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CPU Core Count

The Memory Scaling Wall

100= @ Rising memory provisioning cost
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https://assets.micron.com/adobe/assets/urn:aaid:aem:14b32787-efc9-4e36-8490-246c48581265/renditions/original/as/cxl-impact-dram-bit-growth-white-paper.pdf
https://assets.micron.com/adobe/assets/urn:aaid:aem:14b32787-efc9-4e36-8490-246c48581265/renditions/original/as/cxl-impact-dram-bit-growth-white-paper.pdf

The CXL Memory Tehcnology
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CXL memory enables C Link

e Cache-coherent PCle access
e Capacity scaling

 Bandwidth expansion

* Memory pooll.ng & sharing CXL Memory CXL Memory Pool
* Reuse of previous-gen RAM

* Low cost-per-byte

cXL 1.0 CXL 2.0 CcXL 3.1 CXL 4.0
March 11, 2019 November 10, 2020 November 14, 2023 November 18, 2025
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cXL 1.1 CXL 3.0 CXL 3.2
June 2019 August 2, 2022 December 3, 2024 2




Memory Interleaving

CXL compared to local DRAM
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Source: Huang et al. 2024
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https://vldb.org/workshops/2024/proceedings/ADMS/ADMS24_01.pdf

The Status Quo Approach

Step 1 — create an interleaved memory tier
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- DRAM page
- CXL memory page



The Status Quo Approach

Step 2 —relocate the entire workload to this tier
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TABLE TABLE

Memory

- DRAM page
- CXL memory page



The Status Quo Approach

Step 3 — run the workload in-place to maximize throughput

{0} @ o} @ {3

—, @t B
G

CXL

TABLE TABLE

Memory

- DRAM page
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The Hidden Overhead

/The Blindspot

Most large datasets start in CXL (the

capacity tier) due to capacity/economic
constraints.

Data Movement

/The Trap

Moving overhead sometimes offsets
bandwidth benefits, sometimes slower

AN

than just running in CXL!

J




Shall We Stick to the Current Approach?

Kl'he Status Quo Approach h

1. create an interleaved memory tier (DRAM + CXL)

2. relocate the entire workload to this memory tier

3. run the workload in-place to maximize throughput
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Maybe a Better Way?
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1. Where should we move the workload?

2. How much workload should we move?
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Reduce Data
Movement Cost
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Maximize Overall
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Processing Throughput
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Data Movement Analysis: Destination
CXL Memory

Total Memory Traffic
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Interleaved Memory
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- DRAM page

- CXL memory page

The Fact

The Goal
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Data Movement Analysis: Destination

WINNER

CXL — Interleaved CXL — DRAM

[ Move to DRAM for peak performance ]




Data Movement Analysis: Volume

/An Opportunity

High processing throughput
with reduced data movement?

) DRAM page
; \_ J

- CXL memory page




An End-to-End Processing Approach

Our Proposal

Partial Data Movement

Do not move everthing
Avoid massive overhead of full

workload movement. Virtual “Interleaved” Tier

Software-defined Interleaving - {M OdelJ

Accessing both DRAM and CXL .
for higher throughput TradGOff Inx

data movement cost vs.

Calculate movement fraction x processing throughput

Move only optimal fraction x to DRAM; \_ -/
Leave (1 — x) in CXL memory.
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Applying to Main-Memory Hash Joins

-
Partitioned Hash Join (PHJ)

Bandwidth heavy: partition phase

~

-
Non-Partitioned Hash Join (NPH)J)

Latency hiding: build & probe phase

~

» Apply model to the parititon phase
» Move x amount of input to DRAM

» Partition output goes to the interleaved
tier (for maximizing write throughput).

» Apply model to build and probe phase
» Move x amount of the build side to DRAM

» The built Hash table goes to the
interleaved tier (for maximizing write and

probe throughput).

:Schuhetal. 2016
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https://dl.acm.org/doi/10.1145/2882903.2882917
https://dl.acm.org/doi/10.1145/2882903.2882917

Experimental Setup

~ A
[ CXL 1.1
Real CXL hardware platform
o &
DRAM CXL
32GB 64 GB
30 GB/s Bandwidth 21 GB/s Bandwidth
: )
Workload
* Synthetic equi-join benchmark (16-byte tuples)
e Cardinatlity: build side 16M, probe side 256M
N /
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Experimental Results
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1 In-CXL Exec
B Full Move to DRAM + DRAM Exec
B Full Move to Interleaved + Interleaved Exec
1 Partial Move to DRAM + DRAM & CXL Exec
Partitioned Hash Join Non-Partitioned Hash Join
~22% runtime reduction ~4% runtime reduction

vs. In-CXL execution vs. In-CXL execution

“Partial move”
beats all baselines
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Sentivity Analysis

Theoretical vs. Measured in Partitioning
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The model can
determine the optimal
data movement fraction




Conclusion

Takeaway

Interelaving = Answer: data movements costs are real
Less can be More: Parital movement beats full relocation

The Winning Strategy: Our model finds the optimal balance

Q&A
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