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Abstract—This paper presents a robust and precise ego-
motion estimation system based on millimeter wave (mmWave)
frequency-modulated continuous wave (FMCW) radar. Com-
pressed sensing is introduced to greatly enhance radar point
cloud resolution. The designed landmark association algorithm
leverages cluster-based features and Doppler velocity to ame-
liorate registration in challenging scenarios, thereby fortifying
the robustness of the system. Experimental results demonstrate
that the proposed algorithm achieves high-quality point cloud
generation and precise ego-motion estimation using a single
commercial radar.

Index Terms—compressed sensing, clustering, ego-motion esti-
mation, FMCW radar, radar point cloud

I. INTRODUCTION

With the increasing prevalence of autonomous vehicles and
mobile robots, precise localization technologies have emerged
as a crucial research area. It plays a vital role in ensuring the
safe and efficient execution of tasks for robots, particularly
in challenging environments such as extreme weather, disaster
relief operations, and geological exploration. However, ego-
motion estimation, a key technique in robotic localization,
relying on optical sensors often encounters inherent limitations
due to variations in light intensity and air visibility [1].
Fortunately, advancements in integrated circuit technologies
have paved the way for a new possible solution: low-cost, com-
pact, all-weather operating conditions, and high-performance
mmWave imaging radars. Leveraging these advancements,
mmWave imaging radars offer an alternative with robust
performance in a wide range of scenarios.

However, the utilization of mmWave radar for precise ego-
motion estimation still encounters various challenges. The
raw radar data demonstrates a diminished signal-to-noise ra-
tio (SNR), limited resolution, and vulnerability to multipath
effects. Nevertheless, after undergoing cleaning procedures,
each scan provides only limited information. In comparison
to lidar and camera data, the filtered point cloud consists of
only hundreds of points, showcasing a notable sparsity. Recent
endeavors have focused on addressing these challenges in
radar ego-motion estimation. Some approaches have explored
the use of deep learning techniques to improve data quality
and estimation accuracy [2]. Nevertheless, these deep learning-
based methods suffer from poor transferability in unfamiliar
scenes and require significant training costs. Alternatively, [3]
integrated additional sensors for higher performance while
coming at the expense of increased hardware costs and height-
ened system complexity.

To suppress the defects of existing methods, this paper
proposes a high-precision and robust radar point cloud gener-
ation and registration algorithm. In this paper, the utilization
of compressed sensing improves radar point cloud resolution
without offline learning; the landmark association algorithm
extracts valid landmark matches by applying cluster-based
features and Doppler information, eliminating random noise
and false detection. Experimental results demonstrated that the
proposed method enables precise pose estimation and motion
trajectory, thereby establishing a solid foundation for robotic
localization

II. APPROACH

A. High-Resolution Radar Point Cloud Generation

The lack of angular resolution caused by the limitation of
antenna aperture is one of the biggest obstacles to the realiza-
tion of high-precision robot positioning using mmWave radar.
The random movement also makes it challenging to implement
Synthetic-aperture radar (SAR) in the system. Fortunately,
for linear array multiple-input and multiple-output (MIMO)
radar, compressed sensing (CS) is leveraged to achieve angular
super-resolution radar images [4]. For a MIMO array consist-
ing of NT transmit antennas and NR receive antennas, the
NT ×NR virtual array elements can be realized through Time
Division Multiplexing (TDM) MIMO. The steering vector,
which represents the phase delays on each transmit-receive
pair, could be represented as

a(θ) =
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where θ represents the azimuth of the incident wave. When
there are different azimuth targets, the signal received by the
virtual array can be represented as

s =

K∑
k=1

χka (θk) +w (2)

where s ∈ RNT×NR represents the radar echo on all virtual
channel, and χk represents the reflection intensity of the kth
target and w ∈ RNT×NR is additive white Gaussian noise. The
received signal is composed of signals encompassing different

1



frequencies with noise, and each frequency component corre-
sponds to one azimuth angle. The direction of arrival (DOA)
is usually computed after the distance Fast Fourier Transform
(FFT) estimation and the range-velocity 2D-FFT estimation in
the FMCW radar system. The conventional DOA estimation is
obtained through matched filtering method by performing 3D-
FFT on the range-Doppler matrix along all channels. However,
it often results in high sidelobes, which directly leads to low
angular resolution and noisy data, due to the limitation of
antenna aperture and random noise. Fortunately, the signal
can be assumed to be sparse, given the rarity of targets with
the same range and velocity. Therefore, CS could be applied
for super-resolution radar images generation, where azimuth
estimation can be converted into a special type of sparse linear
inverse problem:

y = Ax+ n, (3)

where y ∈ RD is the received signal which is padded to a
power of 2 for efficient radix-2 butterflies operation, D =
ceiling(log2(NT ×NR)). The sensing matrix A ∈ RD×D is
determined by the imaging system parameters and geometry.
In our system, A stands for inverse Fourier transform matrix.
x ∈ RD is the azimuth of the target to be recovered and n ∈
RD models the noises and disturbances. The goal is to recover
the reflection coefficients and azimuth of the scattered points
under the premise of known radar echoes and measurement
matrices. The problem is an optimization problem as

x̂ = argmin
x

1

2
∥y −Ax∥22 + ϵ∥x∥1, (4)

where ϵ is a tunable parameter that controls the trade-off
between sparsity and reconstruction error constraint. Due to
its remarkable convergence capability, Approximate Message
Passing (AMP) is utilized to address this optimization prob-
lem, which iterates the steps (for t = 0, 1, 2, ..., x0 = AHy,
and v0 = y):

vt = y −Axt + btvt−1

xt+1 = ηst
(
xt +AHvt, τt

)
bt =

1
M ∥xt∥0

τt =
κ√
M
∥vt∥2

[ηst (r, τt)]i = sgn (ri)max {|ri| − τt, 0}

(5)

where vt means the residual measurement error and κ is a
tuned parameter [5]. Super-resolution radar images can be
obtained by performing the AMP algorithm on all the range
bins where targets exist. The radar point cloud is then filtered
out when the intensity of the image pixel is above the dynamic
threshold.

B. Clustering Landmark Association

Our proposed clustering landmark association algorithm is
designed to optimize registration for a robust system. High-
precision matching requires point clouds with high density
and fewer outliers. However, the multipath effects introduce
numerous outliers and decrease the instability of the same
target in consecutive frames. Considering this issue, a clus-
tering landmark association algorithm has been proposed for

Algorithm 1: Landmark Feature Generation Method

1 Function CreateFeature(L,g,r)
2 for Lm ∈ L do
3 keyLm ←

[max(pmI ); arithmMean(pmI );harmMean(pmI )];

4 LocalSection← sort(pmI );
5 shift(LocalSection);

6 for Li ∈ L do
7 for Lj ∈ L do
8 index :=⌊∥∥∥(pi

maxx
,pi

maxy
)−(pj

maxx
,pj

maxy
)
∥∥∥
2

r/g

⌋
+ 1 ;

9 GlobalSection(index) + +;

scan matching. Firstly, the density-based spatial clustering of
application with noise (DBSCAN) algorithm has been applied
to cluster the point cloud P and filters out clusters with
low average intensity or few points. The remaining clusters,
denotes as landmarks L1...M , are used to represent targets.

Algorithm.1 summarizes the generation of the landmark
feature descriptor dLm : (GlobalSection, LocalSection) and
representative point keyLm for Lm : {pm1 , pm2 , ..., pmN} ∈ L.
Inspired by [6], the GlobalSection captures the distance
information and distribution relationship among landmarks.
Subsequently, Pearson correlation coefficient ρ between two
GlobalSections Gs1 and Gs2 from two landmark sets L1

and L2 is calculated by

ρ (Gs1, Gs2) =

∑(
Gs1 −Gs1

) (
Gs2 −Gs2

)√∑(
Gs1 −Gs1

)2 ∑(
Gs2 −Gs2

)2 (6)

Given the Gaussian-like characteristics of intensity distri-
bution, the Wasserstein distance is employed to compute the
correlation between the two LocalSections Ls1 and Ls2 by

W (Ls1, Ls2) = infγ∈S(Ls1,Ls2)E (x, y) γ [∥x− y∥] (7)

where S represents all possible joint distributions between the
given distributions and each joint distribution γ is utilized to
characterize the cost of transformation between these distri-
butions. The landmarks exhibiting a substantial correlation
are then incorporated into candidates1 and candidates2
based on ρ and W respectively. Each landmark Lm possesses
its corresponding candidates1 and candidates2. Duplicated
landmarks with the closest Euclidean distance between their
respective candidates are added to the Matches M .

The radar’s translation velocity can be used to further
remove mismatches in polar coordinates. It can be computed
by 

cos θ1 sin θ1
cos θ2 sin θ2

...
...

cos θN sin θN


[

vx
vy

]
=


−ṙ1
−ṙ2
...
−ṙN

 (8)



Fig. 1. Different radar scans pre-processing method comparison

TABLE I
ABSOLUTE. TRAJECTORY ERROR

Error Max(m) Min(m) Average(m)
Proposed 1.2972 0.0041 0.4966

where azimuth and radial velocity of the ith stationary target
are denoted by θi and ri, respectively, vx and vy represent the
ego velocity of the radar, and the Least Squares Regression
is used to find the optimal ego velocity [7]. The matched
landmarks are then combined to create new point cloud pairs.
Subsequently, the Iterative closest point (ICP) algorithm is
employed to estimate the final ego-motion result.

III. EXPERIMENT

Four-chip cascaded FMCW MIMO radar is adopted for the
proposed system. The experimental site was chosen within
a corridor, deliberately selected to provide a challenging yet
representative environment for evaluating the functionality
and performance of the system. Fig. 1 demonstrates that CS
exhibits significantly reduced noise and suppresses side lobes.
Furthermore, Fig. 2 illustrates that the landmark association
algorithm effectively eliminates outliers and produces accurate
pairwise landmarks. The root mean square error (RMSE)
shown in Fig. 3 indicates that the proposed method achieves
higher matching accuracy in comparison to conventional ICP
and Normal Distributions Transform (NDT) methods. Fig. 4
presents the estimated trajectory compared with ground truth,
and the absolute trajectory error (ATE) is shown in Table I.
The large average error is because of the cumulative error
introduced by the angle estimation deviation. The trajectory
shape is basically consistent with the ground truth.

IV. CONCLUSION

This paper introduces CS and clustering techniques to ef-
fectively mitigate noise, enhance radar resolution, and improve
registration precision. The proposed method is validated using
an FMCW radar, and the evaluation is based on RMSE and
trace results. Future work aims to explore learning-based meth-
ods to expedite imaging generation, eliminate false detection,
and further enhance the robustness.
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