
A Design Space Exploration and Evaluation for Main-Memory
Hash Joins in Storage Class Memory [Technical Report]

Wentao Huang
National University of Singapore

huang@comp.nus.edu.sg

Yunhong Ji
Renmin University of China

jiyunhong@ruc.edu.cn

Xuan Zhou
East China Normal University

xzhou@dase.ecnu.edu.cn

Bingsheng He
National University of Singapore

hebs@comp.nus.edu.sg

Kian-Lee Tan
National University of Singapore

tankl@comp.nus.edu.sg

ABSTRACT
The long-standing debate on whether it is essential to perform par-
titioning for main-memory hash joins has been rigorously argued
for decades. Within the scope of DRAM, however, the whole re-
search community has yet to reach an agreement. Meanwhile, the
recent upsurge of storage class memory (SCM) technologies has
considerably expanded the memory hierarchy, making the above
partitioning debate vastly entangled.This paper aims to revisit this
debate in the context of SCM. In particular, we perform a design
space exploration in real SCM for two state-of-the-art join algo-
rithms: partitioned hash join (PHJ) and non-partitioned hash join
(NPHJ), and identify the most crucial factors to implement an SCM-
friendly join. Moreover, we present a rigorous evaluation with a
broad spectrum of workloads for both joins and provide an in-
depth analysis for choosing the most suitable algorithm in real
SCM environment. With the most extensive experimental analysis
up-to-date, we maintain that although there is no one universal
winner in all scenarios, PHJ is generally superior to NPHJ.
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1 INTRODUCTION
Main-memory hash joins attracted a surge of interest in the last
decade. Since I/O is no longer involved in the critical path, minimiz-
ing the cache thrashing penalty has become the main design objec-
tive. To achieve this goal, two families of hash join algorithms have
been designed and extensively studied: partitioned hash join (PHJ)
and non-partitioned hash join (NPHJ). In particular, PHJ borrows
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the idea of Grace Hash Join [60]. It introduces a preliminary par-
tition phase to partition data into cache-sized fragments. The fol-
lowing join phase is performed on these fragments, which evades
excessive cache thrashes.

Proponents of NPHJ, however, argue that modern parallel pro-
cessors are powerful enough to hide the cache miss penalty, so the
preparatory partition phase brings little benefits but incurs exces-
sive partitioning overhead. Moreover, the partition phase requires
painstaking efforts of hardware-conscious tailoring (e.g., cache size,
TLB capacity), but such efforts do not always pay off. In one embod-
iment, partitioning aims to transform some arbitrarily distributed
data into a distribution of high locality pattern. Yet, some data al-
ready exhibit a certain level of locality, making the additional par-
tition phase redundant [13, 63]. In another embodiment, partition-
ing demands meticulous tuning against the underlying hardware.
Any gain in performance (after accounting for the overheads) may
soon be diminished if the partitioning parameters deviate from the
optimal configuration [10]. As a consequence, even though PHJ al-
ready outperforms NPHJ in some workloads [8, 9, 58, 88], the PHJ-
vs-NPHJ debate is still ongoing.

Meanwhile, main memory (DRAM) technology has hit a scal-
ing wall [23, 86]. As the logic chip size continues to drop, it is be-
coming increasingly difficult to shrink the DRAM cell size while
maintaining enough capacity 1. Storage Class Memory (SCM), or
non-volatile memory, is the emerging memory technology that
primarily targets breaking this wall [23, 40, 48]. It offers large ca-
pacity, byte-addressability, and near-DRAM access performance.
Moreover, most SCM technologies support data persistence [2, 19,
27, 31, 32, 65, 80, 93, 100], making SCM an appealing alternative not
only for DRAM but also for SSD. Several SCM technologies have
been put into practice [2, 47, 85, 91, 94], among which NVDIMM-
P [47] has become themost popular endeavor. It specifies that SCM
should be formed as a memory DIMM, attached to the memory
bus, and communicate directly with processors through DDR in-
terfaces. Additionally, it defines the concept of internal buffer man-
agement, standardizes the domain of persistence/visibility, and fa-
cilitates the programming paradigm [85].

Inspired by NVDIMM-P, leading memory manufacturers have
been grinding for developing SCM products [45, 91, 94]. Up to now,
Intel Optane DC Persistent Memory Module (Optane DIMM) [45]

1Memory capacity per core is expected to decrease by 30% biannually [86].
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Figure 1: (a) Write performance with different access sizes. (b) The tuple size distribution of benchmark SSB [81] and TPC-H
[24] joins. (c)The execution time breakdown of awrite-and-readmicrobenckmark on a 16KBmemory region (“HUGE” denotes
the huge page configuration of DRAM, “others” overhead remains unnoticeable in all three memory configurations).

is the first and only industrial NVDIMM-P implementation in mar-
ket. Since its release, numerous attempts have been made to har-
ness it in developing persistent data structures [37, 38, 59, 71], fault-
tolerant file systems [35, 87, 111], crash recovery mechanisms [16,
67, 109], etc. The industry community also invests huge efforts to
deploy it in data centers [54] and cloud providers [33, 66]. It is
expected that SCM will become a crucial building block in future
data-intensive platforms.

Unfortunately, there are some salient differences between SCM
andDRAM, indicating that directly translatingmain-memory hash
joins from DRAM to SCM may lead to unsatisfactory results. Ex-
isting studies [25, 34, 62, 97, 101, 103, 104, 106] showed that SCM
may have the following unique features, which have a massive im-
pact on memory-intensive operations: (1) SCM exhibits an asym-
metric read/write pattern; the write bandwidth is several times
slower than the read’s, making write operations muchmore expen-
sive than their counterparts in DRAM. (2) There may be an access
granularity mismatch between SCM DIMMs and processors [47,
85, 106], for instance, Optane DIMM has an internal granularity
of 256B, which is 4× of the cacheline size, yielding detrimental
read/write amplification and wastage in bandwidth. (3) The SCM
internal architecture is likely to remain confidential (e.g., Intel never
reveals the internal documentation to the public), and various pro-
filing studies report contradictory results (e.g, [104] reports the dis-
crepant buffer capacity and replacement policy with [70, 101, 102]),
making it even harder to interpret SCM access behaviors. (4) The
communication protocol is yet to be standardized (DDR4, DDR5,
DDR-T, etc [45, 47, 70, 102, 104]), which may bring about unpre-
dictable performance implications in practice.

Owing to the above features, existing works [25, 29, 34, 62, 64,
97, 101, 103, 104, 106] have proposed a few practical guidelines
for memory-intensive operations. However, most of these guide-
lines focus on exploiting the persistence feature while overlook-
ing the nature of join-related workloads. Hence, these guidelines
suffer from certain limitations and do not apply to main-memory
join processing. We address two fundamental limitations that have
been previously overlooked.

(1) Persistence cost should be eliminated to the greatest extent
possible. SCM is mostly affiliated with the appealing trait of non-
volatility, and existing studies are inclined to achieve immediate

persistence by employing persistent instructions (e.g., “clflush”, “clwb”,
“ntstore”).This trend does not fade away after eADR [104, 107, 108]
platform, where the cache hierachy is included in the persistence
domain, is introduced, because of the higher bandwidth that per-
sistent instructions rendered [12, 15]. However, this practice does
not always boost the performance. Figure 1(a) compares the sin-
gle thread write performance with different write and persist in-
structions at different access granularities. We can see that regu-
lar store (w/o immediate persistence guarantee) outperforms per-
sistent stores (“clwb”, “clflush”, “ntstore”) appreciably at smaller
access sizes (≤ 128B) and only loses to persistent stores at 256B
granularity. It is noteworthy to mention that main-memory join
processing usually operates at an access granularity of a tuple size,
which is typically smaller than cacheline (cf. Figure 1(b) for the
tuple size distribution in SSB [81] and TPC-H [24] joins). Hence,
harnessing persistent instructions can deteriorate the join perfor-
mance. Furthermore, immediate persistence is not the major con-
cern in join processing. In light of power outage, rerunning a query
has a higher gain expectation than recover-and-continue an in-
terrupted run, not to mention the immediate persistence assur-
ance from the recent eADR platform. As a consequence, the widely
adopted persistent instructions should not be used in hash joins.
(2) Page fault overhead is more pronounced for cache-friendly al-
gorithms in SCM. In order to demonstrate this point, we run a mi-
crobenchmark tomeasure the overhead of page fault. We allocate a
cache-sized memory region (16KB) with different memory config-
urations and issue randomwrites followed by random readswithin
this region, which imitates the typical access pattern of hash table
building and probing. When allocating the memory, we explicitly
issue the “memset” instruction to eliminate page faults. As can be
seen in Figure 1(c), the page fault overhead is negligible in DRAM
and consumes nomore than 25%with huge-page DRAM configura-
tion. In contrast, page fault takes up over 80% the cost in SCM. Such
phenomenon can also be observed in the join phase of PHJ (see
Section 8.2 for more details). On this account, page fault in SCM is
the major hindrance for cache-friendly algorithms and should be
avoided as much as possible.

As far as we know, prior SCM-related studies pay little atten-
tion to main-memory join processing. While a recent work byMal-
tenberger et al. [74] attempts to investigate main-memory hash
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joins in SCM, the work aims to compare DRAM and SCM join
performance, and fails to tune the algorithms accordingly for the
above limitations. Hence, their finding that NPHJ is superior over
PHJ is not sufficiently conclusive (and our study shows that this is
indeed the case!). We, therefore, seek to revisit the hash join prob-
lem and perform a more rigorous experimental study in SCM.

In this work, we aim to study the two families of hash join al-
gorithms in real SCM 2 to understand their relative performance.
In particular, we perform a design space exploration for the im-
plementations of PHJ and NPHJ with a particular focus on SCM-
conscious tuning (Sections 5 and 6). In order to obtain a fair com-
parison between NPHJ and PHJ, we also conduct a comprehensive
evaluation in extensive workloads (Section 7). With a systematic
experimental study and analysis, we maintain that PHJ is gener-
ally the preferable solution for SCM. In addition, we propose a set
of practical analyses and several meaningful discussions to offer
more insights for practitioners (Section 8). It is worth addressing
that we conduct experiments with Optane DIMMs, the only avail-
able SCM hardware currently, but our findings and discussions are
majorly based on NVDIMM-P [47] standard. Moreover, we do not
rely on any specific persistent features. Therefore our study has
strong generalizability and can be applied to any SCM that formed
in a DIMM factor [2, 22, 47, 91, 94] (see Section 2 for more details).
To summarize, we make the following contributions:

(1) We present, to our knowledge, the first thorough evaluation to
explore the design space of main-memory hash joins in real SCM.
By considering the characteristics of SCM, we scrutinize PHJ’s and
NPHJ’s internal phase implementations and inspect the alternative
implementations for both joins (cf. Table 1). Moreover, we atten-
tively discuss the optimizations and identify the main bottlenecks
of join processing in the real SCM environment, bridging the gap
between SCM studies and main-memory hash joins.
(2) We systematically conduct so far the most rigorous experimen-
tal study to compare PHJ andNPHJwith awide range ofworkloads.
Our experimental findings reveal the pros and cons of different
join algorithms and answer the aforementioned question that PHJ
is generally the better solution in the real SCM platform.
(3) We propose a set of practical tips for tuning efficient join algo-
rithms and present several analyses in a few auxiliary dimensions.
These tips, along with the discussions, summarize the key insights
of this paper and serve as essential guidelines for practitioners.

The remainder of this paper is organized as follows. In Section 2,
we introduce the landscape of SCM. In Section 3, we inspect the
details of PHJ and NPHJ and discuss alternative implementations.
Section 4 covers the details of experimental setups. We then con-
duct a comprehensive exploration for NPHJ and PHJ in Sections 5
and 6 respectively. In Section 7, we perform a rigorous evaluation
to compare PHJ and NPHJ in wide-ranging workloads. Afterward,
we discuss the experimental findings in-depth and propose prac-
tical guidelines in Section 8. We briefly review related works in
Section 9 and conclude the paper in Section 10.

2Although a DRAM-SCM hybrid platform is more appealing to investigate, we seek a
prerequisite to thoroughly understand the join behaviors in an SCM-only platform.

Table 1: List of Evaluated Main-Memory Hash Joins

Taxoxomy Join Notation Partitioning Hashing

Non-Partitioned
Hash Join

NPHJ-SC
—

Separate Chaining
NPHJ-LP Linear Probing

Partitioned
Hash Join

SHRll-SC Shared
Partitioning
(linked list)

Separate Chaining
SHRll-LP Linear Probing
SHRll-HM Histogram Mechanism
SHRcm-BC Shared

Partitioning
(contiguous
memory)

Bucket Chaining
SHRcm-SC Separate Chaining
SHRcm-LP Linear Probing
SHRcm-HM Histogram Mechanism
INDll-SC Independent

Partitioning
(linked list)

Separate Chaining
INDll-LP Linear Probing
INDll-HM Histogram Mechanism
INDcm-BC Independent

Partitioning
(contiguous
memory)

Bucket Chaining
INDcm-SC Separate Chaining
INDcm-LP Linear Probing
INDcm-HM Histogram Mechanism
RDX-BC

Radix
Partitioning

Bucket Chaining
RDX-SC Separate Chaining
RDX-LP Linear Probing
RDX-HM Histogram Mechanism
ASYM-BC Asymmetric

Radix
Partitioning

Bucket Chaining
ASYM-SC Separate Chaining
ASYM-HM Histogram Mechanism

1 “ —” depicts that the algorithms do not perform partitoning;
2 “ Histogram Mechanism ” represents the historgam-based re-ordering hashing

scheme proposed in [58];
3 “ (contiguous memory) ”-based partitioning methods apply to

uniformly distributed data only.

2 THE SCM LANDSCAPE
TheDRAM technology is facing an acute challenge: it fails to scale
to sub-20nm size [23, 86], which limits its deployment in future
technology nodes. In order to break this wall 3, various SCMs [19,
31, 32, 65, 80, 93] have been proposed, all of which manifest a
strong ability in scaling. For instance, ReRAM was shown to scale
down to the sub-5nm scale [36] and PCMwas validated to shrink to
the sub-2nm scale [48]. In addition to the excellent scaling ability,
SCM also delivers byte-addressability, near-DRAM access speed,
and low economic cost. Therefore, SCM is considered a strong al-
ternative for DRAM.

JEDEC specifies theNVDIMM-P [47] standard for adopting SCM
technology 4. In NVDIMM-P, SCM is organized asmemoryDIMMs
and attached to memory bus as DRAM. Through an integrated
memory controller (iMC), it directly communicates with proces-
sors at a cacheline granularity (64B).TheDIMMequips an on-DIMM
controller and a limited buffer (e.g., 16KB in Optane DIMM [70,

3SRAM and NOR flash also have hit the scaling wall [23].
4JEDEC also proposes the NVDIMM-N [46], which only pairs DRAM with flash in a
DIMM. Thus, it still suffers from the DRAM scaling wall and is beyond the scope of
this study.
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102]), which manage data access and buffering.The on-DIMM con-
troller also supports prefetching, making sequential access faster
than random. Due to the trade-off between address indirection and
encryption [106], the on-DIMM buffer and controller visit the un-
derlying SCM media at a coarser granularity (e.g., 256B XPLine
size in Optane DIMM) 5. Thus, small-size data requests from pro-
cessors will render the infamous read/write amplification. To ex-
ploit SCM’s byte-addressability, NVDIMM-P suggests SCM to be
accessed via DAX-mmap [3, 21, 50, 77], which allows data requests
to be completed via efficient “load” and “store” instructions. Be-
cause of SCM’s read/write asymmetry, the “load” bandwidth is
superior to “store” [30, 78, 83, 84, 97]. Moreover, DAX-mmap ex-
poses the costly page faults in SCM’s critical path [21, 77] 6, which
impairs the performance of cache-sensitive applications (e.g., Fig-
ure 1(c)) and leads to notorious “small files problem” [3]. Further-
mmore, NVDIMM-P defines persistent instructions (“clwb”, “clflush”,
etc.) to make use of SCM’s non-volatility, and works compatibly
with the prospective CXL [22] standard. In consequence, NVDIMM-
P is becoming a promising building block in future large-scale an-
alytical systems.

Thanks to the above features and the strong scaling ability, NVDIMM-
P is widely acknowledged to be the dominant standard for future
SCM devices. We, thus, seek to drill into a deeper understanding of
main-memory hash joins for NVDIMM-P SCMs. AsOptaneDIMM [45]
is the only available NVDIMM-P implementation up to now, we
use it to conduct our experimental study. However, our study is
not limited to Optane. It can be easily generalized to any SCM tech-
nologies that conform to NVDIMM-P. For a better elaboration, we
highlight the following key traits of NVDIMM-P SCM and consider
them as the fundamental primitives of our study:

• P1: access granularity mismatch.
• P2: on-DIMM buffer/controller integrated.
• P3: read/write asymmetry.
• P4: costly page fault handling.
• P5: persistent instructions supported.

3 HASH JOINS
We review PHJ and NPHJ and discuss their variants in this section.
For better comprehensibility, we categorize the joins and present
a taxonomy in Table 1. In addition, we refer to “the build side” and
“the probe side” as R and S respectively, and use the terms “table”
and “relation” interchangeably throughout the paper.

3.1 Non-Partitioned Hash Joins
Non-partitioned hash join (NPHJ) [13, 63] is similar to the canoni-
cal hash join. It simply comprises a build phase and a probe phase.
During the build phase, all threads jointly build a shared gigan-
tic hash table. Either separate chaining or open addressing can
be employed for collision resolution. The build side is evenly di-
vided among all threads, and each thread hashes tuples from its
own chunk. Latches or compare-and-swap (CAS) atomic instruc-
tions are employed to alleviate the potential write-conflict issues
in building. Typically, the hash table has far more buckets than ac-
tive threads, so the lock contention cost remains low. The probe
5This granularity also represents the unit size of error-correct code (ECC) block [34].
6This is assumed to be a common feature for most SCM technologies [21].

phase is conducted in a similar way but without the write-conflict
protections. The algorithm incurs one read pass for both R and S
but has one write pass over R only. Given that R is usually smaller
than S [24, 88], NPHJ significantly saves the write cost, especially
for the write-susceptible SCM.

Thanks to the modern parallel processors’ simultaneous multi-
threading (SMT) and out-of-order execution (OOE), cachemiss penal-
ties can be effectively hidden. The cache miss can be further con-
cealed by enabling software/hardware prefetching and bucket-level
alignment [9, 10]. Hence, modern parallel hardware alleviates the
cache miss overhead effectively.

3.2 Partitioned Hash Joins
Partitioned hash join (PHJ) is another family ofmain-memory hash
join algorithms. In order to avoid cache thrashing during the join,
it introduces a preparatory partition phase to divide relations into
cache-sized sub-relations. The subsequent join phase is performed
partition-wise, reducing the cache thrashing overhead by a large
margin.

3.2.1 Partition Phase. There are numerous ways to perform par-
titioning [89, 110], among which radix partitioning [8] has been
shown to be the best choice in main memory (DRAM) systems.
A natural question to ask is whether radix partitioning still domi-
nates in SCM. Recall that different partitioning methods induce dif-
ferent read/write passes and that SCM is more prone to writes than
DRAM; therefore, it is necessary to reconsider the performance
of partitioning algorithms in SCM environment. In the following,
we revisit representative partitioning algorithms and discuss their
alternative implementations with special attention to read/write
passes. Without the loss of generalizability, all active threads split
R and S at the beginning of the partition phase evenly.
(1) Shared Partitioning [13]. In shared partitioning, all threads
work jointly to populate a common set of partitions, each of which
is structured as a buffer linked list. In order to circumvent write-
conflict issues, each partition is assigned a private lock for thread
synchronization (cf. Figure 2(a)). The algorithm generates a read
and a write pass on both sides.
(2) Independent Partitioning [13]. Independent partitioning al-
lows each thread to create its private set of partitions (cf. Figure 2(b)),
thereby eliminating the need for lock protection. Like shared par-
titioning, each partition is organized as a buffer linked list. After
all threads finish their own jobs, their individual sets of private
partitions are merged into a single set of shared partitions. There-
fore, it also takes a read and a write pass to perform independent
partitioning.
(3) Radix Partitioning [8]. Radix Partitioning is the most promi-
nent partitioning algorithm so far (in DRAM). Unlike shared parti-
tioning and independent partitioning, a partition here is formed as
a contiguous memory region, and all partitions together also con-
stitute a giant contiguous memory region. The algorithm operates
in three steps (cf. Figure 2(c)): 1⃝ The input relation is evenly split
among all threads, where each thread scans a sub-relation and pop-
ulates a histogram that counts the tuple number for every single
partition. 2⃝ All threads synchronize at a barrier to modify their
histograms. By computing and aggregating the prefix sum of all
histograms, each thread is able to update its own histogram, where
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Figure 2: Partitioning Methods.

the updated values correspond to the exclusive partitioning posi-
tions for the tuples in its scanning sub-relation. 3⃝According to its
histogram, each thread rescans its sub-relation and redistributes
tuples to their respective partitioning positions. Since partitioning
positions are exclusive, tuples can be efficiently written to their
final destinations without write synchronization.

The above radix partitioning algorithm takes two read passes
and one write pass. However, Manegold et al. [14, 75, 76] claims
that the partitioning performance drops sharply once the partition
fanout exceeds the TLB capacity .The radix partitioning, therefore,
is modified to a multi-pass manner, each pass of which is bounded
by TLB limit and thereby precluding excessive TLB thrashing. Hence,
a 𝑚-pass radix partitioning requires 2𝑚 read passes and 𝑚 write
passes for R and S, where 𝑚 refers to the number of partitioning
passes.
(4) Asymmetric Radix Partitioning [56]. Khattab et al. [56] go
beyond radix partitioning and propose an idea called asymmet-
ric radix partitioning, which targets a binary join scenario with
a salient size difference, i.e., S is much larger than R. Unlike radix
partitioning that maintains same pass number for both sides, asym-
metric radix partitioning applies different number of passes for par-
titioning R and S respectively. In particular, it takes𝑚 passes for R
and 𝑛 passes for S (referred to as𝑚-𝑛-pass), where𝑚 > 𝑛 (see Fig-
ure 2(d) for an example when𝑚 = 2, 𝑛 = 1). Since S is commonly
larger than R, the partitioning cost should be alleviated consider-
ably compared to 𝑚-pass radix partitioning. The algorithm, ther-
erfore, results in 2𝑚R + 2nS reads and𝑚R + nS writes.

However, asymmetric radix partitioning has been shown to be
inefficient in DRAM [56]. Fewer passes over S renders more reads
during the join phase, resulting in more cache misses. The sav-
ing from partitioning quickly diminishes, suggesting the algorithm
must revert to radix partitioning. Despite the disappointing profile
in DRAM, we note that the join phase incurs limited write oper-
ations, which is beneficial in a write-susceptible context. Hence,
asymmetric radix partitioning may exhibit a competitve profile in
SCM.

It is worth mentioning that the partitioninig performance can
be significantly improved with software write-combining buffers
(SWWCB) and non-temporal stores (“ntstore”) [6, 9, 88, 110]. SWWCB
maintains a separate in-cache buffer of 𝑁 -tuple capacity for each
partition. During partitioning, tuples are copied to these buffers
first. Once a buffer is full, the whole buffer is flushed to the final
partition destination, combining N writes to one. Therefore, both
cache thrashing and TLB thrashing are decreased by a factor of 𝑁 .
Partitioning with SWWCB can be further enhanced with “ntstore”

Algorithm 1: Partitioning with SWWCBs and ntstore
1 foreach tuple 𝑡𝑖 ∈ 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 do
2 k = hash(𝑡𝑖 );
3 SWWCB[k][pos[k]] = 𝑡𝑖 ; // copy 𝑡𝑖 to SWWCB[k]

4 pos[k] ++;
5 if 𝑝𝑜𝑠 [𝑘]%𝑁 = 0 then

/* copy SWWCB[k] to part[k] via ntstore */

6 ntstore(part[k], SWWCB[k]);

(shown in Algorithm 1). Recall that a regular store must fetch a
corresponding cacheline before writing data to it, which pollutes
the cache and wastes memory bandwidth. With “ntstore”, a buffer
is directly written to memory without cache pollution. As a conse-
quence, the bandwidth utilization is significantly enhanced.

Before we proceed to demystify the join phase, we digress to
discuss an alternative partition layout for shared and independent
partitioning. Recall that shared and independent partitioning struc-
ture their partition layout as buffer linked lists, which may span
separate memory pages. Compared to the contiguous memory lay-
out, scanning a buffer linked list incurs random memory reads,
which could expose moderate cache misses to the join phase. Con-
sidering this factor, we restructure the partition layout from a buffer
linked list to a pre-allocated contiguous memory region for shared
and independent partitioning (SHRcm-∗ and INDcm-∗ algorithms
in Table 1). This modification trades random memory accesses for
sequential accesseswithout introducing extra passes over data, prof-
iting not only the join execution but also the partition phase. A
noteworthy issue is that we normally lack knowledge of data dis-
tribution prior to partitioning. The pre-allocated memory regions,
therefore, may not well fit the actual data distribution, resulting
in memory overflow for specific partitions. To alleviate this issue,
we slightly enlarge the pre-allocated regions to a certain extent
(since SCM has denser capacity than DRAM, we are able to allo-
cate larger space for partitions), allowing each partition to carry
more tuples than usual. However, this partitioning method may
still suffer memory overflow issues with highly skewed datasets.
The modification, therefore, only applies to lowly skewed datasets.

3.2.2 Join Phase. The join phase is executed partition-by-partition.
Each active thread fetches a R partition and constructs a hash table
with a distinct hash function. It then fetches the respective parti-
tion of S and probes the hash table with the same hash function.
Note that different partitioning methods yield disparate partition
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Table 2: PHJ Passes

Partitioning Reads Writes
SHRll 2(𝑅 + 𝑆) 𝑅 + 𝑆
SHRcm 2(𝑅 + 𝑆) 𝑅 + 𝑆
INDll 2(𝑅 + 𝑆) 𝑅 + 𝑆
INDcm 2(𝑅 + 𝑆) 𝑅 + 𝑆
RDX (2𝑚 + 1)(𝑅 + 𝑆) 𝑚(𝑅 + 𝑆)
ASYM (2𝑚 + 1)𝑅 + (2𝑛 + 𝑘)𝑆 𝑚𝑅 + 𝑛𝑆

1 “k” denotes the times for R partition number over S partition
number;

2 We do not explicitly distinguish sequential/random passes as
we avail of SWWCBs’ temporal sequential pattern in random
page visits.
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Figure 3: Hash Table Designs for PHJ-BC and PHJ-HM.

layouts. A contiguous layout involves one sequential read pass,
whereas a buffer linked list triggers one random read pass. The
probing performance, thus, is varied. A noteworthy special case
is asymmetric radix partitioning. Since it takes more partitoning
passes over R than S, the partition fanout of R may be 𝑘 times of S.
A S partition should potentially find its matches in 𝑘 R partitions.
Thus, the asymmetric scheme takes 1 and 𝑘 read passes for R and
S respectively. We summarize the pass number in Table 2 for ease
of reference.

The major benefit of PHJ comes from hash tables of high local-
ity, which obliterates cache thrashing during probing. In order to
attain this high locality, a hash table must reside entirely within
caches, indicating that a hash table across separate memory pages
is not an option. Both separate chaining and bucket chaining can
be employed to achieve this goal, as long as they are allocated on
cache-sized memory regions. In particular, Manegold et al. [76] uti-
lize a variant bucket chaining mechanism (cf. Figure 3(a)), where
tuples are chained together via their starting offsets (in contrast to
actual tuples or pointers). However, since tuples are only chained
but not moved, this chaining mechanism only works for a parti-
tion of a contiguous memory layout. Additionally, Kim et al. [58]
proposed an alternative 2-pass hash table buildingmethod to make
use of SIMD acceleration (“Histogram Mechanism” in Table 1). It
first scans the partition to generate a hash value histogram. Then
it uses the prefix sum of the histogram to redistribute the tuples in
the second pass (cf. Figure 3(b)). In this way, tuples with the same
hash values are redistributed side-by-side, which supports SIMD
lookups and thereby expedites the probing.

4 EXPERIMENTAL SETUP
Testbed.Weconduct experiments on a dual-socket servermachine
with Linux kernel version 5.4.0-110. Each socket is equipped with
an Intel Xeon Gold 6230 CPUwith 20 physical cores, each of which
consists of 2 logical cores (40 threads/socket). Each physical core
has 32KB L1 data cache, 32KB L1 instruction cache, 1MB L2 cache,
and shares 27.5MB L3 cache (last level cache) with the remaining
cores in the socket. Besides, the L1 TLB capacity is 64 and 32 for
4KB-page and 2MB-page configuration respectively, and the L2
TLB entry number is 1536 for both page configurations.

The system contains 384GB DRAM and 1.5TB Optane DIMMs
(2 𝑠𝑜𝑐𝑘𝑒𝑡 × 6 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 × 128𝐺𝐵/𝐷𝐼𝑀𝑀) . All SCM DIMMs run in
app direct mode and are organized in an interleaved manner via
DAX-mmap. Unless explicitly stated for NUMA effects evaluation,
all memory accesses are restricted to the local socket by default.

Workload. We evaluate the aforementioned joins on a variety
of binary-join workloads (cf. Table 3). By default, a single tuple is a
16-byte < 𝑘𝑒𝑦, 𝑝𝑎𝑦𝑙𝑜𝑎𝑑 > pair, and both key and payload are 8-byte
long. Following previous works [9, 10, 13], we set the build side
cardinality (i.e., |𝑅 |) and the probe side cardinality (i.e., |𝑆 |) as 16×
220 and 256×220 respectively.Thus, the size of the probe side is×16
of the build side, which is a typical ratio in TPC-H benchmark [24].
Additionally, we alter the ratio to×4 and×1 by increasing the build
side cardinality so that we are able to test the join performance
with different size ratios.

By default, the build side and the probe side follow a primary-
key-foreign-key (PK-FK) setting and both relations conform to
the uniform join key distribution (“pkfk”). We also evaluate the
joins with two other sets of workloads: a set of skew workloads
(“zipf”) where the probe sides follow a zipfian distribution [7, 13,
88] with different skewnesses (Zipf factor 𝜃 ), and a uniform work-
load set (“sel”) with various join selectivities 7. To further assess the
join robustness, we synthesize another two workloads to compare
the joins in “many-to-many” scenario. The first workload, named
“dupfk”, loosens the PK-FK constraint to FK-FK, which still holds
the “foreign-key” dependency between R and S but allows dupli-
cates in R [79]. The second workload, “dens” further increases the
relation “density” on “dupfk” by narrowing down the key distribu-
tion domain 8, leading to more hashing collisions.

Due to the limited capacity of DRAM, previous works [9, 10, 13,
68] only evaluate joins at million scale (mostly smaller than 5GB).
However, SCM has much higher density than DRAM, the capacity
limitation is no longer a concern. Therefore, it is not only practical
but also worthwhile to evaluate the joins in huge workloads. We
synthesize two sorts of huge workloads for assessing join scalabil-
ity:
(1) “pyld”.We fix the cardinality of R and S but enlarge the payload
size for every single tuple. The tuple size lies in the domain {16B,
32B, 64B, 128B, 256B, 512B}.Thus, the respective workload size (the
sum of R and S) ranges from 4.25GB to 136GB.
(2) “bln”. In contrast, we keep the tuple size fixed but increase the
cardinality to a billion scale (i.e., |𝑅 | = 230, |𝑆 | = 16 × 230), making
the workload size 272GB in total.

7The “join selectivity” is defined as |𝑅 |Z |𝑆 |
|𝑆 | [92].

8The parameter, “density”, is defined as 𝑘𝑒𝑦_𝑟𝑎𝑛𝑔𝑒
|𝑅 | .
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Table 3: List of Evaluated Workloads

Workload pkfk zipf sel dupfk dens pyld bln
|R| 16/64/256×220 16 × 220 16 × 220 16 × 220 16 × 220 16 × 220 1 × 230

|S| 256 × 220 256 × 220 256 × 220 256 × 220 256 × 220 256 × 220 16 × 230

Tuple Size (Byte) 16 16 16 16 16 16∼512 16
Distribution uniform zipfian uniform uniform uniform uniform uniform
Constraint PK-FK PK-FK PK-FK (selective) FK-FK FK-FK (dense) PK-FK PK-FK

Parameter Domain — { 1.05, 1.25, 1.50, 1.75 } { 0.20, 0.40, 0.60, 0.80 } — { 0.20, 0.40, 0.60, 0.80 } — —
1 “ PK-FK ” denotes primary-key-foreign-key constraint;
2 “ FK-FK ” signifies foreign-key-foreign-key constraint [79], i.e., many-to-many join.

In addition to the previous synthetic workloads, we evaluate the
joins on the TPC-H benchmark [24]. We choose Query 14 to per-
form the evaluation, as it contains a binary join operator and an
aggregation operator, which helps us to rule out other affecting
factors (e.g., sorting, deduplication ) and reflect the actual join per-
formance better. We set the scale factor to 100 (i.e., 100𝐺𝐵 dataset)
and store the generated tables in SCM by default.

In the following experiment sections, we use the “pkfk” work-
load with a |R|:|S| ratio of 16 as the default workload to explore the
design space for both NPHJ and PHJ (Sections 5 and 6).The remain-
ing workloads will be evaluated rigorously in Section 7 for a fair
comparison between NPHJ and PHJ.

Implementation and Evaluation Metrics.We implement all
join algorithms listed in Table 1, and use GCC-9.3.0 to compile
then with the -O3 flag enabled. Unlike existing works of persis-
tent indices or crash recovery [38, 59, 67, 72, 109], a binary join
has no need for immediate persistence, and benefits from regu-
lar stores (cf. Figure 1(a)(b)). We, thus, only issue regular stores
(without cacheline flushes or memory fences) in our implementa-
tions unless otherwise stated. If not otherwise specified, we exploit
all physical cores of a single socket 9 to run joins, which offers a
favourable performance according to existing DRAM-based stud-
ies of main-memory hash joins [9, 13].

Following previous works of main-memory hash joins [9, 10, 13,
58, 68, 88], we conduct the binary join evaluation on relation R and
S in the form of “SELECT COUNT (∗) FROM R,S WHERE R.key ==
S.key”. We report the running elapsed time of each algorithm as
the evaluation metric 10, and the reported elapsed time is the me-
dian of ten consecutive runs. It is worth mentioning that before
taking the ten measured runs, we warm up the SCM running pool ,
which is in line with previous works [10, 11, 50, 57, 64, 73, 95, 103].
Moreover, we pre-fault SCM mappings [3, 21, 50, 77] when allocat-
ingmemory for hash tables or partitions, obliterating page faults in
join execution (see Section 8.2 for a discussion of page fault effects).
In order to better analyze the experiments, we instrument our stud-
ies with PAPI [96] and VTune [41] to measure the hardware events
of our platform. Futhermore, we employ PMWatch [43] to collect
SCM’s hardware-level statistics.

9By default, we only evaluate joins in one socket to avoid potential NUMA impacts.
10Previous works [9, 10, 13, 58, 68, 88] use “join throughput”, i.e., |𝑅 |+|𝑆 |

𝑒𝑙𝑎𝑝𝑠𝑒𝑑 𝑡𝑖𝑚𝑒 , for
evaluation, which is equivalent to our metric, elapsed time.

5 NON-PARTITIONED HASH JOINS IN SCM
In this section, we study the implementation of NPHJ in three as-
pects: 1) the benefit of prefetching; 2) the effect of bucket align-
ment; 3) the performance w.r.t. thread scalability. The main goal of
this section is to uncover the most crucial factors that contribute
to a performant NPHJ implementation.

5.1 Prefetching
We start our evaluation with the prefetching analysis. Prefetch-
ing has been shown to deliver impressive improvement for hash
joins [7, 9, 17, 18]. It substantially alleviates the cache stall penalty
by overlapping memory accesses with other computation instruc-
tions. The prefetched data is moved and retained in caches before
its use, enhancing the cache hit rate and facilitating the join exe-
cution.

Table 4 shows the prefetching improvements for NPHJ in SCM.
We also present the respective improvements in DRAM for a fair
comparison.We can observe that although bothNPHJ-SC andNPHJ-
LP benefit from prefetching, DRAM improvements aremore promi-
nent than SCM, especially for NPHJ-SC.This improvement discrep-
ancy is primarily attributed to the difference in memory access
cost between the two memory media. SCM has higher access la-
tency than DRAM (3∼4 higher read latency [87, 106, 112]) making
it harder for current processors to conceal the cache miss penalty.
Meanwhile, we can see that NPHJ-SC benefits more from prefetch-
ing, either in DRAM or SCM. The reason is that the linear probing
mechanism already arranges hash buckets in a close memory pat-
tern, which yields a good cache locality and leaves little boosting
space for prefetching. With prefetching, NPHJ-SC overcomes its
weakness in cache locality and achieves a very close performance
to NPHJ-LP (within 5% performance gap).

In order to parameterize the optimal prefetching distance in
SCM, we assess the join performance with varying prefetching
distances. Figure 4 shows the join execution time and SCM inter-
nal media read number with different prefetching distances. We
can observe a strong correlation between execution time and SCM
media reads. The performance first improves notably when the
prefetching distance increases from 0 to 24-tuple and then stabi-
lizes with longer prefetching distances. Once the distance reaches
214-tuple, the execution time and SCMmedia reads increase drasti-
cally. This phenomenon is primarily due to the limited capacity of
SCM on-DIMM buffer [P2] . A prefetching distance of 214-tuple
indicates that both prefetched tuples and hash buckets requires
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Table 4: Prefetching Improvements

Memory Algorithm
Runtime wo/
Prefetching

Runtime w/
Prefetching

Improvement

DRAM
NPHJ-SC 0.5842s 0.3206s 46.65%
NPHJ-LP 0.3516s 0.2886s 17.91%

SCM
NPHJ-SC 2.5318s 2.1829s 13.78%
NPHJ-LP 2.1724s 2.0836s 3.72%
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Figure 4: NPHJ execution time & internal media reads w.r.t.
prefetching distance (the distance refers to the number of
tuples).

1MB memory region (each prefetches 214 cachelines), which con-
sumes 2MB space in total and exceeds the last level cache (LLC)
size per core (LLC slice size [61]) 11. The prefetched buckets and
tuples, therefore, can no longer be buffered in LLC, rendering ex-
cessive repeated memory accesses. Moreover, they fail to reside in
on-DIMM buffers either.The reason is two-fold: (1)The Optane on-
DIMM buffer is believed to be 16KB [101, 104, 106], and the total
on-DIMM buffers are 96KB (6 interleaved Optane DIMMs), which
is far less than the size of the cache size per core. (2) The Optane
on-DIMM buffer is believed to be exclusive with CPU caches [104]:
once a cacheline is loaded into caches, it is evicted immediately
from on-DIMM buffers.Therefore, we can see a drastic rise in SCM
media reads from the 214-tuple prefetching distance and onwards,
which exposes the long media access latency and impairs join exe-
cution.

Tip #1: Employ prefetching for NPHJ but limit the prefetch-
ing distance within the LLC capacity. The prefetching distance can
be accordingly increased if the SCM on-DIMM buffer capacity ex-
ceeds the LLC capacity or is inclusive with CPU caches [P2] .

11LLC size per core is calculated as 27.5𝑀𝐵 ÷ 20 = 1.375𝑀𝐵.

5.2 Bucket Alignment
We now assess the impact of bucket alignment. By default, a hash
bucket requires 48 bytes in our implementaion 12. A single hash
bucket access may incur one additional memory access if the hash
bucket spans two consecutive cachelines. Meanwhile, there exists
a mismatch between CPU cacheline (64B) and SCM internal ac-
cess granularity i.e., 256B XPLine of Optane DIMMSs [P1] . If the
hash bucket spans two XPLines, the additional memory access can
trigger one more SCM media read, exacerbating the bucket access
overhead.

Bucket alignment aids in mitigating this issue of extra memory
accesses. Bucket alignment can be set as 64B, which ensures each
hash bucket be entirely stored in a single cacheline, and thereby
precludes the extra memory accesses. Another rational alignment
configuration is the internal granularity of SCM, i.e., 256B in our
case, which eliminates the possibility of additional SCMmedia reads.
Moreover, a 256B-aligned hash bucket is able to carry more tuples
than a 64B bucket, which may also affect the NPHJ performance.
With these considerations in mind, we test the performance of
NPHJ with different bucket alignment configurations: unaligned,
64B-aligned, 256B-aligned, and a 256B-aligned bucket containing
four tuples (denoted as “256B-Bkt4” in Figure 5).

Figure 5(a) depicts the outcomes of the experiments. As can
be seen, the unaligned bucket yields an inferior result than 64B-
or 256B-aligned hash bucket on account of excessive memory ac-
cesses.The 64B-aligned configuration slightly outperforms the 256B-
aligned configuration because it has fewer SCMmedia reads. How-
ever, the “256B-Bkt4” configuration renders the worst result. In or-
der to explicate the reason behind this phenomenon, we plot the
number of LLC misses and SCM media reads in Figure 5(b). We
can observe that, even with 256B alignment, “256B-Bkt4” still in-
curs more LLC misses and SCM media reads than the unaligned
configuration, leading to inferior performance.

We claim that on-DIMM buffer contention is the main culprit
behind this issue [P2] . To corroborate this claim, we rerun NPHJ
with “256B-Bkt4” configuration, but with only 7 running threads
(cf. 20 threads of default setting), which is reflected as “256B-Bkt4▼”
in Figure 5. As shown in Figure 5(a), its runtime beats the un-
aligned configuration. We also notice that “256B-Bkt4▼” signifi-
cantly lowers SCM media reads (cf. Figure 5(b)). Recall that a 4-
tuple hash bucket spans two consecutive cachelines. When access-
ing the hash bucket, the first cacheline is loaded to the caches
while the second cacheline resides in on-DIMMbuffers, waiting for
the following read request. When executing a join with too many
threads, these cachelines have to contend for the limited on-DIMM
buffer space, resulting in notoriously XPLine thrashes in on-DIMM
buffers. Fewer running threads, on the contrary, considerably alle-
viate the contention problem. Hence, the join performance can be
ameliorated.

Figure 5(b) also reveals an essential finding of NPHJ in real SCM.
“256B-Bkt4▼” incurs fewer media reads but more LLCmisses when
compared to the unaligned configuration. Given the superior per-
formance of “256B-Bkt4▼”, we argue that SCM media reads are
the most significant impediment for a high-performance join. One

12A bucket comprises two 16-byte tuples, a 8-byte next pointer, a 4-byte counter, and
a 1-byte latch with 3-byte padding.
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Figure 5: NPHJ executione time, LLC Misses and 3D-Xpoint
Media Reads with different bucket configurations ( “256B-
Bkt4” refers to a bucket setting with a 4-tuple capacity and
256B alignment; “▼” denotes that the join is executed with 7
threads).

should avoid excessive media reads to the greatest extent possible;
where required, trade SCM media reads for LLC misses. Overall,
we maintain that the 64B-aligned bucket offers the optimal perfor-
mance and provide the following configuration tip:

Tip #2: Align the hash buckets to the 64B-boundary for NPHJ.
If the bucket size exceeds 64B, align it to the SCM internal granu-
larity (e.g., 256B for Optane DIMM) and consider limiting the join
parallelism if necessary [P1,P2] .

5.3 Thread Scalability
NPHJ takes advantage of multi-threading to mitigate the cache
miss overhead, and previous DRAM-based studies have shown that
its scalable performance with the running-thread number [6, 9, 13,
63]. However, SCM is widely reckoned to behave poorly in writ-
ing and existing studies [25, 34, 62, 97, 101, 103, 104, 106] have
validated its write defect. A natural question to ask is whether or
not NPHJ can profit from multi-threading in SCM.

To answer this question, we evaluate NPHJ-SC and NPHJ-LP
with different numbers of running threads. In particular, we sepa-
rate the join processing into the build phase and the probe phase,
and examine their respective performance. Figure 6 demonstrates
the experimental results. The performance of the probing phase
scales nicely with the number of probing threads, especially be-
fore the SMT region. After entering the SMT zone, some cores are
doing more works than others, bringing about a modest increase
in runtime. As the SMT number increases, the work is distributed
more and more evenly over all the cores, making the runtime grad-
ually and steadily approach a low point.

In contrast, the build phase exhibits poor thread scalability in
performance. The runtime quickly converges to 0.48s when the
thread number reaches 6 and increasing thread number beyond 6
does not significantly enhance performance. This poor scalability
is primarily due to the deficient write bandwidth of [P3] SCM [25,
34, 62, 97, 101, 103, 104, 106]. Note that inserting a tuple incurs
at least two reads (one access for the tuple and one access for the
bucket) and one write (write the tuple to the bucket). As the thread
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Figure 6: NPHJ execution time w.r.t. thread number (dashed
lines mark the starting of simultaneous multi-threading
(SMT)).

number increases, the writes start to dominate the memory band-
width, consequently harming the overall performance.

Tip #3: Exploit all physical cores for probing but save the cores
(threads) within a certain level (e.g., 6 in Optane DCPMM) in the
build phase [P3] .

6 PARTITIONED HASH JOINS IN SCM
Similarly, we explore the design space for PHJ in this section. In
particular, we dissect PHJ into the partition phase and the join
phase. Likewise, we aim to derive a comprehensive understanding
of the implications of various implementation strategies.

6.1 Partition Phase
The partition phase is well known to be the dominanting phase in
PHJ execution [6, 9, 88, 110]. Subsection 3.2 has presented several
partitioning strategies, which generate different passes and access
patterns for reads andwrites. Recall that SCM ismore vulnerable to
writes and on-DIMM buffer makes it more susceptible to random
memory access. These read/write accesses, therefore, are likely to
instigate unanticipated consequences. In this subsection, we factor
in scaling effects in three dimensions: 1) SWWCB size; 2) thread
scalability; 2) partition fanout, and come up with a few guidelines
to tune these partitoning methods for their best peroformance.

6.1.1 Effect of SWWCB and “ntstore”. Wefirst scrutinize the effect
of SWWCB in “ntstore”. Recall that “ntstore” delivers higher write
throughput with larger access size (cf. Figure 1(a)) and SWWCB
reduces cache/TLB thrashes by combining 𝑁 -tuple writes to one.
We, thus, alter 𝑁 value to 4∼128 (SWWCB size varied from 64B to
2KB) and compare the partitioning runtimewith naive setting (w/o
“ntstore” and SWWCBs). We apply 2-pass partitioning to rule out
potential TLB conflicts [7, 10, 13, 58] and allocate SWWCBs in SCM
by default. Additionally, as DRAM has higher read performance
than SCM, we conduct experiments with in-DRAM SWWCBs to
see if there are any performance improvements.
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Figure 7: PHJ partitioning time using non-temporal stores
with different SWWCB size (“REG” denotes the naive parti-
tioning setting w/o “ntstore” and SWWCBs).

Figure 7 presents the partitioning results. Compared to the naive
setting (“REG” in Figure 7), all partitioning methods significantly
benefit from “ntstore” and SWWCBs. The runtime scales down lin-
early and converges at 256B, which is equivalent to SCM inter-
nal granularity (i.e., XPLine size). As writes of this size can be di-
rectly flushed to SCM media, both read-modify-write in on-DIMM
buffers and lousy write amplification in underlying media are ap-
preciably alleviated, which accounts for themajor reduction in par-
titioning runtime [P1] .

Figure 7 also shows that enlarging SWWCB brings no more per-
formance gains. Although a larger SWWCB merges more writes
into one and induces fewer cache/TLB thrashes, it does not affect
the underlying SCM media write number. The phenomenon indi-
cates thatmedia-level access ismore of a bottleneck than processor-
level thrashes, which again validates our finding in Section 5.2. Fur-
thermore, in-DRAM SWWCBs do not benefit much from faster
DRAM and only achieve similar results. The reason is two-fold:
(1) “ntstore” retains tuples in caches, effectively mitigating cache
pollution; (2) SWWCB group 𝑁 writes into one, reducing cache
thrashes by a 𝑁 factor. Hence, the DRAM’s superior read perfor-
mance makes no difference, and we can perform a complete in-
SCM partitioning without sacrificing performance.

Tip #4: Leverage “ntstore” and SWWCBs in partitioning and
make SCM’s internal access granularity as the SWWCB size [P1]
.

6.1.2 Effect of thread scalability. SCM is widely reckoned to have
write deficiency [26, 78, 106] [P3] and PHJ partitioning involves
intensive write operations. We, therefore, seek to cultivate an un-
derstanding of this write deficiency in PHJ partition phase.

We vary the thread count from 1 to 40 and employ “ntstore”
with 256B-SWWCB for evaluation. Figure 8 presents the execu-
tion time. There are generally two trends in partitioning thread
scalability: (1) Shared partitioning (SHRll and SHRcm) is highly
scalable to the partitioning thread number. Share partitioning is
majorly hindered by lock contention, its SCM bandwidth utiliza-
tion is far from full. Thus, SCM’s limited write scalability brings
no harm to shared partitioning. (2) The other partitioning meth-
ods exhibit a distinct scalability pattern. Their partitioning time
drops at first and reaches a local minima at around 10∼12 threads.
From 14 threads onwards, the runtime rises gradually and finally
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Figure 8: PHJ partitioning timew.r.t. thread number (dashed
lines mark the starting of simultaneous multi-threading
(SMT); the bottom left figure zooms in the partitioning time
of independent partitioning, radix partitioning, and asym-
metric radix partitioning; the bottom right figures compares
the elapsed time between the 20-thread partitioning (THR-
20) and the bandwidth-regulation partitioning (BW-REG)).

converges to moderate values. Since there is no lock contention in
these partitioning methods, the SCM bandwidth is exploited effec-
tively, and the write deficiency in SCM is exposed thoroughly. In
consequence, a sound configuration practice is to limit the paral-
lelism for these independent partitioning (INDcm and INDll) and
radix-based partitioning (RDX, ASYM).

As stated in Section 3.2.1, radix-based partitioning involves mul-
tiple partitioning passes, and every single pass consists of three
steps ( 1⃝, 2⃝, and 3⃝ in Figure 2(c)). Note that 1⃝ and 2⃝ are read
and processing dominant respectively. They only issue write re-
quests to in-cache intermediates (histograms), which incurs nomem-
ory writes if no persistent instructions are enforced [P5]. As read
and processing exhibit strong thread scalability, parallelism limi-
tation can generate detrimental impacts. However, as 3⃝ is write-
intensive, it can benefit fromparallelism limitation.Therefore, there
exists a Pareto optimal threading configuration for radix-based par-
titioning. Given these facts, we employ a particularized bandwidth
regulationmechanism to improve radix partitioning further. Specif-
ically, we use all physical cores to process step 1⃝ and 2⃝ but
limit the threading around 10∼12 for 3⃝. We can see from Figure 8,
the bandwidth regulation introduces 7.7% performance gain (1.32s
vs. 1.43s). Though this improvement is not substantial in our plat-
form (Optane DIMMs), we expect it will introduce more positive
boosts in future SCM technologies, especially for SCM with larger
read/write performance gap (e.g., STT-MRAM [20, 26, 30]). Overall,
we provide the following partitioning tip:

Tip #5: Exhaust all cores for shared partitioning but enforce
parallelism limitation or bandwidth regulation for independent or
radix partitioning [P3] .
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6.1.3 Effect of partition fanout. Previous studies [9, 75, 76] have
found that partitioning with too many fanouts will generate exces-
sive TLB thrashes, which becomes the predominant overhead in
partitioning. Multi-pass partitioning, which splits fanouts across
passes, is therefore proposed and is validated to outpower 1-pass
partitioning [9, 10]. In order to determine the optimal partitioning
configuration, we perform evaluations with different fanouts and
different passes. Specifically, we vary the fanout from 24 to 216

(4∼16 bits) and compare 1-pass partitioning with 2-pass partition-
ing. Similarly, we use “ntstore” with 256B-SWWCB and enforce
the aforementioned bandwidth regulation mechanism to improve
throughput. Recall that the L2 TLB capacity is 1536 (Section 4), so
TLB thrashes will occur more frequently from 211 fanouts and on-
wards.

Figure 9 depicts the experimental results.We can see that shared
partitioning benefits from a larger fanout, which eases the lock con-
tention more effectively, and 2-pass is always inferior to 1-pass as
the second pass introduces another round of lock contention. The
remaining partitioning methods, however, exhibit two different
trends. The 1-pass configurations yield an outstanding and steady
performance within 211 fanouts but worsen with larger fanouts.
2-pass configurations show a stable and moderate performance
across all fanout configurations and surpass their 1-pass counter-
parts around 213∼15 fanouts. The performance discrepancy is cred-
ited to TLB thrashes and cache thrashes. In every single partition-
ing pass, larger fanout will cause more page accesses; thus, TLB
thrashes become increasingly frequent once the fanout exceeds the
TLB limit (i.e., 1536 in our case). Moreover, since we maintain a
separate SWWCB to buffer writes to every single partition, a large
fanout will require more SWWCB footprint, which may introduce
excessive SCM accesses once the size exceeds the cache capacity.
From 212 fanouts and onwards, a single partitioning pass exceeds
the TLB limit (1536) and cache capacity (1MB per core); thus 1-pass
partitioning becomes increasingly inferior. However, 2-pass parti-
tioning does not exceed both passes’ TLB and the cache limit.Thus,
it shows a strong robustness and outperforms 1-pass partitioning
in large fanouts. Overall, in the “pkfk”workoad, 1-pass partitioning
within 211 fanouts delivers the best performance, and we employ
1-pass partitioning in the remaining evaluations until otherwise
stated.

As TLB thrash renders page table walk and cache thrash incur
excessive SCM accesses, it is hard to distinguish which factor is the
more major overhead in partitioning. We hypothesize that cache
thrash is likely to play a crucial role. The reason is two-fold: (1)
Cache thrashes evict the stale cachelines randomly, leading to ran-
dom SCM writes. The page table walk from TLB thrashes only in-
cur SCM reads. Therefore, cache thrashes are more inclined to in-
cur heavy overhead in write-susceptible SCM [P3] . (2) Due to the
concern of indirection, encryption, and power consumption, the
SCM internal access granularity is not likely to decrease [34, 106]
[P1] . Other SCM may even try larger granularity, motivating us
to increase SWWCB size. Moreover, there is also a scaling wall in
SRAM manufacturing [23]. The cache size per core is to reduce.
In consequence, we expect cache will be easier to thrash for the
upcoming NVDIMM-P SCM technologies in the near future and
present the following tip:
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Figure 9: PHJ partitioning time with various fanouts (
dashed lines denote the 1-pass partitioning while solid lines
represent the 2-pass partitioning; the bottom figure zooms
in the partitioning time of independent partitioning, radix
partitioning, and asymmetric radix partitioning ).

Tip #6: Limit the partition fanout within TLB capacity and en-
sure that the SWWCBs footprint does not exceed the cache limit
[P1, P3] .

6.2 Join Phase
We now evaluate various hashing schemes (cf. Table 1) for PHJ
in two dimensions, fanout and thread scalability. Because the join
phase is subject to partition layouts, we perform the evaluation
with three partition layouts, linked list (for SHRll and INDll), con-
tiguous memory (SHRcm and INDcm), and radix (RDX and ASYM).

6.2.1 Effect of partition fanout. Figure 10 depicts the join phase ex-
ecution time for 24∼16 fanouts. The runtime of all hashing schemes
improve with increasing fanouts and reach their optimal perfor-
mances from 28 fanouts and onwards, validating the efficacy of
partitioning. Comparing the performane of different partition lay-
outs, the linked list layout offers the worst result. This is because
the linked list layout organizes partitions in separate memory frag-
ments, which incurs more L1/L2 cache misses. The same reason ac-
counts for the worst result of separate chaining among all hashing
schemes. The remaining three hashing schemes (bucket chaining,
linear probing, and histogram mechanism [58]) build the hash ta-
bles more compactly; thus they result in comparable performance.

6.2.2 Effect of thread scalability. Figure 11 illustrates the thread
scalability in the join phase.We leave out the notations of partition
layouts as they all exhibit similar trends in performance. Since the
join phase incurs sequential SCM reads, the throughput is highly
scalable to the thread number. We also notice that SMT threads do
not bring any performance gains. As PHJs are primarily tailored to
be cahce-efficient, there is little room for SMT to conceal the cache
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Figure 10:The join phase time of radix partitioning with dif-
ferent fanouts ( the right figure zooms in the join phase time
for 29 —216 fanouts ).
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Figure 11: PHJ join phase time w.r.t. thread number ( dashed
lines mark the starting of simultaneous multi-threading
(SMT); the right figure zooms in the join phase time from
12 threads and onwards ).

miss penalty further. In summary, satisfactory performance can be
achieved by running all physical cores.

6.3 Putting Everything Together
Having determined the optimal configuration for both the parti-
tion and the join phase, we now perform an overall comparison for
all PHJs. In particular, we use “ntstore” with 256B-SWWCB and
apply 1-pass partitioning to all joins (we use 2-1 pass for ASYM-
∗ joins), as they deliver the highest write throughput in the cur-
rent workload. We also configure each algorithm with its optimal
threading and fanout configurations for the partition and the join
phase separately.

Figure 12 shows the comparison result. We can see that the par-
tition phase takes up the most time in join execution. Shared parti-
tioning joins (SHRll-∗ and SHRcm-∗) lag behind others by a large
margin, primarily because of their heavy lock contention. Inde-
pendent partitioning joins deliver a good performance, especially
INDcm-∗ joins, which outperform all other joins. This superior-
ity is mainly the result of fewer reads in partitioning and a con-
tiguous memory layout that trades random reads for sequential
reads. RDX-∗ joins achieve comparable performance, even though
they involve more reads in partitioning. The reason is that SCM is
more susceptible to writes than reads, which weakens the impact
of additional reads. Although ASYM-∗ joins have one more parti-
tioning pass over R, their performances are close to RDX-∗ joins’.
Recall that |R| is 1

16 of |S|, the second partitioning pass only im-
poses insignificant cost in partitioning. However, it incurs more
pronounced overhead in the join phase. In ASYM-∗ joins, each |S|
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Figure 12: Overall Comparison for Partitioned Hash Joins
(lighter colors indicate the partition phase while darker col-
ors represent the join phase) .

partition will be processed 𝑘 times. Since |S| is usually larger than
|R|, the 𝑘 times processing overhead can be significant. We will
present a more detailed discussion for ASYM-∗ in Section 8.3. As
for the join phase, bucket chaining generally delivers optimal per-
formance. Therefore, until otherwise stated, we leverage bucket
chaining as the default hashing solution in the following evalua-
tion.

7 PARTITIONED VS. NON-PARTITIONED
After a design space exploration for NPHJ and PHJ, we now con-
duct a comprehensive evaluation for these joins in a wide range of
workloads (Table 3). Section 6 has shown that the partition phase
in PHJs dominates performance, and different hashing schemes do
not fundamentally change the total execution time. Due to space
constraints, we only present the PHJ result with bucket chaining
and take the partitioning notations to represent the respective PHJs.
Other hashing schemes also deliver a similar performance. Note
that the linked list partition layout does not support bucket chain-
ing (Section 3.2.2); we use Kim’s histogram mechanism [58] (HM)
instead for it leads to solid and robust performance. Similarly, we
take the separate chaining as the default hashing scheme for NPHJ.
We apply all proposed tips in joins implementation, and each join
is tuned to its optimal configuration in the respective workload.

7.1 Effect of Size Difference
The previous “exploration” is conducted in a workload with the
|R|:|S| ratio of 1:16. A larger size ratio incurs more writes for R,
which will affect the join performance terribly in write-susceptible
SCM.Thus, we raise the size raio to 1:4 and 1:1 (cf. “pkfk” in Table 3),
and report the result in Figure 13(a).

In general, the runtime increases for all joins as the size ratio
grows. Specifically, NPHJ deteriorates most badly. Its build phase
consumes only 20% of the execution time when the size ratio is
1:16, but 80% when the ratio rises to 1:1. PHJs also endure a ris-
ing execution overhead but constantly maintain an advantage over
NPHJ. As the size ratio approaches 1:1, the advantage becomes in-
creasingly notable. SHRll and SHRcm, which lose to NPHJ at 1:16
size ratio, even surpass NPHJ from 1:4 ratio and onwards. This ad-
vantage comes from the higher throughput of “ntstore” and 256B-
SWWCB. “ntstore” with 256B-SWWCB transmits data directly to
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Figure 13: Join execution time across a wide range of workloads (lighter colors indicate the build/partition phase while darker
colors represent the probe/join phase; as some algorithms take much longer time to complete certain tests, we cut their bars
in the respective subfigures and place their values on top of their bars).

the underlying SCM media, bypassing cache pollution and write-
amplification. However, NPHJ building performs write at tuple-
granularity (16B), resulting in read-modify-write and write ampli-
fication. As a result, the precious SCM bandwidth is wasted during
the build phase, and NPHJ falls further behind PHJs for larger size
ratios.

7.2 Effect of Skewness
We now evaluate joins in skewworkloads (cf. “zipf” in Table 3). We
vary the skewness (Zipf factor 𝜃 [9, 10]) and plot the experimental
results in Figure 13(b). Recall that the contiguous memory layout
is not applicable to a skew workload (Section 3.2.1), we thus omit
SHRcm and INDcm in this assessment.

As is evident from the figure, NPHJ benefits more from a high
skew workload while PHJs degenerate. As indicated before [13], a
high skew workload has better spatial and temporal locality, sig-
nificantly reducing cache misses in the probing phase, which con-
tributes to the NPHJ’s growing advantage over PHJs. However, the
increasing locality induces adverse effects on PHJ’s join phase. As
the data become more skew, the sizes of generated partitions will
be highly imbalanced, which distributes the join works unevenly
among all join threads and increase the cost of synchronization. Be-
sides, SHRll performs considerably worse than others because its
lock contention issue becomes more intense in high-skew work-
loads.

7.3 Effect of Selectivity
We proceed with our evaluation by varying join selectivities (cf.
“sel” in Table 3) and report the result in Figure 13(c). We find that
the join selectivity does not affect the join performance substan-
tially. Note that a low selectivity evinces that the probe side (S) can

only find matches in limited R tuples, which indicates a high local-
ity in probing. However, both sides still follow a uniform distribu-
tion. The high locality, therefore, is not able to buffer the probed
hash entries entirely in caches. As a consequence, NPHJ’s exces-
sive cache miss penalty is not alleviated. As for PHJs, the partition-
ing already help buffer the probing entries in caches. Hence, the
higher locality from a lower selectivity brings no more improve-
ments.

7.4 Many-to-Many Join Performance
Previousworksmainly focus on thePK-FK setting [9, 10, 13]. How-
ever, many-to-many joins (FK-FK) are also common in real-world
queries. Hence, we evaluate these joins in FK-FK workloads.

The first workload (“dupfk”) allows duplicates on both sides and
Figure 13(d) shows the experimental result. A significant increase
in runtime can be observed in all joins’ execution time, especially
NPHJ, whose higher runtime is derived from its longer probing
phase. This is because allowing duplicates will intensify the hash
collision problem. A single probing, therefore, has to visit multiple
hash table entries to retrieve its potential matches. Moreover, If a
hash bucket is affiliated with a long linked list, the probing must
visit several separate memory addresses, leading to more random
memory accesses and inducing more cache miss penalties. PHJs,
however, are far less impacted. As mentioned earlier, their join-
ing phase is executed within cache-sized partitions.The increasing
hashing collision only brings about marginal overhead. We further
amplify this hash collision effect by narrowing down the key do-
main (“dens”), resulting in more repeated duplicates. NPHJ’s per-
formance is more exacerbated with a lower density, whereas PHJs
are only slightly degraded. Therefore, PHJs are superior and more
robust than NPHJ in many-to-many join.
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7.5 Single Thread Join Performance
Up till now, we employmulti-threading in join evaluation, whereas
some database systems only support the single thread query pro-
cessing [51, 82]. On this count, we execute these joins with a sin-
gle thread and report the outcome in Figure 13(f). Compared to the
previous multi-threading experiment (cf. Figure 13(a)), the perfor-
mance of all joins degrade drastically. Nonetheless, RDX, ASYM,
and INDll still achieve the optimal result for their partitioning re-
ducing cachemisses successfully during probing.Meanwhile, NPHJ’s
probing phase is seriously slowed down as the cache thrash over-
head is directly exposed in single-thread execution. SHRll and SHRcm
produce the worst result for the same reason. Excessive cache/TLB
thrashes are exposed when a single thread operates over a gigan-
tic memory region for partitioning. Besides, unlike the other PHJs,
SHRll and SHRcmmust acquire/release locks, which prevents them
from using the efficient SWWCB-based “ntstore” for partitioning.
As a result, shared partitioning’s performance is far lagged behind.

7.6 Performance in Billion-Scale Workloads
Due to the limited capacity of DRAM, existing works can only
study main-memory hash joins in million-scale workloads, i.e., re-
lations with million-scale cardinality. Since SCM can offer much
denser capacity than DRAM, we are now capable of conducting a
billion-scale study.We increase the |𝑅 | and |𝑆 | to 230 and 16×230 re-
spectively, and plot the result in Figure 13(g). Note that the billion-
scale workload demands the re-configuration for fanout and par-
titioning passes. Hence, we tune each PHJ accordingly and report
their optimal performance 13.

Compared with the results of million-scale experiments, we can
see a notable time explosion for all joins. The relative performance
of NPHJ is consistent with its million-scale result (Section 7.1). The
build phase still accounts for 20% of the total execution time, which
indicates that NPHJ’s performance is scalable to the relation car-
dinality. PHJs, however, show a different view of relative perfor-
mance, which is mainly attributed to the re-configuration of parti-
tioning fanouts. On the one hand, a large fanout shrinks the size
of each partition, precluding cache thrashes for the subsequent
join phase. On the other hand, a large fanout exceeds the cache
or TLB capacity, which renders enormous cache/TLB thrashes and
degenerates the partitioning efficiency. Thus, we see a relative per-
formance decline in INDll, INDcm, and RDX. Meanwhile, ASYM
achieves the best result because of its 2-1 pass partitioning pat-
tern. The reason is two-fold: (1) The 2-1 pass pattern splits the
large fanout accordingly over 2 passes, preventing the first parti-
tioning pass from sustaining excessive cache/TLB thrashes. (2)The
second partitioning is only applied on the small R, which not only
saves the huge re-partitioning cost of the large S, but also generates
small enough R partitions for populating the cache-sized hash ta-
ble. Although these asymmetric fanouts require more read passes
over S in the join phase (Section 3.2.2), the cost saving from the
partition phase still pays off, which makes ASYM succeed in the
billion-scale workload. We will elucidate ASYM’s pros and cons
more thoroughly in Section 8.3.

13The 1-pass partitioning still overcomes the 2-pass partitioning for all PHJs

16 32 64 128 256 512

Tuple Size [Byte]

0

2

4

6

8

10

12

14

16

E
la

p
s
e
d
 T

im
e
 (

s
)

61.1 65.0

Figure 14: Performance w.r.t. Tuple Size (lighter colors in-
dicate the build/partition phase while darker colors repre-
sent the probe/join phase; NPHJ𝑝 and RDX𝑝 represent the
pointer-based variant of NPHJ and RDX, and their upper
gray bars denote the time of the final retrieving phase) .

7.7 Performance with Large-Size Payloads
Aside from cardinality, large-size payloads also affect the work-
load size considerably. To assess the payload impact, we vary the
payload size from 16B to 512B while fixing the relation cardinality.
Similarly, all joins are carefully tailored and are compared with
their optimal configurations.

Before we analyze the experiment, we briefly digress to describe
a pointer-based version of join implementation. Since SCM sup-
ports byte-addressability, in-SCM tuples can be accessedwith pointer-
indirection. Instead of directly manipulating the full tuples, a join
can be conducted by processing < 𝑘𝑒𝑦, 𝑝𝑜𝑖𝑛𝑡𝑒𝑟 > pairs, which
considerably saves the bytes read/written in execution. In order
to retrieve the join results, the pointer-based implementation re-
quires an additional round of random reads to retrieve the tuples
via pointer-indirection. In a nutshell, pointer-based implementa-
tion makes a trade-off between processing and retrieval.

Figure 14 depicts the result. For brevity, we only present results
of NPHJ, RDX, ASYM, and two pointer-based implementations,
NPHJ𝑝 with RDX𝑝 . Other PHJs exhibit similar performance trends
but deliver suboptimal results. We make the following observa-
tions. First, PHJs (RDX, ASYM) beat NPHJ with small payloads but
lose to NPHJ with large payloads (256B and onwards). This is be-
cause large payloads raise the partitioning overhead, and the join
phase gainswill soon be reduced. Second, pointer-based implemen-
tations perform poorly with small-size payloads. However, they
outperform others with larger payloads, especially RDX𝑝 , which
dominates from 128B-payload onwards. The reason behind this
success is the colossal partitioning saving by using< 𝑘𝑒𝑦, 𝑝𝑜𝑖𝑛𝑡𝑒𝑟 >
pairs. The saving becomes more and more pronounced when pay-
loads get larger and larger, which renders a broader winning mar-
gin for pointer-based versions.Third, NPHJ𝑝 ’s retrieving time keeps
growingwith increasing payload size, while RDX𝑝 ’s retrieving time
remains almost constant across all sizes. This is because NPHJ𝑝
stores the intermediate join result (< 𝑘𝑒𝑦, 𝑝𝑜𝑖𝑛𝑡𝑒𝑟 > pairs) ran-
domly. The increasing payload size raises the amount of random
reads, impairing the retrieval performance. RDX𝑝 , however, stores
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the intermediate join result partition-wise. If a tuple is joinedmulti-
ple times, it will only be called when retrieving its partition. More-
over, as long as the partition is well cache-sized, the tuple will re-
side in caches all the time until another partition retrieval starts.
Thus, excessive cache misses can be eliminated in the retrieving
phase. Overall, PHJs, or their pointer-based implementations, are
better solutions for various payload sizes.

7.8 Effect of NUMA
Recall that previous experiments are evaluatedwithin a single socket,
we now conduct an experiment to investigate the NUMA impact.
In particular, we place the original relations, partitions, and hash
tables in the first socket SCM while using the cores of the sec-
ond socket (referred to as “remote”). For brevity, we take RDX as
the PHJ representative, and other PHJs demonstrate similar perfor-
mances.

Figure 15(a) shows the runtime of join execution. For better
comparison, we also report the result of non-NUMA execution (re-
ferred to as “local”). We can see that both joins experience a run-
time explosion in “remote” setting. To demystify this fact, we boil
down to the hardware events. We first compare the LLC and TLB
misses between “local” and “remote” but find no discernible differ-
ence. Hence, the main culprit must lie within SCM.

We proceed to measure the read/write requests of SCM and re-
port the result in Figure 15(b)(c). We notice that “remote” causes
a slight increase in SCM reads, but much more requests of SCM
writes. Moreover, the increasing write requests can be observed
in every phase of join execution, including NPHJ’s probe phase,
which is supposed to involve no write requests (cf. Figure 15(c) for
dark yellow bars). The root cause of this phenomenon is the di-
rectory coherence protocol of our Testbed [42]. Xeon processors
must maintain cache coherence directories when accessing mem-
ory. They keep the “local” directories within caches but leave the
“remote” directories in memory. Any “remote” memory accesses,
even “remote” reads, will generate writes to the “remote” memory
for updating directories. Hence, the “remote” setting incurs costly
SCM writes, resulting in a massive decline in join performance.
Existing SCM-based NUMA studies [59] report similar findings
and discover that the cache coherence writes can be significantly
reduced under the snoop-based protocol. Thus, we decouple this
performance decline from SCM technologies or join algorithms
and maintain it will no longer exist in snoop-based platforms. Re-
gardless of NUMA settings, RDX offers superior performance over
NPHJ, revealing its strong robustness against NUMA.

7.9 Evaluation in Real Benchmarks
Now that we have developed a good understanding of joins in syn-
thesized workloads, we can proceed to evaluate these joins in real
benchmarks. We use TPC-H Query 14 with a 100 scaling factor
for evaluation. In accordance with existing studies [10, 88], we use
HyperDB [55] to generate the query plan and enforce selection
pushdown and pipeline in join execution. Similarly, we take RDX
as the PHJ representative for comparing NPHJ.

Figure 15(d) compares NPHJwith RDX. A notable observation is
that the selection pushdown accounts for the majority (over 75%)
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Figure 15: (a), (b), and (c) compares the performance of
NUMA, (d) shows the elapsed time on TPC-H Query
14 with scale factor of 100. (lighter colors indicate the
build/partition phase while darker colors represent the
probe/join phase; for (d), the lower gray color denote the run-
time of selection pushdown).

of runtime, which suggests that join processing may not be a bot-
tleneck in a real query benchmark. The pushdown filters out over
98% of the build side tuples and downsizes tuples from 192B to
64B, considerably reducing the build and the probe side size. Aside
from the pushdown, RDX still beats NPHJ by 27% (0.81s vs. 1.11s).
The experiment demonstrates that RDX not only dominates in mi-
crobenchmarks but also ourperforms NPHJ in real queires. How-
ever, real queries can be affected by many factors. Compared to the
join algorithm, it is more recommended to develop a good query
plan or adopt an advanced query optimizer, which may generate
more pronounced effects in real queries.

8 DISCUSSION
We now summarize our experiment findings and bring about a few
auxiliary discussions for SCM-based joins.

8.1 Locality is All You Need
Previous experiments (Section 7) suggest that PHJs are generally
better solutions than NPHJs. By partitioning, PHJs arrange arbi-
trary distributed relations into a set of high-locality sub-relations,
which buffers the following hash table accesses within caches, and
thereby drastically reduces the expensive SCM accesses. Despite
the fact that partitioning entails penalties from additional relation
passes, its ensuing high locality provides significant performance
gains in the subsequent join phase. Even though SCM offers slower
reads/writes than DRAM/SRAM, the gain-over-penalty does not
compromise. Hence, the preliminary partition phase is well worth
a shot.

In contrast, though NPHJs incur fewer read/write passes, they
fail to yield such locality, and hence suffer from massive random
SCM accesses during execution. A notable exception is the skew
workload (Section 7.2), in which NPHJs surpass PHJs. However,
this is because a skew workload exhibits a high locality inherently,
which prevents NPHJ probing from randomSCMaccesses and thereby
makes PHJ partitions redundant. As a consequence, this perfor-
mance exception confirms the effectiveness of high locality.

Thanks to the high locality of the compact partition layout, RDX,
ASYM, and INDcm generally deliver better performances among
all PHJs (Section 6.3). Moreover, the superiority of bucket chaining
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Figure 16: Performance w.r.t. (a) Pre-Fault Mechanism (b)
Different Store Instructions.

(BC), histogram mechanism (HR), and linear probing (LP) against
separate chaining (SC) also validates the efficacy of high locality
(Section 6.3). In a nutshell, high locality is the dominating factor
that contributes to an efficient SCM-based join implementation.

8.2 SCM Overhead Analysis
We now address two NVDIMM-P primitives that fundamentally
change the SCM-based join performance: costly page faults (P4)
and persistent instructions (P5).

Costly page faults (P4). Page fault handling accounts for the
major overhead in cache-friendly applications (cf. Figure 1(c)). It
involves multiple hefty operations (e.g., CLR, CMPT [77]) and is
automatically triggered whenever a page table entry is created.
Note that page faults are inherent to Linuxmmap mechanism [77]
and are widely reckoned to be costly across various SCM technolo-
gies [3, 21, 49].

Although page faults are considered attentively in operating sys-
tem designs [49, 52, 77], they are mostly overlooked by the query
processing community [10, 56, 74, 88]. This is probably because
page faults only consume minor or moderate overhead in DRAM-
based query executors [50]. However, in SCM environment, page
fault overhead can no longer be ignored, and our study is the first
work to address its impact in SCM-based query processing.

Given that DBMSs tend to warm up buffers before query execu-
tion [10, 11, 50, 57, 64, 73, 95, 103], we thus pre-handle page faults in
this phase with the SCM pre-fault [52, 77] mechanism. To elucidate
this effect, we make an ablation comparison of the pre-fault mech-
anism. Figure 16(a) depicts the result. We can see that both joins
are compromised if we do not pre-fault SCM pages. In particular,
RDX’s partition phase is compromised the most. Since it requires
a large memory region for partitioning, its memory allocation gen-
erates far more page faults than other join phases. In contrast, the
pre-fault mechanism eliminates these page faults ahead of join exe-
cution.The join throughput, therefore, circumvents the costly page
fault handling on the fly. In consequence, the experimental com-
parison confirms the vast benefits of page fault pre-handling.

Persistent instructions (P5). Predominant SCM standards (e.g.,
NVDIMM-P [47], NPM [85]) have defined persistent instructions,
which not only guarantee immediate persistence but also deliver
high store bandwidth [12, 34]. However, as Figure 1(a)(b) indicate,
persistent instructions are inappropriate in join processing. We

thus perform an experiment to investigate the store instruction
impact on SCM-based join processing.

Figure 16(b) demonstrates the results. We can see that persis-
tent instructions (“clflush”, “clwb”, “ntstore”) yield a runtime in-
crease for both joins. Specifically, RDX’s join phase is more sensi-
tive to store instructions. As persistent instructions explicitly evict
cachelines to SCM, RDX’s join phase fails to buffer probing within
caches, resulting in excessive cache thrashes and limiting join exe-
cution. Moreover, persistent instructions cause write amplification
during writing, which wastes the precious resource of SCM band-
width and compromises the join throughput. Overall, persistent
instructions should not be employed in SCM-based join process-
ing.

8.3 Read/Write Asymmetry in PHJ
As read/write asymmetry [P3] is widely acknowledged as an in-
herent SCM primitive [26, 78], write-limited algorithms [28, 69, 98,
99] have become a principle guideline for performance improve-
ments. However, as Section 7 reports, ASYM joins, which save
writes by reducing S partitioning passes, do not always render min-
imal runtime. Hence, we now give an in-depth analysis to deter-
mine the predominating conditions for ASYM joins.

We take 𝑚-pass RDX and 𝑚-𝑛-pass ASYM for comparison, as
they deliver not only magnificent performance but also great ap-
plicability for a wide range of workloads 14. Let 𝑟𝑒𝑎𝑑 and𝑤𝑟𝑖𝑡𝑒 be
the SCM bandwidth of read and write respectively, and 𝜆 denotes
𝑟𝑒𝑎𝑑
𝑤𝑟𝑖𝑡𝑒 . Following the pass number in Table 2, 𝑚-pass RDX has a
cost model of: (2𝑚+1) (𝑅+𝑆 )

𝑟𝑒𝑎𝑑 + 𝑚 (𝑅+𝑆 )
𝑤𝑟𝑖𝑡𝑒 . Similarly, we can derive a

cost model for𝑚-𝑛-pass ASYM if R partition number is 𝑘 times of
S’: (2𝑚+1)𝑅+(2𝑛+𝑘 )𝑆

𝑟𝑒𝑎𝑑 + 𝑚𝑅+𝑛𝑆
𝑤𝑟𝑖𝑡𝑒 . We further assume that S is 𝑥 times

of R and refer to the cost ratio of RDX over ASYM as 𝜖 . We can
derive the following function:

𝜖 = 𝑓 (𝑘, 𝑥, 𝜆) = (𝑥 + 1)(𝑚𝜆 + 2𝑚 + 1)
(𝑛𝑥 +𝑚)𝜆 + (𝑘 + 2𝑛)𝑥 + (2𝑚 + 1) . (1)

Since 2-pass RDX is able to partition a 4TB relation without thrash-
ing cache/TLB, we set𝑚 = 2, 𝑛 = 1 and convert the above function
to:

𝜖 = 𝑓 (𝑘, 𝑥, 𝜆) = (𝑥 + 1) (2𝜆 + 5)
(𝑥 + 2)𝜆 + (𝑘 + 2)𝑥 + 5

. (2)

In our platform, 𝜆 is close to 4.36 15 if partitioning is properly
configuredwithout cache/TLB thrashes.We thus parameterize 𝑓 (𝑘, 𝑥, 4.36)
on 𝑘 and 𝑥 in Figure 17(a). As can be seen, the cost ratio 𝜖 ranges
from 0.50 to 1.50, and it gets higher when 𝑥 becomes larger and
𝑘 gets smaller. In particular, for 𝑘 ≤ 4, 𝜖 becomes larger than 1,
indicating that ASYM starts to surpass RDX. The 𝜖 is close to 1.50
for 𝑥 ≥ 4, which suggests that ASYM is at least 50% superior to
RDX. We thus conclude that 2-1-pass ASYM should be applied on
a workload with a large size ratio (𝑥 ≥ 4) and parameter 𝑘 should
be limited within 4.

In order to validate the above cost model, we synthesize a mi-
crobenchmark, with cardinality ranges from 64 to 16384 million
(5∼320GB) and size ratio 𝑥 within 4∼32. Figure 17(b) compares the
14INDcm joins require larger memory footprint and are not applicable to skew work-
loads (Section 3.2.1).
15𝑟𝑒𝑎𝑑 is 2.31GT/s while 𝑤𝑟𝑖𝑡𝑒 is 0.53GT/s, where GT/s denotes the Giga tuples per
second.
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Figure 17: (a) is annotated with the cost ratio 𝜖 of 2-pass RDX over 2-1-pass ASYM (a lighter shade denotes that ASYM is far
better than RDX while a darker shade indicates the opposite) (b) Join execution time for 1-pass RDX (RDX-1), 2-pass RDX
(RDX-2), and 2-1-pass ASYM (ASYM) with varying cadinalities ( |R|:|S| ) and size ratio 𝑥 (lighter colors represents the partition
phase while darker colors stands for the join phase).

results between 2-pass RDX (RDX-2) and 2-1-pass ASYM (ASYM).
We also plot the 1-pass RDX result (RDX-1) for a comprehensive
comparison. We make the following observations: First, RDX-1 is
competitive for small cardinalities but gradually lags in large-scale
workloads.The reason is that a high cardinality requires large parti-
tion fanouts, whichmakes RDX-1 hindered by excessive cache/TLB
thrashes. Second, RDX-2 performs poorly in million-scale work-
loads but starts to dominate from 2048M cardinality onwards. This
is because of RDX-2’s additional partitioning overhead for splitting
fanouts, which only pays off in large-scale datasets. Third, ASYM
generally offers robust and competitive results across all work-
loads. In particular, it beats RDX-2 by a large margin, except that
cache/TLB excessively thrash in S partitioning (|𝑅 | ≥ 2048M) 16,
which corroborates the correctness of our cost ratio function. Com-
pared to RDX-1, ASYM delivers comparable results in small-scale
datasets and predominates when |𝑅 | ≥ 256M, which confirms its
superiority in producing cache-sized partitionswithmoderatewrite
cost. Specifically, we can also notice that ASYM achieves the best
result when 256M≤ |𝑅 | ≤ 1024Mand 16 ≤ 𝑥 ≤ 32. Given thatmost
large-scale queries fit in this size ratio range [10, 24, 81] and can
be reduced to this scale by selection pushdown [79, 88], we main-
tain that ASYM can be incorporated to query plans for upcoming
SCM-based DBMSs.

Since other SCM may have different read/write asymmetries
(𝜆) [26], we derive the partial derivative of 𝜖 with respect to 𝜆:

𝜕𝜖

𝜕𝜆
=

𝜕𝑓 (𝑘, 𝑥, 𝜆)
𝜕𝜆

=
(2𝑘 − 1)(𝑥 + 1)𝑥

[(𝑥 + 2)𝜆 + (𝑘 + 2)𝑥 + 5]2
. (3)

Given that 𝑘 > 1 forever holds, the above partial derivative is
always positive. To cut a long story short, for SCM with larger
read/write asymmetry, ASYMwill render more performance gains
over RDX 17.

8.4 Future SCM and Beyond
Through extensive experiments, we conclude that PHJ is generally
the better solution (Section 7). We also provide practical tips (Sec-
tion 5, 6) for configuring efficient join implementations. Unfortu-
nately, Intel shuts down the Optane DIMM business [44] out of
16Partitioning at this scale exceeds the cache/TLB limit; hence, we reduce S partition
fanouts (i.e., increase 𝑘 to 4) to mitigate the thrashing overhead.
17We also have the same conclusion for 1-pass RDX and ASYM but omit the func-
tion/derivative for brevity.

financial issues, so it is natural to question the value of our con-
clusions. We, however, do not reckon that this marks the end of
SCM. Although there are currently no commercial alternatives, we
address that our study will remain valuable for the following rea-
sons.

First, SCMs are inevitable. As SCM technology is initially pro-
posed for breaking the DRAM scaling wall [40, 86], its necessity is
not going to die. Meanwhile, SRAM and flash have their own scal-
ing challenges, which can be resolved by deploying SCM in vari-
ous storage tiers [23, 78]. As widespread deployment leads to high
production volume and high volume drives down the production
cost [23], the financial problem that fails Optane will no longer be
a concern.

Second, our conclusion that PHJ-over-NPHJ is based on the eval-
uations in PCM [48], which is slightly slower than DRAM [26, 30].
Given that existing DRAM-based studies [6, 9, 88] also prefer PHJ
to NPHJ and most SCMs offer the access speed in the range of
DRAMand SCM access speed, the PHJ-over-NPHJ conclusion shall
never fade away.

Third, the proposed tips (Section 5, 6) are mainly based on the
fundamental primitives of NVDIMM-P, a predominant SCM stan-
dard that most manufacturers adhere. As future SCM products will
presumably follow this standard, these primitives are likely to re-
main in place. Even though some primitives may get altered by
some SCM prototypes (e.g., different internal granularity [P1], dis-
parate on-DIMM buffer size [P2]), it is still easy to extend our tips
accordingly and make them function in these devices.

Last but not least, our studies serve as valuable references to
othermodern storage technologies. In particular, modern SSDprod-
ucts intend to support byte-addressability and fast random access
by encapsulating internal byte-addressable buffers [1, 5], andwould
benefit from the intrinsic ideas of our configuration tips (Section 5, 6).
Moreover, future memory technologies will probably conform to
the emerging CXL standard [22], which sacrifices access latency to
avoid bandwidth contention [53]. Hence, the latency-boundNPHJs [10]
are likely to be more bottlenecked, leaving PHJs the preferred ap-
proaches in CXL. Furthermore, the read/write asymmetry is uni-
versal across most storage devices, and it even becomes more strik-
ing for particular storage technologies [26, 78].Therefore, the asym-
metric partitioning idea provides a certain significance and deserves
more thorough investigations for future storage systems.
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9 RELATEDWORK
We now briefly review some existing works. Generally, our re-
search relates to two camps of studies: main-memory hash joins
and SCM system studies.

Main-MemoryHash Joins.Main-memory hash joins have been
rigorously studied for almost thirty years. Shatdal et al. [92] open
up the research of PHJ. They note that the cache miss penalty ac-
counts for most join overhead, and partitioning can help reduce
this overhead considerably. Subsequently, Boncz el al. [14, 75, 76]
confirm this idea and add that TLB thrashes impair partitioning
terribly.The partitioning, therefore, should be done in a multi-pass
manner where every pass fanout should not exceed the TLB capac-
ity. Follow-up works [6–9, 58] extend their idea to parallel query
processing and develop a performant PHJ implementation. Mean-
while, Blanas et al. [13] maintain that modern hardwares effec-
tively conceal the cache miss overhead, which makes partitioning
unnecessary and leads NPHJ in beating PHJ. Afterward, Schuh et
al. [88] compare PHJ with NPHJ inmicrobenchmarks and proclaim
that PHJ generally outperforms NPHJ. However, Bandle et al. [10]
later conduct the comparison in TPC-H [24] and show that NPHJ
is a better solution. As a result, the PHJ-vs-NPHJ debate is still on-
going.

SCM System Studies. Since the commercialization of Optane
DIMMs, numerous studies have been conducted to study its im-
pact in various research fields. Several works [12, 25, 34, 97, 101,
104, 106] characterize its access profile, providing several practices
for better utilizing the hardware. Some other researchers develop
SCM-friendly data structures [37, 39, 59, 71], which exploit SCM’s
non-volatility for fast recovery. Other researches focus more on
general SCM technologies rather thanOptane DIMMs; theymostly
follow the NVDIMM-P specification and propose designs for log-
ging [4], file system [105], memory security [35], etc.

Unfortunately, few efforts have been made for SCM-based join
processing. Viglas [98] first studies the read/write asymmetry im-
pact in join and Shanbhag et al. [90] revisit his findings in Op-
tane DIMMs. Besides, Daase et al. [25] and Lasch et al. [64] re-
examine query benchmarks in Optane DIMMs. Nonetheless, they
target traditional external joins, failing to exploit the SCM’s byte-
addressability in join processing. Maltenberger at el. [74] take the
advantage of byte-addressability and evaluate main-memory hash
joins in SCM recently. However, they overlook a few SCM primi-
tives and end up with a misleading conclusion, which our experi-
mental study seeks to rectify.

10 CONCLUSION
This paper revisits main-memory hash joins in the context of SCM.
In particular, we explore the design space for PHJ and NPHJ and
provide a few tips for a performant join implementation. Through
a comprehensive evaluation, we demonstrate that PHJ is generally
the preferred solution in SCM. Our study, along with discussions,
are not limited to current SCM hardwares. They can be easily ex-
tended and applied to future NVDIMM-P SCM technologies and
beyond.
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