
Hash Joins Meet CXL:

Wentao Huang† Mian Lu‡ Kian-Lee Tan†

†National University of Singapore ‡4Paradigm Inc.

CIDR’26

A Fresh Look

The Memory Scaling Wall

Current Dilemma

Limited capacity-per-core

Declining bandwidth-per-core

Rising memory provisioning cost

Source: Micron’s Perspective 2024

1

https://assets.micron.com/adobe/assets/urn:aaid:aem:14b32787-efc9-4e36-8490-246c48581265/renditions/original/as/cxl-impact-dram-bit-growth-white-paper.pdf
https://assets.micron.com/adobe/assets/urn:aaid:aem:14b32787-efc9-4e36-8490-246c48581265/renditions/original/as/cxl-impact-dram-bit-growth-white-paper.pdf

The CXL Memory Tehcnology

CXL memory enables
• Cache-coherent PCIe access
• Capacity scaling
• Bandwidth expansion
• Memory pooling & sharing
• Reuse of previous-gen RAM
• Low cost-per-byte
• ⋯⋯

CXL Memory Pool

Host Host Host⋯⋯Host

DRAM CXL Memory

2

Memory Interleaving

Source: Huang et al. 2024 3

https://vldb.org/workshops/2024/proceedings/ADMS/ADMS24_01.pdf

The Status Quo Approach
Step 1 –– create an interleaved memory tier

DRAM

CXL

Memory

DRAM page

CXL memory page 4

The Status Quo Approach
Step 2 –– relocate the entire workload to this tier

DRAM

CXL

Memory

DRAM page

CXL memory page 5

The Status Quo Approach
Step 3 –– run the workload in-place to maximize throughput

DRAM

CXL

Memory

DRAM page

CXL memory page 6

The Hidden Overhead

Total Processing Time Composition

Data MovementExecution

The Blindspot
Most large datasets start in CXL (the
capacity tier) due to capacity/economic
constraints.

The Trap
Moving overhead sometimes offsets
bandwidth benefits, sometimes slower
than just running in CXL!

7

Shall We Stick to the Current Approach?

The Status Quo Approach
1. create an interleaved memory tier (DRAM + CXL)
2. relocate the entire workload to this memory tier
3. run the workload in-place to maximize throughput

8

1. Where should we move the workload?
2. How much workload should we move?

Maybe a Better Way?

Reduce Data
Movement Cost

Maximize Overall
Processing Throughput

9

Data Movement Analysis: Destination
CXL Memory Interleaved Memory

The Goal

∶ = 3 ∶ 2

The Fact

∶ = 3 ∶ 7

Total Memory Traffic

12 × 28 ×

10
DRAM page CXL memory page

Data Movement Analysis: Destination

15.4 GB/s
19.2 GB/s

WINNER

CXL ⟶ Interleaved CXL ⟶DRAM

11

Move to DRAM for peak performance

Data Movement Analysis: Volume

DRAM page

CXL memory page

= +

3 × 2 ×

An Opportunity
High processing throughput
with reduced data movement?

12

An End-to-End Processing Approach
Our Proposal

Do not move everthing
Avoid massive overhead of full
workload movement. Virtual “Interleaved” Tier

DRAM (𝒙)

CXL (𝟏 − 𝒙)

Calculate movement fraction 𝒙
Move only optimal fraction 𝑥 to DRAM;
Leave 1 − 𝑥 in CXL memory.

Software-defined Interleaving
Accessing both DRAM and CXL
for higher throughput

Partial Data Movement

Tradeoff in 𝒙
data movement cost vs.
processing throughput

Model
A cartoon of a white bear sitting at a desk

AI-generated content may be incorrect.

13

Applying to Main-Memory Hash Joins

Partitioned Hash Join (PHJ)
Bandwidth heavy: partition phase

➢ Apply model to the parititon phase

➢ Move 𝒙 amount of input to DRAM

➢ Partition output goes to the interleaved
tier (for maximizing write throughput).

Source: Schuh et al. 2016

Non-Partitioned Hash Join (NPHJ)
Latency hiding: build & probe phase

➢ Apply model to build and probe phase

➢ Move 𝒙 amount of the build side to DRAM

➢ The built Hash table goes to the
interleaved tier (for maximizing write and
probe throughput).

14

https://dl.acm.org/doi/10.1145/2882903.2882917
https://dl.acm.org/doi/10.1145/2882903.2882917

CXL 1.1
Real CXL hardware platform

Experimental Setup

DRAM

32 GB
30 GB/s Bandwidth

CXL

64 GB
21 GB/s Bandwidth

Interleaved

53 GB
47 GB/s Bandwidth

Workload
• Synthetic equi-join benchmark (16-byte tuples)
• Cardinatlity: build side 16M, probe side 256M

15

A cartoon of a white bear holding a blue graph

AI-generated content may be incorrect.

Experimental Results

Partitioned Hash Join

~22% runtime reduction
vs. In-CXL execution

Non-Partitioned Hash Join

~4% runtime reduction
vs. In-CXL execution

“Partial move”
beats all baselines

16

Sentivity Analysis

A cartoon of a white bear holding a blue graph

AI-generated content may be incorrect.

The model can
determine the optimal

data movement fraction

Data Movement Fraction

Theoretical vs. Measured in Partitioning

17

Conclusion
𝐓𝐚𝐤𝐞𝐚𝐰𝐚𝐲

Less can be More: Parital movement beats full relocation

Interelaving ≠ Answer: data movements costs are real

The Winning Strategy: Our model finds the optimal balance

Q & A

18

	Slide 0: Hash Joins Meet CXL:
	Slide 1: The Memory Scaling Wall
	Slide 2: The CXL Memory Tehcnology
	Slide 3: Memory Interleaving
	Slide 4: The Status Quo Approach
	Slide 5: The Status Quo Approach
	Slide 6: The Status Quo Approach
	Slide 7: The Hidden Overhead
	Slide 8: Shall We Stick to the Current Approach?
	Slide 9: Maybe a Better Way?
	Slide 10: Data Movement Analysis: Destination
	Slide 11: Data Movement Analysis: Destination
	Slide 12: Data Movement Analysis: Volume
	Slide 13: An End-to-End Processing Approach
	Slide 14: Applying to Main-Memory Hash Joins
	Slide 15: Experimental Setup
	Slide 16: Experimental Results
	Slide 17: Sentivity Analysis
	Slide 18: Conclusion

