

TaC: An Anti-Caching Key-Value Store on Heterogeneous Memory Architectures

Yunhong Ji*, Wentao Huang[†], Xuan Zhou[‡],, Bingsheng He[†], Kian-Lee Tan[†]

*Renmin University of China [†]National University of Singapore [‡]East China Normal University

In-Memory Key Value Stores

- Fundamental storage layer
 - E.g. Redis, Memcached
- Operation simple
 - Get, Set
- Performance critical

2

The Problem

- The increasing data volume
 - V.S.
- The memory scaling wall

The Increasing Data Volume

 Data volume remains increasing

Source: IDC Global DataSphere 2023

The Memory Scaling Challenge

• DRAM scaling wall

The Memory Scaling Challenge

• DRAM scaling wall

Scaling DRAM technologies to sub-20nm is challenging

The Problem

7

• Growing imbalance between Memory demand and supply

- Increasing demand of memory in applications
- DRAM capacity pre core dropping by 30% biannually

The Problem

8

Growing imbalance between Memory demand and supply

- Increasing demand of memory in applications
- DRAM capacity pre core dropping by 30% biannually

• Memory becomes more expensive compared to other devices

- 2TB M.2 SSD < \$500
- 2TB DRAM ≈ \$20,000

Anti-caching Architecture

• Expand the capacity while providing excellent performance

Anti-caching Architecture

 Performance diminishes when hot data surpasses the available memory size

Normalized performance of FASTER with different data volume and DRAM configuration

Anti-caching Architecture

 Performance diminishes when hot data surpasses the available memory size

Normalized performance of FASTER with different data volume and DRAM configuration

- Byte-addressable
- Larger capacity
- Lower prices

Table 1: Capacity and prices (\$/GB) of different memory.

Capacity	128GB	256GB	512GB
DDR5 DRAM DIMM [12]	11.3	12.5	
Intel Optane PMem [32]	8.6	8.4	8.2

• Byte-addressable

• Larger capacity

Leverage NVM to expand the memory in anti-caching Key-Value stores

• Lower prices

Table 1: Capacity and prices (\$/GB) of different memory.

Capacity	128GB	256GB	512GB
DDR5 DRAM DIMM [12]	11.3	12.5	- 8.2
Intel Optane PMem [32]	8.6	8.4	

• NVDIMM-P

• Performance characteristics

• Performance characteristics

- p1: Inferior performance
- **p**2: Read-write asymmetry

• Performance characteristics

- p1: Inferior performance
- **p**2: Read-write asymmetry
- p3: Inferior performance on small and random accesses

Performance characteristics

- p1: Inferior performance
- **p**2: Read-write asymmetry
- p3: Inferior performance on small and random accesses
- p4: Limited concurrency
- **p**5: Interference with DRAM

Anti-Caching with NVM

Potential choices

Anti-NVM: Replace DRAM with NVM, similar to "Memory Mode"

Anti-NVM

Anti-Caching with NVM

Potential choices

- Anti-NVM: Replace DRAM with NVM, similar to "Memory Mode"
- Anti-2: Utilize NVM in the same way as DRAM

Anti-Caching with NVM

Potential choices

- Anti-NVM: Replace DRAM with NVM, similar to "Memory Mode"
- Anti-2: Utilize NVM in the same way as DRAM
- TaC: Three-tier anti-Caching

Strengths

Leveraging DRAM Strengths (p1)

Strengths

- Leveraging DRAM Strengths (p1)
- Hot Data Retention

Strengths

- Leveraging DRAM Strengths (p1)
- Hot Data Retention
- Controlled Writing to NVM (p4, p5)

• Challenges

More complex data swapping paths

Challenges

- More complex data swapping paths
- Multi-level data classification

• Challenges

- More complex data swapping paths
- Multi-level data classification
- NVM-specific characteristics

Challenges

- More complex data swapping paths
- Multi-level data classification
- NVM-specific characteristics

Hybrid data swapping

Lazy LRU

NVM-optimized data arrangement

• Hybrid data swapping

• Hybrid data swapping

• Lazy LRU

- *time*, the previous access time
- readCount, the recent access frequency

t.readCount	Temperature	Action
> THR _{hot}	Hot	Fetch from SSD or NVM to DRAM; Move atop the LRU list if in DRAM.
> THR _{warm}	Warm	Fetch from SSD to NVM; Move atop the LRU list if in NVM.
Others	Cold	Become ready for eviction.

31

• Lazy LRU

- *time*, the previous access time
- readCount, the recent access frequency

		t.readCount	Temperature	Action
•	Multi-level data classification	> THR _{hot}	Hot	Fetch from SSD or NVM to DRAM; Move atop the LRU list if in DRAM.
•	asynchronous vertication of LRU lists	> THR _{warm}	Warm	Fetch from SSD to NVM; Move atop the LRU list if in NVM.
	•	Others	Cold	Become ready for eviction.

• Lazy LRU

- *time*, the previous access time
- readCount, the recent access frequency

t.readCount	Temperature	Action
> THR _{hot}	Not	Fetch from SSD or NVM to DRAM; Move atop the LRU list if in DRAM.
> THR _{warm}	Warm	Fetch from SSD to NVM; Move atop the LRU list if in NVM.
Others	Cold	Become ready for eviction.

• Lazy LRU

- *time*, the previous access time
- readCount, the recent access frequency

			t.readCount	Temperature	Action
•	Sample-based	<u> </u>	> THR _{hot}	Not	Fetch from SSD or NVM to DRAM; Move atop the LRU list if in DRAM.
			> THR _{warm}	Warm	Fetch from SSD to NVM; Move atop the LRU list if in NVM.
			Others	Cold	Become ready for eviction.
					34

• NVM-optimized data arrangement based on Memcached

- Manage NVM space at tuple-level like DRAM
- Maintain the metadata in DRAM

 Compared 	systems
------------------------------	---------

- Anti-NVM
- Anti-2 & FASTER-NVM
- Spitfire & PRISM

Workloads

- Read-Only (YSCB-RO): 100% reads
- Read-Heavy (YCSB-RH): 95% reads, 5% updates
- Write-Heavy (YCSB-WH): 50% reads, 50% updates

- Set-Up
 - 4GB DRAM
 - **32GB NVM**

Observations

 The anti-caching architecture outperforms the caching architecture regarding the throughput

Observations

Table 3: Memory hit rates on the YCSB-RH workload.

Observations

Table 3: Memory hit rates on the YCSB-RH workload.

• More experiments

- Experiments on varying DRAM and NVM sizes
- Experiments on varying data volume
- Optimization Impact Analysis
 - Partitioned memory management
 - Hybrid data swapping
 - Lazy LRU

•

Thanks!