CIDR’26

Hash Joins Meet CXL:
A Fresh Look

Wentao Huang! Mian Lu? Kian-Lee Tant

TNational University of Singapore *4Paradigm Inc.

CPU Core Count

The Memory Scaling Wall

100= @ Rising memory provisioning cost

N .
@e® o\
oR° 5‘(\3“% \
T 3e VY (W02 eN®
(9® ey Ve s
300 - et® 00 560 =120
UG eV 25 of ; “%\el
o5 ot 5 \1\“(;@‘/ "'0 ‘Smemoﬂ Current Dilemma
250 - go* oSt < oA c,‘10 e -1oo§
2 R v ® Limi .
200 = S imited capacity-per-core
150 = £ @ Declining bandwidth-per-core
S
e
:
=

50 =

https://assets.micron.com/adobe/assets/urn:aaid:aem:14b32787-efc9-4e36-8490-246c48581265/renditions/original/as/cxl-impact-dram-bit-growth-white-paper.pdf
https://assets.micron.com/adobe/assets/urn:aaid:aem:14b32787-efc9-4e36-8490-246c48581265/renditions/original/as/cxl-impact-dram-bit-growth-white-paper.pdf

The CXL Memory Tehcnology

(' Q:rmpute
E <press
CXL memory enables C Link

e Cache-coherent PCle access
e Capacity scaling

 Bandwidth expansion

* Memory pooll.ng & sharing CXL Memory CXL Memory Pool
* Reuse of previous-gen RAM

* Low cost-per-byte

cXL 1.0 CXL 2.0 CcXL 3.1 CXL 4.0
March 11, 2019 November 10, 2020 November 14, 2023 November 18, 2025

LI | I | I‘L

cXL 1.1 CXL 3.0 CXL 3.2
June 2019 August 2, 2022 December 3, 2024 2

Memory Interleaving

CXL compared to local DRAM

Capacity T e e
Latency WO

Bandwidth

Interleaved Memory

e i

Higher Interleaving
Lower

D~
o

o]
o

M
o

=
o

Throughput (GB/s)

o

\\\

D0000000

\ 000 C
SO0Co000
O
DOCO0000:
000

S

Source: Huang et al. 2024

Peak read throughput

https://vldb.org/workshops/2024/proceedings/ADMS/ADMS24_01.pdf

The Status Quo Approach

Step 1 — create an interleaved memory tier

= . [HERD
: —
XL

— RN

- DRAM page
- CXL memory page

The Status Quo Approach

Step 2 —relocate the entire workload to this tier

O

CXL

—
—

TABLE TABLE

Memory

- DRAM page
- CXL memory page

The Status Quo Approach

Step 3 — run the workload in-place to maximize throughput

{0} @ o} @ {3

—, @t B
G

CXL

TABLE TABLE

Memory

- DRAM page

[] cXL memory page :@]: :[§]: :@} :[.é]: :[.é]:

The Hidden Overhead

/The Blindspot

Most large datasets start in CXL (the

capacity tier) due to capacity/economic
constraints.

Data Movement

/The Trap

Moving overhead sometimes offsets
bandwidth benefits, sometimes slower

AN

than just running in CXL!

J

Shall We Stick to the Current Approach?

Kl'he Status Quo Approach h

1. create an interleaved memory tier (DRAM + CXL)

2. relocate the entire workload to this memory tier

3. run the workload in-place to maximize throughput

_

/

Maybe a Better Way?

-

o

1. Where should we move the workload?

2. How much workload should we move?

/

Reduce Data
Movement Cost

~

/
Maximize Overall

o

Processing Throughput

J
~

)

Data Movement Analysis: Destination
CXL Memory

Total Memory Traffic

12x[] 28x|]
N

Interleaved Memory

AN

- DRAM page

- CXL memory page

The Fact

The Goal

~

-=-=3=7 -3
L J

10

Data Movement Analysis: Destination

WINNER

CXL — Interleaved CXL — DRAM

[Move to DRAM for peak performance]

Data Movement Analysis: Volume

/An Opportunity

High processing throughput
with reduced data movement?

) DRAM page
; _ J

- CXL memory page

An End-to-End Processing Approach

Our Proposal

Partial Data Movement

Do not move everthing
Avoid massive overhead of full

workload movement. Virtual “Interleaved” Tier

Software-defined Interleaving - {M OdelJ

Accessing both DRAM and CXL .
for higher throughput TradGOff Inx

data movement cost vs.

Calculate movement fraction x processing throughput

Move only optimal fraction x to DRAM; _ -/
Leave (1 — x) in CXL memory.

13

Applying to Main-Memory Hash Joins

-
Partitioned Hash Join (PHJ)

Bandwidth heavy: partition phase

~

-
Non-Partitioned Hash Join (NPH)J)

Latency hiding: build & probe phase

~

» Apply model to the parititon phase
» Move x amount of input to DRAM

» Partition output goes to the interleaved
tier (for maximizing write throughput).

» Apply model to build and probe phase
» Move x amount of the build side to DRAM

» The built Hash table goes to the
interleaved tier (for maximizing write and

probe throughput).

:Schuhetal. 2016

14

https://dl.acm.org/doi/10.1145/2882903.2882917
https://dl.acm.org/doi/10.1145/2882903.2882917

Experimental Setup

~ A
[CXL 1.1
Real CXL hardware platform
o &
DRAM CXL
32GB 64 GB
30 GB/s Bandwidth 21 GB/s Bandwidth
:)
Workload
* Synthetic equi-join benchmark (16-byte tuples)
e Cardinatlity: build side 16M, probe side 256M
N /

15

Experimental Results

o 0.8 -
o B oo N\ K
= (Pt J \
= =y [\ N
r ~ \
s @M, N N
Q 0.2 4 /| .
s VMBNE > =
LLl
004 E—4 | /o |
PH]J NPH]
1 In-CXL Exec
B Full Move to DRAM + DRAM Exec
B Full Move to Interleaved + Interleaved Exec
1 Partial Move to DRAM + DRAM & CXL Exec
Partitioned Hash Join Non-Partitioned Hash Join
~22% runtime reduction ~4% runtime reduction

vs. In-CXL execution vs. In-CXL execution

“Partial move”
beats all baselines

16

Sentivity Analysis

Theoretical vs. Measured in Partitioning

o 1.20 1.1
=]
2c1.10]
23 1.1
3 ©1.00 '
£ Q
= E0.90-

1.0

Data Movement Fraction

un

o
(X)6 Juswanoldw

5

|ed1302.409Y |

The model can
determine the optimal
data movement fraction

Conclusion

Takeaway

Interelaving = Answer: data movements costs are real
Less can be More: Parital movement beats full relocation

The Winning Strategy: Our model finds the optimal balance

Q&A

18

	Slide 0: Hash Joins Meet CXL:
	Slide 1: The Memory Scaling Wall
	Slide 2: The CXL Memory Tehcnology
	Slide 3: Memory Interleaving
	Slide 4: The Status Quo Approach
	Slide 5: The Status Quo Approach
	Slide 6: The Status Quo Approach
	Slide 7: The Hidden Overhead
	Slide 8: Shall We Stick to the Current Approach?
	Slide 9: Maybe a Better Way?
	Slide 10: Data Movement Analysis: Destination
	Slide 11: Data Movement Analysis: Destination
	Slide 12: Data Movement Analysis: Volume
	Slide 13: An End-to-End Processing Approach
	Slide 14: Applying to Main-Memory Hash Joins
	Slide 15: Experimental Setup
	Slide 16: Experimental Results
	Slide 17: Sentivity Analysis
	Slide 18: Conclusion

