,
our design first lets the flagged nodes send a special message — whoever receives this message will get
flagged as well. For each simulated round of P , our algorithm Q will allocate exactly one dedicated round
in Q to do this.

Next, as a key technical step, we will be able to prove that with such a mechanism, somewhat interest-
ingly, those non-flagged nodes actually still constitute part of a valid execution of P against some prophetic
adversary ψ (but not a valid execution of P against αε,t). Our proof will explicitly construct this prophetic
adversary ψ. Let G be the dynamic network generated by ψ. We will prove that G’s topology is always
connected in every round, while leveraging the fact that the topology of the dynamic networkH (over which
Q runs) is always connected. It is important to note that here we need to use a prophetic adversary (instead
of an adaptive adversary) to generateG, sinceG depends onH , and sinceH is generated by some prophetic
adversary.

To quickly summarize, we effectively have that i) if no node gets flagged, then Q must have properly
simulated P ’s execution against αε,t, and ii) if some nodes get flagged, then Q (on the non-flagged nodes)
must have properly simulated P ’s execution against some prophetic adversary ψ. Now since P is an LV
algorithm, it will never have any error when running over any G, even if G is generated by a prophetic
adversary. The reason is that G could also be generated by some adaptive adversary (e.g., by the adaptive
adversary that always outputs G, regardless of P ’s inputs and P ’s coin flip outcomes), and P promises zero
error under all adaptive adversaries. Thus the outputs of those non-flagged nodes will never be wrong, and
can always be safely used. Of course, P ’s time complexity guarantee will no longer hold when running
against ψ. But this will not cause any problem — if P takes too long to output, Q will increase d′ and retry.

Using fresh coins. Finally, since we are using the doubling-trick to guess d already, we will use the same
trick to guess the number of rounds needed for P to output. This will make our proof on Q a constructive
proof, instead of an existential proof. It is worth mentioning that for each d′ (the guess on d) and t (the guess
on the number of simulated rounds needed for P to output), Q will simulate P using a fresh set of random
coins. This is necessary because for a given set of coin flip outcomes, the adversary αε,t may happen to have
large diameter, causing P to take too many rounds to output. Finally, for each pair of d′ and t values, the
simulation of P takes about d′t log t rounds. To make the guessing process efficient, we maintain a budget
k that keeps doubling. For a given budget k, we simulate P for all (d′, t) pairs where d′t log t ≤ k and that
are constant factors apart from each other.

4.2 Final Results

Theorem 1 next states that Q’s output will never be wrong. Its proof (in Appendix E) mainly relies on the
intuition in the previous section. The proof is involved, because it is not sufficient to just consider whether
a node is flagged at a certain time point in each simulated round — we actually consider two separate time
points in each simulated round.

12

Theorem 1. For any LV algorithm P , the output of Q (Algorithm 1) will never be wrong.

Theorem 2 next (see Appendix F for proof) is our key result on Q’s time complexity. It states that
even when Q runs against a prophetic adversary, its time complexity is small. Furthermore, if P is input-
stable (defined in Appendix C), then Q can be further derandomized into a deterministic algorithm without
increasing Q’s time complexity.

Theorem 2. Let Q be Algorithm 1, and let P be any LV algorithm where Ω(1) ≤ tcP (n, n) ≤ O(na1) for
some constant a1.

• There exists constant a′ (independent of n) such that for all d, we have
tc∗Q(n, d) = maxI EC [maxH tc(Q, I, γH , C)] = d · O(log3 n × tcP (n, a′ log n)), where maxH
is taken over all dynamic networks H with at most n nodes and at most d diameter. Further-
more, if P is input-stable, then there exist some coin flip outcomes CQ such that for all d, we have
maxI maxH tc(Q, I, γH , CQ) = d ·O(log3 n× tcP (n, a′ log n)).

• If tcP (n, d) = Θ(f(n) · g(d)) for some f(n) and g(d) where there exists some constant a2 such that
Ω(1) ≤ f(n) ≤ O(na2) and Ω(d) ≤ g(d) ≤ O(da2), then we have tc∗Q(n, d) = O(polylog(n)) ·
tcP (n, d). Furthermore, if P is input-stable, then there exist some coin flip outcomes CQ such that
for all d, we have maxI maxH tc(Q, I, γH , CQ) = O(polylog(n)) · tcP (n, d).

To derandomize any given input-stable LV algorithm P , we combine Theorem 1 and 2 while plugging CQ

into Q. This gives a deterministic algorithm with the desired time complexity.

Acknowledgments

This work is partly supported by the grant MOE2017-T2-2-031 from Singapore Ministry of Education.

References

[1] M. Ahmadi, A. Ghodselahi, F. Kuhn, and A. Molla. The cost of global broadcast in dynamic radio
networks. In OPODIS, 2015. 4

[2] M. Ahmadi, F. Kuhn, S. Kutten, A. R. Molla, and G. Pandurangan. The communication cost of
information spreading in dynamic networks. In ICDCS, July 2019. 4

[3] J. Augustine, C. Avin, M. Liaee, G. Pandurangan, and R. Rajaraman. Information spreading in dynamic
networks under oblivious adversaries. In DISC, 2016. 4

[4] C. Avin, M. Koucky, and Z. Lotker. How to explore a fast-changing world (cover time of a simple
random walk on evolving graphs). In ICALP, July 2008. 1

[5] S. Ben-David, A. Borodin, R. Karp, G. Tardos, and A. Wigderson. On the power of randomization in
online algorithms. Algorithmica, 11(1):2–14, Jan. 1994. 4

[6] A. Casteigts, P. Flocchini, W. Quattrociocchi, and M. Santoro. Time-varying graphs and dynamic
networks. International Journal of Parallel, Emergent and Distributed Systems, 27(5):384–408, 2012.
1

13

[7] K. Censor-Hillel, M. Parter, and G. Schwartzman. Derandomizing local distributed algorithms under
bandwidth restrictions. In DISC, Oct. 2017. 1, 4, 5

[8] Y. Chang, T. Kopelowitz, and S. Pettie. An exponential separation between randomized and determin-
istic complexity in the LOCAL model. In FOCS, 2016. 1, 4, 5

[9] C. Dutta, G. Pandurangan, R. Rajaraman, Z. Sun, and E. Viola. On the complexity of information
spreading in dynamic networks. In SODA, Jan. 2013. 2, 4, 18

[10] L. Feuilloley and P. Fraigniaud. Randomized local network computing. In SPAA, 2015. 1, 4, 5

[11] M. Ghaffari, D. Harris, and F. Kuhn. On derandomizing local distributed algorithms. In FOCS, Oct.
2018. 1, 4, 5

[12] M. Ghaffari, N. Lynch, and C. Newport. The cost of radio network broadcast for different models of
unreliable links. In PODC, July 2013. 4

[13] I. Jahja, H. Yu, and R. Hou. On the power of randomization in distributed algorithms in dynamic
networks with adaptive adversaries. In Proceedings of the 26th International European Conference on
Parallel and Distributed Computing, 2020. 1

[14] I. Jahja, H. Yu, and Y. Zhao. Some lower bounds in dynamic networks with oblivious adversaries.
Distributed Computing, 33(1):1–40, Feb 2020. 2, 6

[15] K. Kawarabayashi and G. Schwartzman. Adapting local sequential algorithms to the distributed setting.
In DISC, Oct. 2018. 4, 5

[16] F. Kuhn, N. Lynch, C. Newport, R. Oshman, and A. Richa. Broadcasting in unreliable radio networks.
In PODC, July 2010. 2, 4, 6

[17] F. Kuhn, N. Lynch, and R. Oshman. Distributed computation in dynamic networks. In STOC, June
2010. 1, 2, 4, 18

[18] F. Kuhn, Y. Moses, and R. Oshman. Coordinated consensus in dynamic networks. In PODC, June
2011. 2, 4, 6

[19] F. Kuhn and R. Oshman. Dynamic networks: Models and algorithms. SIGACT News, 42(1):82–96,
Mar. 2011. 1, 4

[20] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge University Press, 1996. 2

[21] M. Luby. Removing randomness in parallel computation without a processor penalty. Journal of
Computer and System Sciences, 47(2):250–286, Oct. 1993. 1, 4

[22] M. Naor and L. Stockmeyer. What can be computed locally? SIAM Journal on Computing,
24(6):1259–1277, Dec. 1995. 1, 4, 5

[23] R. O’Dell and R. Wattenhofer. Information dissemination in highly dynamic graphs. In Joint Workshop
on Foundations of Mobile Computing (DIALM-POMC), Sept. 2005. 1

[24] D. Peleg. Distributed Computing: A Locality-Sensitive Approach. Society for Industrial and Applied
Mathematics, 1987. 2, 6

14

[25] S. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical Computer Science, 7(1-3):1–
336, 2012. 1, 4

[26] H. Yu, Y. Zhao, and I. Jahja. The Cost of Unknown Diameter in Dynamic Networks. Journal of the
ACM, 65(5):31:1–31:34, Sept. 2018. 2, 6

15

A Roadmap

The first part of our appendix proves our main theorems for LV algorithms — Theorem 1 and Theorem 2.
Specifically, Appendix B first proves some useful properties of SimulateP() in Algorithm 2. Next, Ap-
pendix C defines the notion of input-stability, and Appendix D proves the properties of the adaptive adver-
sary αε,t that Q needs to simulate. Finally, Appendix E and F prove Theorem 1 and 2, respectively.

The second part of our appendix proves our main theorem for MC algorithms — Theorem 14. Specif-
cally, Appendix G first gives the intuitions and pseudo-code for converting any given MC algorithm P to
another MC algorithm Q that has nice properties against prophetic adversaries. Appendix G then states and
proves Theorem 14.

B Properties of SimulateP()

Theorem 1 and 2 are both about Algorithm 1 (i.e., the algorithm Q). Algorithm 1 invokes the subroutine
SimulateP() in Algorithm 2. SimulateP(), in turn, invokes Algorithm 3 through Algorithm 5. At a high level,
Algorithm 2 simulates P ’s execution against αε,t for t simulated rounds — to do so, Algorithm 2 essentially
simulates both the algorithm P and the adaptive adversary αε,t. Algorithm 3 obtains a certain number of
centers, for the simulation of αε,t. Algorithm 4 uses a binary search to find out the minimum value among
all nodes, while Algorithm 5 is a simple utility subroutine. In the next, we prove several useful technical
lemmas from the pseudo-code.

Lemma 3 in the next proves the properties of Algorithm 4 (i.e., FindMin()). In this lemma, it is crucial
(for our later proof) that even when d′ < d, certain parts of the lemma still hold.

Lemma 3. Consider any dynamic network H with n nodes and at most d diameter.

• For all i and d′, if node i in H invokes FindMin(zi, d′) with some zi ∈ [0, n], then the invocation
must return some integer value in [0, zi]. (This is regardless of whether/which/when other nodes are
invoking FindMin).

• Fix any d′, and let every node i in H invoke FindMin(zi, d′) for some zi ∈ [0, n], simultaneously.

– If FindMin() returns the same value on all nodes, then the value returned must be mini zi.

– If d′ ≥ d, then FindMin() must return the same value on all nodes.

Proof.

• In Algorithm 4, the bits b1b2 . . . blog(n+1) start with a value of zi. The only place where b1b2 . . . blog(n+1)

can later get modified is at Step 4. Each such modification always changes bs from 1 to 0, while further
setting the remaining less significant bits (i.e., bs+1bs+2 . . . blog(n+1)) to 1. Hence each such modifi-
cation always decreases the value of the binary string b1b2 . . . blog(n+1). Finally, it is obvious that the
return value must be a non-negative integer.

• For any value x, we will use bx1b
x
2 . . . to denote its binary form, with bx1 being the most significant bit.

Let j be any integer where zj = mini zi.

– Let v be the common value returned by FindMin() on all nodes. Consider the condition at Step 4
of Algorithm 4. Let s1 be the first s for which this condition is satisfied, during the execution of

16

FindMin(zj , d′) by node j. If such s1 does not exist, then we must have v = zj = mini zi and
we are done. If such s1 exists, the following will derive a contradiction.
We will have a number of properties by the definition of such s1. First, we must have bv1 =
b
zj
1 , bv2 = b

zj
2 , . . ., bvs1−1 = b

zj
s1−1. Second, we must also have bzjs1 = 1, bvs1 = 0. Finally,

ExistValue(1, 0, d′) must returned true on node j at Step 3 when s = s1. This means that there
must exist some node k 6= j, such that node k invoked ExistValue(0, 0, d′) when node j invoked
ExistValue(1, 0, d′).
Since node k invoked ExistValue(0, 0, d′) during its iteration for s = s1 in Algorithm 4, we
claim that during node k’s execution of FindMin(zk, d′), the condition at Step 4 of Algorithm 4
is never satisfied for any s ≤ s1 − 1. Otherwise on node k, the bit bs1 would have been set
to 1 at Step 4. From this claim, we further know that i) the value of bzks1 must be 0, and ii)
bv1 = bzk1 , bv2 = bzk2 , . . ., bvs1−1 = bzks1−1. Now we have bzjs1 = 1, bzks1 = 0, and further bzj1 = bzk1 ,
b
zj
2 = bzk2 , . . ., bzjs1−1 = bzks1−1. This implies that zk is smaller than zj , contradicting the fact that
zj = mini zi.

– When d′ ≥ d, ExistValue(bs, 0, d′) at Step 3 must return the same value on all nodes, and the
return value must be true if there exists some node invoking ExistValue(0, 0, d′). It can then be
easily verified that FindMin() must return the same value on all nodes.

Lemma 4 in the next bounds the number of rounds incurred during an invocation of SimulateP():

Lemma 4. For any constant ε ∈ (0, 1), there exists some constant a3 such that for all d′ ≥ 1 and t ≥ 2 that
are both power of 2, n ≥ 2, protocol P , and coin flip outcomes Cd

′,t, SimulateP(ε, d′, t, Cd
′,t) takes at most

(d′t log t)× (a32 log n) rounds.

Proof. Directly from the pseudo-code of SimulateP() in Algorithm 2.

Lemma 5 in the next proves that when SimulateP() is invoked with a sufficiently large guess d′ on the
diameter, then no node will ever be flagged during that invocation:

Lemma 5. Consider any given algorithm P , ε ∈ (0, 1), d′, t, Cd
′,t, and dynamic network H with at most

d′ diameter. If all nodes in H invoke SimulateP(ε, d′, t, Cd
′,t) simultaneously, then no node will ever get

flagged (i.e., the flagged variable can never be true) during the execution of SimulateP(ε, d′, t, Cd
′,t).

Proof. First, the return values of GetCenters(ε, r, d′) (at Step 9 of Algorithm 2) comes (indirectly) from
various invocations of FindMin(). Since the diameter of H is at most d′, Lemma 3 tells us that FindMin()
must return the same value on all nodes. Hence all nodes will have the same return value from GetCenters(ε,
r, d′) at Step 9 of Algorithm 2, and the center[] array must be the same on all nodes. For any given non-⊥
entry in the array, the corresponding FindMin() invocation must have returned some value v where v ≤ n−1
on all nodes. By Lemma 3 and since H’s diameter is at most d′, this implies that some node must have
invoked FindMin(v, d′). By the pseudo-code in Algorithm 3, it is easy to verify that v must be the id of this
node, and this node must be sending in the current simulated round of P . This in turn means that on this
node, the condition at Step 3 of Algorithm 2 must have been satisfied, and hence msg 6= m bad.

With all the above properties, together with the fact that H’s diameter is at most d′, one can easily verify
that the conditions at Step 12, Step 16, and Step 20 of Algorithm 2 will never be satisfied. Hence no node
will ever get flagged during the execution of SimulateP(ε, d′, t, Cd

′,t).

17

Lemma 6 in the next proves that SimulateP() properly simulates the execution of P against αε,t, when
no node gets flagged:

Lemma 6. Consider any invocation of SimulateP(ε, d′, t, Cd
′,t), by every node simultaneously, for any

given algorithm P , ε ∈ (0, 1), d′, t, and Cd
′,t. If no node ever gets flagged (i.e., the flagged variable is

never true) during such invocation, then the invocation must have properly simulated the first t rounds of
P ’s execution under αε,t and Cd

′,t, in the following sense: For all 1 ≤ r ≤ t, the behavior of P in round
r of its execution under αε,t and Cd

′,t is exactly the same as in Step 4 and 18 of SimulateP(). Furthermore,
the centers selected by αε,t in round r of the above execution are exactly the same as the centers selected at
Step 9 of SimulateP().

Proof. We will do a simple induction on r. Assume that the lemma holds for all rounds before round r, and
we now consider round r.

If no node ever gets flagged, then immediately after Step 9 of SimulateP(), the center[] array on all
nodes must be identical. Recall that each entry in the array is set to be the return value of an invocation
of FindMin(). Consider any given entry in the array. Then for that entry, all the nodes must have the same
return value from their respective invocations of FindMin(). Lemma 3 then tells us that such return value
must be the minimum value across all nodes. Based on our inductive hypothesis and also the pseudo-code
in Algorithm 3, one can easily verify that the entries in the center[] array must be exactly the same as the
centers chosen by αε,t, if P runs against αε,t.

Furthermore, since no node ever gets flagged, it means that each node has received the message flooded
by each center. Hence a node that is receiving in the simulated round can properly feed such a message as an
incoming message into its simulation of P . The remainder of the proof easily follows from the pseudo-code
of SimulateP() in Algorithm 2.

C Definition of Input-stability

Theorem 2 states, among other things, that if the algorithm P is input-stable, then we can derandomize
P (efficiently). Before giving a formal definition, we first give some intuition behind the notion of input-
stability. Intuitively, P is considered input-stable if under any given dynamic network and any given coin
flip outcomes, P ’s time complexity/error and communication pattern are independent of the input. Note
that P ’s output and P ’s messages’ contents can, and probably should, depend on the input. Under different
dynamic networks and different coin flip outcomes, P can still have different time complexities/error and
communication patterns. For example, consider the token dissemination problem [9, 17] where each node
has a token as its input, and where we need all nodes to output all tokens. Here as long as P treats the tokens
as opaque, P will be input-stable. Other the other hand, treating the tokens as opaque is not necessary for P
to be input-stable.

The following gives the formal definition of input-stability. Given any algorithm P , input vector I , adap-
tive adversary τ , and coin flip outcomesC, we define P ’s communication pattern (denoted as cp(P, I, τ, C))
to be a sequence of sets, where the rth set is the set of nodes that are sending in round r (for all r ≥ 1)
in P ’s execution under I , τ , and C. An algorithm P is input-stable if for all dynamic networks G, coin
flip outcomes C, input vectors I1 and I2, the following holds: i) tc(P, I1, γ

G, C)/tc(P, I2, γ
G, C) ≤ 2

(if P is an LV algorithm), ii) err(P, I1, γG, C) = err(P, I2, γG, C) (if P is an MC algorithm), and iii)
cp(P, I1, γ

G, C) = cp(P, I2, γ
G, C). Several aspects of the definition are worth elaborating. First, the con-

stant “2” in the first property above can be easily replaced by any constant larger than 1. Second, under

18

different G and C, an input-stable P can have different time complexities, error, and communication pat-
terns. For example, a node may decide to send with a larger probability iff it has received a larger number
of distinct messages so far in the execution, which depends on G. Finally, the equations do not need to hold
for all adaptive adversaries τ — they only need to hold for γG.

D Properties of the Adaptive Adversaries αε,t and βε,t

The section proves various useful properties of the adaptive adversary αε,t. To facilitate reasoning, we will
need to introduce another adaptive adversary βε,t, as a stepping stone.

D.1 Diameters of αε,t and βε,t

Recall that we want αε,t to have small diameter, so that the simulation can be efficient. To facilitate reason-
ing, we introduce a second adaptive adversary βε,t. We will prove that βε,t always has O(log tn

ε) diameter,
and that αε,t generates the same dynamic network as βε,t with at least 1− ε probability, with the probability
being taken over the algorithm’s coin flips. Our simulation will still simulate αε,t instead of βε,t. But we
can easily draw a connection between the time complexity/error of P when running against αε,t and when
running against βε,t.

Just drawing this connection alone is not yet enough. In the simulation, the algorithm Q will also need
to efficiently determine, in a distributed fashion, whether αε,t behaves exactly the same as βε,t. In particular,
Q should not be forced to directly check the diameter of the dynamic network generated by αε,t. To achieve
this property, we first define the concept of αε,t being favorable, and then define βε,t. Being favorable will
be a sufficient condition for αε,t to behave the same as βε,t. The algorithm Q will directly check whether
αε,t is favorable, which can be done efficiently.

In a dynamic network generated by αε,t, we say that a node is a twice-center for round r (2 ≤ r ≤ t)
if it is a center in both round r − 1 and round r. Round r has a twice-center if there exists some node that
is twice-center for round r. In the next, we will use “rounds [r1 : r2]” to denote all rounds from round r1
(inclusive) to round r2 (inclusive).

Definition 7 (αε,t being favorable). For any given algorithm P , input vector I , and coin flip outcomes C,
we say that αε,t is favorable up to round r′ if for each r where 1 ≤ r < r + 8 log 4rn

ε ≤ min(r′, t), at least
one of the following two properties holds in the dynamic network generated by αε,t under P , I , and C: i)
some round in rounds [r + 1 : r + 8 log 4rn

ε] has a twice-center, or ii) no node in P sends continuously for
4 log 4rn

ε rounds in rounds [r : r + 8 log 4rn
ε].

Definition 8 (βε,t). In each round r, the adaptive adversary βε,t behaves exactly the same as αε,t except
that if αε,t is not favorable up to round r (i.e., βε,t can examine the topologies generated by αε,t in the first
r rounds), then βε,t will use a clique as the topology in round r.

One can easily verify that the topology generated by βε,t in each round is always connected. The next
two theorems show that the diameter of βε,t is small, and that with probability at least 1 − ε, αε,t behaves
the same as βε,t.

Theorem 9. For all ε ∈ (0, 1), t ≥ 1, algorithm P , input vector I , and coin flip outcomes C, the dynamic
network βε,t(P, I, C) has a diameter of at most 8 log 8tn

ε .

19

Proof. Recall that “rounds [r1 : r2]” denotes all rounds from round r1 (inclusive) to round r2 (inclusive).
We will also use [r1 : r2] to denote all integers from r1 (inclusive) to r2 (inclusive). Define function
f(x) = 8 log 4xn

ε . Consider any round r ≥ 1 and any two nodes u and v in the dynamic network. It
suffice to prove that (u, r) (v, r + f(t) + 8). Recall that by the design of βε,t, the topology in round
t + 1 must be a clique. Hence the claim will trivially hold if r + f(t) + 8 ≥ t + 2, and we will only
prove for r + f(t) ≤ t − 7. If αε,t is not favorable up to round r + f(t), then βε,t must have started
using a clique as the topology, starting from round r + f(t) or earlier. In such a case, we immediately have
(u, r) (v, r + f(t) + 8).

The only remaining case is where r + f(t) ≤ t − 7 and where αε,t is favorable up to round r + f(t).
We trivially have r ≤ t, f(r) ≤ f(t), and r + f(r) ≤ t− 7. Since f(r) ≤ f(t) and since αε,t is favorable
up to round r + f(t), αε,t must be favorable up to round r + f(r). By Definition 7, we know that at least
one of the following two properties must hold:

• Some round in rounds [r + 1 : r + f(r)] has a twice-center.

• No node sends continuously for f(r)2 rounds in rounds [r : r + f(r)].

If there exists a round r1 ∈ [r + 1 : r + f(r)] with a twice-center node w, then we directly have
(u, r) (u, r1− 1)→ (w, r1)→ (v, r1 + 1) (v, r+ f(r) + 2) (v, r+ f(t) + 8), and we are done. If
no node sends continuously for f(r)2 rounds in rounds [r : r+f(r)], then u must be receiving in some round
r2 where r2 ∈ [r : r+ f(r)

2 − 1], and v must be receiving in some round r3 where r3 ∈ [r+ f(r)
2 : r+ f(r)].

We separately consider two possibilities in the following.
First, if u is always receiving in rounds [r2 + 1 : r + f(r)], then we have (u, r) (u, r2) (u, r3)→

(v, r3 + 1) (v, r + f(r) + 2) (v, r + f(t) + 8). Second, if u sends in some round within rounds
[r2 + 1 : r+f(r)], let round r4 be the earliest such round, where r2 + 1 ≤ r4 ≤ r+f(r). This means that u
receives in round r4−1 and sends in round r4. By the design of the adaptive adversary αε,t (and hence βε,t),
we know that round r4 must have a center w where w (w can be u itself) receives in round r4 − 1 and sends
in round r4. Hence we have (u, r) (u, r2) (u, r4−1)→ (w, r4)→ (v, r4+1) (v, r+f(r)+2)
(v, r + f(t) + 8).

Theorem 10. For any given ε ∈ (0, 1), t ≥ 1, algorithm P , input vector I , defineA = {C | αε,t is favorable
up to round t for P , I , and C (which implies αε,t(P, I, C) = βε,t(P, I, C)) }. Then A contains at least a
1− ε fraction of all possible coin flip outcomes.

Proof. Consider any r ≥ 1, we will prove that under any given P and I , αε,t satisfies at least one of the two
conditions in Definition 7 with probability at least 1− ε

2r2
, with the probability taken over C. A union bound

across all r will then show that αε,t is favorable up to round t, with probability at least 1−
∑∞

r=1
ε

2r2
> 1−ε.

Recall that “rounds [r1 : r2]” denotes all rounds from round r1 (inclusive) to round r2 (inclusive), and
that [r1 : r2] denotes all integers from r1 (inclusive) to r2 (inclusive). Let z = 8 log 4rn

ε . First, we consider
the case where there exists some r1 ∈ [r : r+z−1] such that round r1 has at least 2 log 2r

ε promising nodes.
By the design of αε,t, at least 2 log 2r

ε of these promising nodes will be centers in round r1. With probability
at least 1 − 0.52 log

2r
ε > 1 − ε

2r2
, at least one of these centers will be sending again in round r1 + 1. Let

the non-empty set of such centers be W . Again by the design of αε,t, some node in W will become a center
again in round r1 + 1. Hence round r1 + 1 will have a twice-center, hence satisfying the first property in
Definition 7.

Next, we consider the case where every round in rounds [r : r + z − 1] has less than 2 log 2r
ε promising

nodes. By the design of αε,t, in such a case all promising nodes will be centers. If there exists some

20

r2 ∈ [r : r + z − 1] such that some promising node in round r2 sends (again) in round r2 + 1, then round
r2 + 1 will have a twice-center node by the design of αε,t. This will then again satisfy the first property in
Definition 7.

Now the only remaining case is that for every round in rounds [r : r + z − 1], all promising nodes
in that round will receive in the next round. Based on this, we will later prove Pr[A1 and A2 and A3 and
A4] ≥ 1 − ε

2r2
, where Ai means that no node sends in every round in rounds [r + i−1

4 z : r + i
4z − 1] for

1 ≤ i ≤ 4. Since z ≥ 16, one can easily verify that every z
2 consecutive rounds in rounds [r : r + z] must

contain all the rounds in [r + i−1
4 z : r + i

4z − 1] for some i. This then implies that with probability at least
1− ε

2r2
, no node sends continuously for z2 rounds in rounds [r : r+ z], hence satisfying the second property

in Definition 7.
To prove Pr[A1 and A2 and A3 and A4] ≥ 1 − ε

2r2
, it suffices to show that Pr[Ai] ≥ 1 − ε

8r2
for

1 ≤ i ≤ 4. We only prove for Pr[A1], since the other cases are similar. By our earlier argument, a
promising node in any round r3 ∈ [r : r + z

4 − 2] must be receiving in round r3 + 1, and hence can never
send in every round in rounds [r : r + z

4 − 1]. Hence we only need to consider those nodes who are never
promising nodes in any round in rounds [r : r + z

4 − 2]. A non-promising node in a round will, with
probability less that 0.5, send in the next round . Hence Pr[A1] ≥ 1− n× 0.5

z
4
−2 > 1− ε

8r2
.

D.2 Input-stability under αε,t and βε,t.

Given an input-stable (see Appendix C for definition) randomized algorithm P , our derandomization of P
will need to reason about P ’s behavior under different inputs, when P runs against αε,t and βε,t. Obviously,
we should leverage the fact that P is input-stable — namely, when running over a given dynamic network
G, P ’s time complexity/error and communication pattern are independent of P ’s input. However, when P
runs against αε,t (βε,t), it is not immediately clear whether these properties will continue to hold.

We will next prove that these properties will indeed continue to hold, when P runs against αε,t (βε,t).
Intuitively, our proof relies on the following arguments. First, the round-r topology generated by αε,t partly
depends on which nodes are sending and which nodes are the promising nodes in round r. This in turn
depends on the probabilities of certain nodes sending in round r + 1. We will be able to prove that these
probabilities are independent of P ’s input, via an induction. Second, we will repeatedly invoke a simple
indistinguishability argument: In round r, so far as P is concerned, αε,t is indistinguishable from γG for
some G, even though we do not know beforehand what G is. Formally, the following theorem states that if
P runs against αε,t (βε,t), then P ’s time complexity/error, as well as the dynamic network generated by αε,t

(βε,t), will not depend on P ’s input.

Theorem 11. For all input-stable algorithm P , input vectors I1 and I2, coin flip outcomes C, and adaptive
adversary τ ∈ {αε,t, βε,t}, we have:

τ(P, I1, C) = τ(P, I2, C), for all P

tc(P, I1, τ, C)/tc(P, I2, τ, C) ≤ 2, if P is LV algorithm

err(P, I1, τ, C) = err(P, I2, τ, C), if P is MC algorithm

Furthermore, for all r ≥ 1, αε,t is favorable up to round r for P , I1, and C iff it is favorable up to round r
for P , I2, and C.

Proof. We first prove for τ = αε,t. Note thatαε,t(P, I1, C) = αε,t(P, I2, C) directly follows from Lemma 12
(proved next). Let G = αε,t(P, I1, C). Since P is input-stable, if P is an LV algorithm, then

21

tc(P, I1, α
ε,t, C)/tc(P, I2, α

ε,t, C) = tc(P, I1, γ
G, C)/tc(P, I2, γ

G, C) ≤ 2. If P is an MC algorithm,
we have err(P, I1, τ, C) = err(P, I1, γG, C) = err(P, I2, γG, C) = err(P, I2, τ, C).

Finally, Lemma 12 (proved next) implies that αε,t is favorable (see Appendix D.1 for definition) up to
round r for P , I1, and C if and only if it is favorable up to round r for P , I2, and C. Together with the fact
that αε,t(P, I1, C) = αε,t(P, I2, C), we have βε,t(P, I1, C) = βε,t(P, I2, C).

The remaining case of τ = βε,t is similar to the above proof for τ = αε,t.

Lemma 12. Let P be any input-stable algorithm. Consider any input vectors I1 and I2, and coin flip
outcomes C. Let G1

r , S
1
r , and M1

r be the topology in round r, the set of nodes that are sending in round r,
and the set of promising nodes in round r, respectively, when P runs under I1, αε,t, and C. Define G2

r , S
2
r ,

and M2
r similarly, under I2 instead of I1. Then we have G1

r = G2
r , S

1
r = S2

r , and M1
r = M2

r for all r.

Proof. We will use an induction on r. The induction base for r = 0 obviously holds. Assume thatG1
i = G2

i ,
S1
i = S2

i , and M1
i = M2

i , for all 0 ≤ i ≤ r − 1. Now consider round r:

• We first prove S1
r = S2

r . Define dynamic network G such that in round i, G’s topology is G1
i for

1 ≤ i ≤ r − 1 and is a clique for i ≥ r. Let cpr(P, I, τ, C) denote the set of nodes sending in round
r when P runs under input I , adaptive adversary τ , and coin flip outcomes C. Note that given P ,
I , and C, the value of cpr(P, I, τ, C) is uniquely determined by the topologies generated by τ in the
first r − 1 rounds. Combining with the fact the P is input-stable, we have S1

r = cpr(P, I1, α
ε,t, C) =

cpr(P, I1, γ
G, C) = cpr(P, I2, γ

G, C) = cpr(P, I2, α
ε,t, C) = S2

r .

• Given S1
r = S2

r , we next prove M1
r = M2

r . Consider any node u ∈ S1
r . Whether u ∈ M1

r depends
on whether in the execution of P under I1 and αε,t, node u’s probability of sending in round r + 1
is at least 0.5. Note that when defining this probability, C[1:r] is already given, and the probability is
defined over Cr+1 (i.e., the coin flips in round r + 1).

To prove (u ∈ M1
r) ⇔ (u ∈ M2

r), we will prove that in the execution of P under I1 and αε,t, the
probability of u sending in round r + 1 is exactly the same as in the execution of P under I2 and
αε,t. To facilitate our following proof, under any given coin flip outcomes in the first j rounds, we
will use the boolean function s(j, I, τ) to denote whether u will send in round j in the execution of
P under I , τ , and those coin flip outcomes. Thus to prove that the probability of u sending in round
r+ 1 is the same in the two executions, it suffice to show that under any given C[1:r−1], Cr, and Cr+1,
s(r + 1, I1, α

ε,t) = s(r + 1, I2, α
ε,t).

Consider any given C[1:r−1], and define the dynamic network G as defined earlier, where in the first
r − 1 rounds, G has the same topologies as the topology generated by αε,t under the given C[1:r−1].
Under the given C[1:r−1], any given Cr, and any given Cr+1, we claim that s(r + 1, I1, α

ε,t) = s(r +

1, I1, γ
G). To see why, note that by the end of round r−1, u’s behavior is exactly the same under αε,t

and under γG. Hence under the given C[1:r−1] and Cr, we have s(r, I1, αε,t) = s(r, I1, γ
G) = true

(since u ∈ S1
r). Now since u is sending in round r, its behavior in round r is unaffected by the

round-r topology of the dynamic network. In turn, u’s behavior by the end of round r must be
exactly the same under αε,t and under γG. Hence under the given C[1:r−1], Cr, and Cr+1, we have
s(r + 1, I1, α

ε,t) = s(r + 1, I1, γ
G).

By a similar argument, under the given C[1:r−1], any given Cr, and any given Cr+1, we have s(r +

1, I2, α
ε,t) = s(r + 1, I2, γ

G). Finally, since P is input-stable, we must have s(r + 1, I1, γ
G) =

s(r + 1, I2, γ
G). This gives us s(r + 1, I1, α

ε,t) = s(r + 1, I2, α
ε,t).

22

• Finally we will prove G1
r = G2

r . By the design of αε,t, one can easily verify that G1
r is a function

of S1
i and M1

i (1 ≤ i ≤ r), while G2
r is a function of S2

i and M2
i (1 ≤ i ≤ r). Hence G1

r = G2
r

immediately follows from S1
r = S2

r , M1
r = M2

r , and our inductive hypothesis.

E Proof for Theorem 1

With all the preparation in Appendix B through D, we next prove Theorem 1 (restated in the following):

Theorem 1. For any LV algorithm P , the output of Q (Algorithm 1) will never be wrong.

Proof. Consider any given invocation of SimulateP() at Step 5 of Algorithm 1 on any given node u. We
will refer to the iteration with r = i in SimulateP() (i.e., Step 3 to Step 21 in Algorithm 2) as round i of the
simulated execution. Unless otherwise mentioned, all steps in the remainder of this proof refer to steps in
Algorithm 2. We use flagged1(u, i) and flagged2(u, i) to denote that node u is already flagged by Step 19
and Step 21, respectively, in round i of the simulated execution. We use flagged1(u, i) and flagged2(u, i)
to denote the negation of flagged1(u, i) and flagged2(u, i), respectively. We define that flagged1(u, 0)
and flagged2(u, 0) holds for all u. We say that u sends (receives) in round i of the simulated execution
if flagged1(u, i) and if u satisfy the condition at Step 3 (Step 18). For all i, we define W (i) = {w | w
is in the center[] array on node 0 immediately after Step 9 in round i of the simulated execution}, if
flagged2(0, i− 1) holds. We define W (i) = ∅, if flagged2(0, i− 1) holds.

Reference dynamic network. To facilitate proof, we will define a reference dynamic network: Let Gi be
the topology of the reference dynamic network in round i, constructed in the following way. Consider any
two nodes u and v. First, if flagged2(u, i) and flagged2(v, i), then there is an edge between them in Gi.
Second, if flagged1(u, i) and flagged1(v, i), then there is an edge between them iff they either are both
sending or are both receiving in round i of the simulated execution. Finally, there is an edge between u and
v if flagged1(u, i) and v ∈W (i). Note that these three cases are not necessarily mutually exclusive.

For all i, Gi is connected. We want to prove that Gi is connected for all i. Consider any given i. Define
F = {u | flagged1(u, i)} and F = {u | flagged1(u, i)}. Since flagged1(u, i) implies flagged2(u, i),
F always forms a clique in Gi.

Next, if both F and F are non-empty, we claim that there must exists an edge in Gi connecting some
node u ∈ F to some node v ∈ F . The reason is that all nodes in F send m flag in Step 19, while all nodes
in F receive in Step 19. Since the dynamic network over which Q runs is connected, in Step 20 there must
be some node v ∈ F receives m flag from some node u ∈ F . Then we will have flagged2(v, i), and by
design of Gi, this will result in an edge between u and v (since flagged2(u, i) must hold as well).3

If F 6= ∅, we will need to also reason about the nodes in F . If all nodes in F receive in round i of the
simulated execution, then F obviously also forms a clique in Gi and we are done.

The only remaining case, which is also the most complex case, is where F 6= ∅ and some node u ∈ F
sends in round i of the simulated execution. Consider the center[] array on node u immediately after Step 9.
We claim that the array must contain at least one non-⊥ entry. We will prove the claim for the case where u
receives in round i− 1 in the simulated execution — the case where u sends in round i− 1 is rather similar.
When u invokes GetCenters() at Step 9, it will invoke Algorithm 3. Now since u receives in round i − 1

3Note that the dynamic network H over which Q runs determines which nodes are u and v. Hence if H is generated by
a prophetic adversary (i.e., if H depends on Q’s coin flip outcomes in future rounds), then Gi will depend on those coin flips
outcomes as well. This is why we need a prophetic adversary ψ (instead of an adaptive adversary τ) to generate Gi.

23

and sends in round i, at Step 3 of Algorithm 3, it will invoke FindMin(z, d′) with z being u’s id. Lemma 3
then implies that on node u, FindMin(z, d′) will return some value that is in [0, n− 1]. This value will then
become a non-⊥ entry in the center[] array on node u.

We have proved that the center[] array on node u immediately after Step 9 contains at least one non-⊥
entry. Note that flagged1(u, i) must imply flagged2(0, i−1). Also since flagged1(u, i) holds, we know
that immediately after Step 9, the center[] array on node 0 must be exactly the same as the center[] array
on node u. In turn, by the definition of W (i), we have W (i) 6= ∅. Now consider any w ∈ W (i). All nodes
in F will have any edge to w. Hence F , together with w, must form a connected component in Gi. Putting
everything together, we have shown that Gi is always connected.

Simulated execution = reference execution. Now consider the reference execution of P over the above
reference dynamic network, where we feed the same input vector and coin flip outcomes into P as in the
simulated execution. We will prove that for all node u, if flagged2(u, i) holds, then in round i, node u’s
behavior in the reference execution and in the simulated execution must be exactly the same. We prove via
an induction on i. Assume that the claim holds for round i− 1. Now consider round i and any node u such
that flagged2(u, i) holds. If u is sending in round i of the reference execution, then u’s behavior in round
i of the reference execution is entirely determined by u’s state at the end of round i − 1 of the reference
execution and the coin flip outcomes in round i. Applying our inductive hypothesis then immediately tells
us that u’s behavior in round i of the simulated execution must be the same as its behavior in the reference
execution.

If u is receiving in round i of the reference execution, then applying our inductive hypothesis tells us that
u must also receive in round i of the simulated execution. We will need to prove that the messages received
in round i by u in the two executions are the same. Let A1 = {v | in round i of the reference execution, v is
sending and v is u’s neighbor in Gi}, and A2 = {v | in round i of the simulated execution, v is sending and
at Step 18 in Algorithm 2 on node u, the set S contains v’s message}.

We will first prove that A1 = A2. Consider any v ∈ A2. In order for v’s message to be included in the
set S on u at Step 18, v must be in the center[] array on node u at Step 15.4 Note that flagged2(u, i)
must imply flagged2(0, i − 1). Also because flagged2(u, i) holds, we know that v must also be in the
center[] array on node 0 immediately after Step 9, and hence v ∈ W (i). Since flagged2(u, i) implies
flagged1(u, i), together with v ∈ W (i), we know that there is an edge in Gi connecting u and v. Hence
A2 ⊆ A1.

Next consider any v ∈ A1. We know that v is sending in round i, u is receiving in round i, and
flagged2(u, i) holds. Given how Gi is constructed, we know that either u ∈ W (i) or v ∈ W (i). If
u ∈ W (i), since flagged2(u, i) holds, we know that u itself must be in the center[] array on node u
immediately after Step 9. Since u is receiving in round i, at Step 14, uwill flood its msg where msg = m bad

. This would imply flagged2(u, i), and hence it is impossible for u ∈ W (i). Then the only remaining
possibility is v ∈W (i). We claim that v must be in the center[] array on node u immediately after Step 9,
and also that umust have included v’s message in S at Step 18 — otherwise flagged2(u, i) would not hold.
This implies that v ∈ A2 and hence A1 ⊆ A2.

So far we have proved that A1 = A2. Consider any v ∈ A2. We need to further prove that in round i,
the message sent by v in the reference execution is the same as the one in the simulated execution. We first
claim that flagged2(v, i−1) must hold. The reason is that otherwise in round i of the simulated execution,
v would not flood its message and hence v would not belong to A2. Now since flagged2(v, i − 1), we
can invoke our inductive hypothesis, which shows that v’s behavior must be the same in round i − 1 in the
two executions. Since v is sending in round i in both executions, and since a sending node’s behavior is not

4Note that at Step 14 and 15, the value of center[j] must be the same on all nodes that have not been flagged so far.

24

affected by the topology or the behavior of other nodes in that round, we know that v’s behavior must be the
same also in round i of the two executions. Hence v will send the same message in the two executions. In
turn, the messages received in round i by node u in the two executions are the same.

Output ofQwill never be wrong. We have just proved that as long as flagged2(u, i) holds, u’s behavior is
the same in the two executions up to round i. In turn, this means that if u outputs in the simulated execution,
it must also output the same value in the reference execution. Furthermore, in each round of the reference
execution, the topology of the dynamic network is always connected. Since P is an LV protocol, all outputs
in the reference execution (and hence in the simulated execution as well) must be correct. Thus Q’s output
will never be wrong.

F Proof for Theorem 2

With all the preparation in Appendix B through D, we next prove Theorem 2 (restated in the following):

Theorem 2. Let Q be Algorithm 1, and let P be any LV algorithm where Ω(1) ≤ tcP (n, n) ≤ O(na1) for
some constant a1.

• There exists constant a′ (independent of n) such that for all d, we have
tc∗Q(n, d) = maxI EC [maxH tc(Q, I, γH , C)] = d · O(log3 n × tcP (n, a′ log n)), where maxH
is taken over all dynamic networks H with at most n nodes and at most d diameter. Further-
more, if P is input-stable, then there exist some coin flip outcomes CQ such that for all d, we have
maxI maxH tc(Q, I, γH , CQ) = d ·O(log3 n× tcP (n, a′ log n)).

• If tcP (n, d) = Θ(f(n) · g(d)) for some f(n) and g(d) where there exists some constant a2 such that
Ω(1) ≤ f(n) ≤ O(na2) and Ω(d) ≤ g(d) ≤ O(da2), then we have tc∗Q(n, d) = O(polylog(n)) ·
tcP (n, d). Furthermore, if P is input-stable, then there exist some coin flip outcomes CQ such that
for all d, we have maxI maxH tc(Q, I, γH , CQ) = O(polylog(n)) · tcP (n, d).

Proof. Since tcP (n, n) = O(na1), there exists positive constant a4 such that tcP (n, n) ≤ na4 for all n ≥ 2.
Let ε = 0.1, and let a′ be any constant such that 8 log 160a4na1+1

ε ≤ a′ log n for all n ≥ 2. Consider any
given n ≥ 2, and let t0 = 20tcP (n, a′ log n) ≤ 20na4 . We will only prove for the case where H has exactly
n nodes and where both t0 and d are power of 2 — generalizing to other cases is trivial. For any input vector
I , define:

A1(I) = {coin flip outcomes CP | αε,t0(P, I, CP) = βε,t0(P, I, CP)}

A2(I) = {coin flip outcomes CP | tc(P, I, βε,t0 , CP) ≤ t0
2
}

Theorem 10 tells us that for all I , the set A1(I) contains at least 0.9 fraction of all coin flip outcomes.
Next by Theorem 9, we have ECP [tc(P, I, βε,t0 , CP)] ≤ tcP (n, 8 log 8t0n

ε) ≤ tcP (n, 8 log 160na4+1

ε) ≤
tcP (n, a′ log n) = t0

20 . Hence by Markov’s inequality, we know that for all I , the set A2(I) contains at least
0.9 fraction of all coin flip outcomes. We next prove the various claims in the theorem one by one.

Proof for tc∗Q(n, d) = d · O(log3 n × tcP (n, a′ log n)). Consider any given I . We will prove that
EC [maxH tc(Q, I, γH , C)] = d ·O(log3 n× tcP (n, a′ log n)) always hold. By the properties of A1(I) and
A2(I), we know that for every CP ∈ A1(I) ∩ A2(I), we have tc(P, I, αε,t0 , CP) = tc(P, I, βε,t0 , CP) ≤
t0
2 ≤ t0.

25

Throughout all invocations of SimulateP(ε, d′, t0, Cd
′,t0) where d′ ≥ d, Lemma 5 tells us that no nodes

will ever be flagged. In turn by Lemma 6, when running over any dynamic network H with at most d
diameter, SimulateP(ε, d′, t0, Cd

′,t0) must return P ’s output, if P would output within the first t0 rounds
when running under αε,t0 and Cd

′,t0 . Hence for all Cd
′,t0 ∈ A1(I) ∩ A2(I), all d, and all H with at most d

diameter, SimulateP(ε, d′, t0, Cd
′,t0) will return a non-negative value on all nodes when d′ ≥ d.

Recall that A1(I) ∩ A2(I) contains at least 0.8 fraction of all coin flip outcomes for P . Hence for all
d′ ≥ d, with probability at least 0.8, SimulateP(ε, d′, t0, Cd

′,t0) will return a non-negative value. Further
note that for different d′ (and hence different Cd

′,t0), the probability of SimulateP(ε, d′, t0, Cd
′,t0) returning

a non-negative value is independent. Once SimulateP(ε, d′, t0, Cd
′,t0) returns a non-negative value, Q will

output at Step 7 of Algorithm 1. Putting everything together and by Lemma 13 (proved next), we have:
EC [maxH(tc(Q, I, γH , C))] ≤

∑∞
i=0(0.8 × 0.2i × (2idt0 log t0) × (log(2idt0 log t0)) × (a3 log n)) =

d ·O(log3 n× tcP (n, a′ log n)).

Proof for maxI maxH tc(Q, I, γH , CQ) = d ·O(log3 n× tcP (n, a′ log n)). For this part, P is known to be
input-stable. Consider any fixed input vector I0. For allCP ∈ A1(I0)∩A2(I0), we have tc(P, I0, α

ε,t0 , CP) =
tc(P, I0, β

ε,t0 , CP) ≤ t0
2 . Theorem 11 then tells us that for all input vector I and all CP ∈ A1(I0)∩A2(I0),

we have tc(P, I, αε,t0 , CP) ≤ 2tc(P, I0, α
ε,t0 , CP) ≤ t0. Same as earlier, this then means that for all I , all

dynamic networks H with at most d diameter, and all Cd
′,t0 ∈ A1(I0)∩A2(I0), SimulateP(ε, d′, t0, Cd

′,t0)
will always return a non-negative value on all nodes once d′ reaches d. This will in turn cause Q to output
at Step 7 of Algorithm 1.

Now let CQ be any coin flip outcomes for Q, such that when Q generates Cd
′,t0 at Step 4 of Algo-

rithm 1, we always have Cd
′,t0 ∈ A1(I0) ∩ A2(I0). Since A1(I0) ∩ A2(I0) 6= ∅, such CQ must ex-

ist. Lemma 13 (proved next) then tells us that under such CQ and for some constant a3, algorithm Q
spends at most (dt0 log t0) × (log(dt0 log t0)) × (a3 log n) to finish executing SimulateP(ε, d′, t0, Cd

′,t0)
with d′ = d and some Cd

′,t0 ∈ A1(I0) ∩ A2(I0). Q will then immediately output. Hence we have
maxI maxH tc(Q, I, γH , CQ) = d ·O(log3 n× tcP (n, a′ log n)).

Proof for tc∗Q(n, d) = O(polylog(n)) · tcP (n, d). For this part, we have the condition that tcP (n, d) =
Θ(f(n) · g(d)) with Ω(1) ≤ f(n) ≤ O(na2) and Ω(d) ≤ g(d) ≤ O(da2). We already proved that
tc∗Q(n, d) = d · O(log3 n × tcP (n, a′ log n)). With the new condition, we now have tc∗Q(n, d) = d ·
O(log3 n× f(n)× g(a′ log n)) ≤ g(d) ·O(log3 n× f(n)× (a′ log n)a2) = O(polylog(n)) · f(n) · g(d) =
O(polylog(n)) · tcP (n, d).

Proof for maxI maxH tc(Q, I, γH , CQ) = O(polylog(n)) · tcP (n, d). The proof is similar to the above
case and hence omitted to avoid redundancy.

The following proves Lemma 13, which was used in the above proof, and which bounds the number of
rounds needed for Q to finish executing SimulateP(ε, d′, t, Cd

′,t):

Lemma 13. Let Q be Algorithm 1. There exists some constant a3 such that for all d′ ≥ 1 and t ≥ 2 that are
power of 2, all LV algorithm P , and all coin flip outcomes C for Q, by the end of the complete execution of
SimulateP(ε, d′, t, Cd

′,t) in Q, Q has spend at most (d′t log t) × (log(d′t log t)) × (a3 log n) rounds since
the beginning of Q’s execution.

Proof. We use the a3 from Lemma 4. It suffices to prove that by the time when Q completes its iteration
(i.e., Step 3 to Step 8) for k = d′t log t, it has spent at most (d′t log t)× (log(d′t log t))× (a3 log n) rounds
since the beginning of its execution. For all i that is a power of 2, let ti be the largest power of 2 such that
iti log ti ≤ k. Let zi be the total number of rounds needed to execute SimulateP(ε, i, t, Ci,t) for all t where
t is a power of 2 and it log t ≤ k. By Lemma 4, we have zi ≤ (i × 2 log 2) × (a32 log n) + (i × 4 log 4) ×

26

Algorithm 6 MC-P-Converted-To-Q(ε).
/* All commentary notes under the title of Algorithm 1 apply to this algorithm as well. */

1: k ← 2; C ← coin flips for all rounds in P ;
2: repeat forever
3: forall d′ ≥ 1 and t ≥ 2 where i) d′ and t are both power of 2, ii) d′t log t ≤ k, and iii) SimulateP() has not

been previously executed for such d′ and t in Step 4 do
4: return v← SimulateP(ε, d′, t, C); // See Algorithm 2 for pseudo-code of SimulateP().
5: has flag←ExistValue(return v,−2, n); // See Algorithm 5 for pseudo-code of ExistValue().
6: favorable← CheckFavorable(ε, d′, t); // See Algorithm 7 for pseudo-code of CheckFavorable().
7: if (!has flag) and (!favorable) then output some arbitrary value;
8: if (!has flag) and (favorable) and (return v ≥ 0) then output return v;
9: endforall

10: k ← 2k;

Algorithm 7 CheckFavorable(ε, d′, t).
/* This subroutine tries to check whether the (simulated) dynamic network as generated by αε,t is favorable. It uses d′

as the guess for the diameter of the dynamic network over which Q runs, and takes total d′ rounds. */
1: if there exists r where 1 ≤ r < r + z ≤ t and z = 8 log 4rn

ε , such that (in rounds [r + 1 : r + z], there does not
exist a round where I have a twice-center in the center[] array in my invocation of SimulateP()) and (in rounds
[r : r + z], I sent continuously for z2 rounds), then favorable← false; else favorable← true;

2: return (!ExistValue(favorable, false, d′)); /* See Algorithm 5 for pseudo-code of ExistValue(). */

(a32 log n) + . . . + (i × ti log ti) × (a32 log n) < (i × 2ti log ti) × (a32 log n) ≤ k × (a3 log n). The total
number of rounds needed for Q to completes its iteration (i.e., Step 3 to Step 8) for k = d′t log t will be at
most z1 + z2 + z4 + . . .+ zk = (k log k)× (a3 log n).

G Conversion from MC AlgorithmP to MC Algorithm Q

So far in this paper, we have been focusing on converting any given LV algorithm P to another LV algorithm
Q that has nice properties against prophetic adversaries. This section moves on to consider MC algorithms,
and shows that we can also convert any given MC algorithm P to another MC algorithm Q that has nice
properties against prophetic adversaries.

G.1 Pseudo-code and Intuitions

For any given MC algorithm P , Algorithm 6 and 7 give the pseudo-code for the corresponding MC algorithm
Q. Our algorithmQ here follows the same overall framework as in Section 4.1, and the following discussion
only focuses on the differences from Section 4.1.

As in Section 4.1, our algorithm Q here simulates P multiple times, for different values of d′ (i.e., guess
on diameter) and t (i.e., guess on the number of simulated rounds needed for P to output). Section 4.1 used
fresh coin flips for each such simulation. But here since P is an MC algorithm, using fresh coin flips would
amplify P ’s error excessively. Hence here Q will have to feed the same coin flip outcomes C into all the
simulations. Now if αε,t happens to be not favorable under the given C, it may generate a dynamic network
with large diameter, causing P (and in turn Q) to take too many rounds to output. To avoid this problem,
we will have Q explicitly check whether αε,t is favorable, in a distributed fashion. If Q finds αε,t to be not
favorable, Q will generate some arbitrary output immediately. For checking whether αε,t is favorable, Q

27

will also use the guess d′ as the diameter of the dynamic network over which Q runs. If d′ is no smaller than
the actual diameter, the checking will be error-free. Otherwise the checking may have one-sided error —
interestingly, our proof will still go through despite such error.

When some nodes are flagged, Section 4.1 showed that on all the non-flagged nodes, Q has nevertheless
still properly simulated P ’s execution against some prophetic adversary ψ. This trick unfortunately no
longer works for an MC algorithm P , because when running against the prophetic adversary ψ, P ’s error
guarantee no longer holds. Thus here, after each simulation of P (for any d′ and t values), we will have Q
explicitly check whether there are any flagged nodes in the system. Each such checking takes Θ(n) rounds.
Hence our final result for MC algorithms will have an extra additive O(n log2 n) term.

G.2 Final Results

The following theorem is our final result for MC algorithms:

Theorem 14. Let P be any MC algorithm where for some constants a1 and δ, we have Ω(1) ≤ tcP (n, n) ≤
O(na1) and errP (n) ≤ δ < 1. Let Q be Algorithm 6 with constant ε ∈ (0, 1− δ).

• There exists constant a′ (independent of n) such that for all d, we have
tc∗Q(n, d) = maxI maxC maxH tc(Q, I, γH , C) = d · O(log3 n × tcP (n, a′ log n)) + O(n log2 n).
Here maxH is taken over all dynamic networks H with at most n nodes and at most d diame-
ter. Furthermore, if tcP (n, d) = Θ(f(n) · g(d)) for some f(n) and g(d) where there exists some
constant a2 such that Ω(n) ≤ f(n) ≤ O(na2) and Ω(d) ≤ g(d) ≤ O(da2), then tc∗Q(n, d) =
O(polylog(n)) · tcP (n, d).

• For all n, we have err∗Q(n) ≤ δ + ε. Furthermore, if P is input-stable, then there exist coin flip
outcomesCQ such that maxI maxH err(Q, I, γH , CQ) = 0, with maxH being taken over all dynamic
networks H with at most n nodes.

The above theorem also captures our derandomization result: To derandomize any given input-stable
MC algorithm P , we simply take ε ← 1−δ

2 and then plug CQ into Q in the above theorem. We will then
get an algorithm Q with no error and with the desired time complexity. Theorem 14 directly follows from
Theorem 15 and Theorem 16, which we state and prove in the next.

Theorem 15. Let P be any MC algorithm where for some constant a1 and δ, we have Ω(1) ≤ tcP (n, n) ≤
O(na1) and errP (n) ≤ δ < 1. Let Q be Algorithm 6 with constant ε ∈ (0, 1 − δ). Then there exists
constant a′ (independent of n) such that for all d, we have tc∗Q(n, d) = d · O(log3 n × tcP (n, a′ log n)) +

O(n log2 n). Here maxH is taken over all dynamic networksH with at most n nodes and at most d diameter.
Furthermore, if tcP (n, d) = Θ(f(n) · g(d)) for some f(n) and g(d) where there exists some constant a2
such that Ω(n) ≤ f(n) ≤ O(na2) and Ω(d) ≤ g(d) ≤ O(da2), then tc∗Q(n, d) = O(polylog(n)) · tcP (n, d).

Proof. Recall that tc∗Q(n, d) = maxI maxC maxH tc(Q, I, γH , C). Hence to prove the first part of the
theorem, we only need to show that for any given I , C, and H , we always have tc(Q, I, γH , C) ≤
a5d log3 n× tcP (n, a′ log n) + a5n log2 n for some universal constant a5. We only prove the case where H
has exactly n nodes and where H’s diameter d is a power of 2 — generalizing to other cases is trivial.

Since tcP (n, n) = O(na1), there exists positive constant a4 such that
tcP (n, n) ≤ na4 for all n. Let constant a′ be such that 8 log 8na4+1

ε < a′ log n for all n ≥ 2. Let
t0 = tcP (n, a′ log n) ≤ tcP (n, n) ≤ na4 . We first prove that Q must output by the time that Q executes
Step 8 in Algorithm 6 after it completes the execution of SimulateP(ε, d, t0, C).

28

Consider the iteration (i.e., Step 4 to Step 8) in Algorithm 6 during which SimulateP(ε, d, t0, C) is
invoked. SinceH has a diameter of at most d, Lemma 5 tells us that throughout the execution of SimulateP(ε,
d, t0, C), no node ever gets flagged. In turn by Lemma 6, SimulateP(ε, d, t0, C) must have properly
simulated the execution of P against the adversary αε,t0 up to round t0. Furthermore, since no node gets
flagged, we must have return v ≥ −1 on all nodes, and hence ExistValue(return v, −2, n) must return
false on all nodes. This means that has flag = false on all nodes. Next, if on any node favorable =
false immediately after Step 6, then on that node Q must output at Step 7. Now consider any node u where
favorable = true immediately after Step 6 on u. Then CheckFavorable(ε, d, t0) must have returned true
on u. Since i) the diameter of the dynamic network H is at most d, ii) CheckFavorable(ε, d, t0) returned
true on u, and iii) SimulateP(ε, d, t0, C) has properly simulated the execution of P against αε,t0 up to
round t0, one can easily verify that αε,t0 is favorable up to round t0 for the given P , I , and C. We hence
have αε,t0(P, I, C) = βε,t0(P, I, C), by the construction of βε,t0 (see Definition 8 in Appendix D.1 for
βε,t0). By Theorem 9, the adversary βε,t0 has a diameter of at most 8 log 8t0n

ε ≤ 8 log 8na4+1

ε < a′ log n.
Hence we have tc(P, I, αε,t0 , C) = tc(P, I, βε,t0 , C) ≤ tcP (n, a′ log n) = t0. Against because SimulateP(ε,
d, t0, C) has properly simulated the execution of P against αε,t0 up to round t0, this means that on node
u, the condition at Step 21 of Algorithm 2 must have been satisfied at least once during the execution of
SimulateP(ε, d, t0, C). In turn, this means that on node u, SimulateP(ε, d, t0, C) must return some non-
negative value, and Q will then output at Step 8.

We have proved that Q must output by the time that Q executes Step 8 in Algorithm 6 after it completes
the execution of SimulateP(ε, d, t0, C). We next reason about the number of rounds needed for Q to
complete the execution of SimulateP(ε, d, t0, C) as well as Step 5 to Step 8 in Algorithm 6 after that.

Let k = dt0 log t0. For all i that is a power of 2, let ti be the largest power of 2 such that iti log ti ≤ k.
Note that since k ≤ n ·na4 log na4 , we must have ti ≤ na4+1 and log ti ≤ (a4 + 1) log n. Let zi be the total
number of rounds needed to complete the execution of SimulateP(ε, i, t, C) as well as Step 5 to Step 8 after
that, for all twhere t is a power of 2 and where it log t ≤ k. By Lemma 4, for some constant a3, we have zi ≤
((i×2 log 2)×(a32 log n)+n+i)+((i×4 log 4)×(a32 log n)+n+i)+. . .+((i×ti log ti)×(a32 log n)+n+i) <
(i× 2ti log ti)× (a32 log n) + (n+ i) log ti ≤ a3k log n+n log ti + k ≤ (a3 log n+ 1)k+ (a4 + 1)n log n.
The total number of rounds needed to complete the execution of SimulateP(ε, d, t0, C), as well as Step 5 to
Step 8 in Algorithm 6 after that, will be at most z1 + z2 + z4 + . . . + zk = (k log k) × (a3 log n + 1) +
(a1 + 1)n log k log n = dt0 log t0 × log(dt0 log t0)× (a3 log n+ 1) + (a1 + 1)n log(dt0 log t0)× log n ≤
d×tcP (n, a′ log n)×log na4×log(n·na4 ·log na4)×(a3 log n+1)+(a1+1)n log(n·na4 ·log na4)×log n ≤
a5d log3 n× tcP (n, a′ log n) + a5n log2 n for some universal constant a5.

We have finished proving that tc∗Q(n, d) = d · O(log3 n × tcP (n, a′ log n)) + O(n log2 n). Finally, if
tcP (n, d) = Θ(f(n) · g(d)), we will have:

tc∗Q(n, d) = d ·O(log3 n× f(n)× g(a′ log n)) +O(n log2 n)

≤ g(d) ·O(log3 n× f(n)(a′ log n)a2) + f(n)O(log2 n)

= O(polylog(n)) · g(d) · f(n) +O(polylog(n)) · f(n)

= O(polylog(n)) · tcP (n, d)

Theorem 16. Let P be any MC algorithm where for some constant a1 and δ, we have Ω(1) ≤ tcP (n, n) ≤
O(na1) and errP (n) ≤ δ < 1. Let Q be Algorithm 6 with constant ε ∈ (0, 1 − δ). Then for all n, we
have err∗Q(n) ≤ δ + ε. Furthermore, if P is input-stable, then there exist coin flip outcomes CQ such that

29

maxI maxH err(Q, I, γH , CQ) = 0, with maxH being taken over all dynamic networks H with at most n
nodes.

Proof. Theorem 15 showed that for any given n and for all d, all nodes running Q must output within some
fixed number of rounds. Within these rounds, a node can only invoke SimulateP(ε, d′, t, C) at Step 4 of
Algorithm 6 for finite number of times. Let t0 be the largest t such that before all nodes output in Q, some
node has invoked SimulateP(ε, d′, t, C) for some ε, d′, and C.
Definitions and properties of A1 and A2. For the first part of the theorem, recall that err∗Q(n) =

maxI EC [maxd maxH err(Q, I, γH , C)]. Hence we need to prove that for any give I , we have
EC [maxd maxH err(Q, I, γH , C)] ≤ δ + ε. For any given I , define:

A1(I) = {coin flip outcomes C | αε,t0 is favorable up to round t0 for P , I , and C}
A2(I) = {coin flip outcomes C | err(P, I, βε,t0 , C) = 0}

Since errn(P) ≤ δ, the setA2(I) must contain at least a 1−δ fraction of all possible coin flip outcomes.
By Theorem 10, the set A1(I) contains at least a 1 − ε fraction of all possible coin flip outcomes. For
all C ∈ A1(I) ∩ A2(I), we immediately have αε,t0(P, I, C) = βε,t0(P, I, C) and err(P, I, αε,t0 , C) =
err(P, I, βε,t0 , C) = 0. By the design of αε,t, we further know that for all C ∈ A1(I) ∩A2(I) and t ≤ t0:

• The topologies generated (and the centers chosen) by αε,t in the first t rounds is exactly the same as
the topologies generated (and the centers chosen) by αε,t0 in those rounds.

• The adversary αε,t is favorable up to round t for P , I , and C.

• When P runs against αε,t, it will never generate a wrong output within the first t rounds. (Otherwise
P would generate the same wrong output within the first t rounds when running against αε,t0 , causing
err(P, I, αε,t0 , C) to be 1.)

Outputting at Step 7 and 8. Now consider any given input vector I , any given C ∈ A1(I) ∩ A2(I),
any given node u, and any given iteration (i.e., Step 4 to Step 8) in Algorithm 6 on node u, during which
SimulateP(ε, d′, t, C) is invoked. Note that u may generate an output at either Step 7 or Step 8. We consider
the value of has flag on u, at Step 7 and Step 8. If has flag = true, then u will output in neither Step 7
nor Step 8.

If has flag = false, then ExistValue(return v,−2, n) must have returned false on node u. Because
the diameter of the dynamic network H can be at most n (since the topology of H is a connected graph
in each round), we know that no node invoked ExistValue(−2, −2, n) in this iteration — otherwise the
invocation of ExistValue(return v, −2, n) on node u would have returned true. This then implies that on
every node, SimulateP(ε, d′, t, C) returned some value that is larger than−2. Thus no node ever got flagged
during its respective execution of SimulateP(ε, d′, t, C). By Lemma 6, we now know that SimulateP(ε, d′,
t, C) must have properly simulated the first t rounds of P ’s execution under αε,t and C. In particular, the
centers selected by αε,t in round r (1 ≤ r ≤ t) must be exactly the same as the centers selected at Step 9 of
Algorithm 2.

By our earlier argument, since C ∈ A1(I) ∩ A2(I), we know that αε,t is favorable up to round t for
P , I , and C. Together with the fact that the centers selected by αε,t in round r (1 ≤ r ≤ t) must be
exactly the same as the centers selected at Step 9 of Algorithm 2, we know that the condition at Step 1 of
Algorithm 7 will never be satisfied on any node. One can then verify that, regardless of the relation between
d′ and d, CheckFavorable(t, d′) must return true on all nodes. This means that on node u, we will have
favorable = true at Step 7 of Algorithm 6. Hence u will not output at that step.

30

Next also by our earlier argument, since C ∈ A1(I) ∩ A2(I), we know that P never generates a wrong
output in the first t rounds when running under I , αε,t, and C. Now since SimulateP(ε, d′, t, C) has properly
simulated the first t rounds of P ’s execution under αε,t andC, if SimulateP(ε, d′, t,C) returns a non-negative
value, that value must be the correct output for the problem. Hence u will not generate a wrong output at
Step 8 of Algorithm 6.

Putting it altogether. We have proved that under any given input vector I and any givenC ∈ A1(I)∩A2(I),
a node u (running Q) will generate a wrong output neither at Step 7 nor at Step 8. Since these two steps are
the only steps in Algorithm 6 where u may output, and since A1(I) ∩ A2(I) contains at least a 1 − ε − δ
fraction of all possible coin flip outcomes, we must have EC [maxd maxH err(Q, I, γH , C)] ≤ δ + ε for the
given I .

For input-stable P . We next prove the second part of the theorem, which is for input-stable P . Consider
any fixed input vector I0 and let CQ be any given coin flip outcomes in A1(I0) ∩ A2(I0). Our proof above
has already shown that maxH err(Q, I0, γH , CQ) = 0, with maxH being taken over all dynamic networks
H with at most n nodes. Now consider any other input vector I . Since P is input-stable, Theorem 11
immediately tells us that CQ must be in both A1(I) and A2(I) as well. Hence CQ ∈ A1(I)∩A2(I). Again
by our proof above, we know that maxH err(Q, I, γH , CQ) = 0, with maxH being taken over all dynamic
networks H with at most n nodes. This in turn means that maxI maxH err(Q, I, γH , CQ) = 0.

31

	Introduction
	Model
	Adaptive Adversary Simulated by Q
	Intuition
	Our Novel Adaptive Adversary ,t

	Conversion from LV Algorithm P to LV Algorithm Q
	Pseudo-code and Intuition
	Final Results

	Roadmap
	Properties of SimulateP()
	Definition of Input-stability
	Properties of the Adaptive Adversaries ,t and ,t
	Diameters of ,t and ,t
	Input-stability under ,t and ,t.

	Proof for Theorem 1
	Proof for Theorem 2
	Conversion from MC Algorithm P to MC Algorithm Q
	Pseudo-code and Intuitions
	Final Results

