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Abstract—Early Anomaly Detection (AD) in sensor-based Mul-
tivariate Time Series (MTS) is crucial for addressing signs
of operational failures. However, existing AD methods either
struggle to identify anomalies at an early stage or lean heavily on
intricate neural networks and extensive data for model training,
compromising clarity and interpretability. To bridge this gap, we
pioneered CAD, a novel AD framework based on correlation
analysis. It harnesses Time-Series Graphs (TSGs) to monitor
sensor correlation changes. Through meticulous analysis of these
changes, CAD excels in ascertaining the precise time of anomalies
and identifying the implicated sensors. In this demonstration, we
introduce EADS, an Early Anomaly Detection System built upon
CAD for sensor-based MTS. We navigate multiple scenarios to
illustrate the prowess of EADS in serving as an early AD bench-
mark platform, offering insightful abnormal time interpretability,
and facilitating timely predictive maintenance. The source code
is available at https://anonymous.4open.science/r/EADS-9A80/.

Index Terms—Early Anomaly Detection, Outlier Detection,
Multivariate Time Series, Correlation Analysis

I. INTRODUCTION

Sensor-based Multivariate Time Series (MTS) are exten-
sively employed across various industries. They play a crucial
role in tasks like monitoring manufacturing processes for
assembly lines [11] and recording operating states of infras-
tructures such as server machines [15]. A primary application
of sensor-driven MTS is to enable predictive maintenance. By
detecting anomalies in their earliest stages, it becomes possible
to prevent severe damage and ensure timely restoration.

Early Anomaly Detection (AD) in sensor-based MTS, how-
ever, is challenging. (1) MTS often emerges from a diverse
array of sensor measuring readings. This diversity makes it
hard to pinpoint consistent patterns that represent normal and
abnormal events. (2) A minor machine failure can escalate
and impact adjacent components; thus, identifying affected
sensors along with the abnormal time is crucial. (3) Industries
prioritize methods that are interpretable yet user-friendly. An
intuitive interface is paramount to aid users in comprehending
the nature of failures and identifying faulty components.

While much of prior research has emphasized unsupervised
AD, many such methods fall short in early anomaly detection.
Data-mining-based methods [5], [8], [10] stand out for their
efficiency and interpretability. Yet, as they neglect the temporal
dependency of MTS, they predominantly detect outliers and
often miss early anomaly signs. On the other hand, advanced
deep-learning-based methods [1], [3], [9], [15] excel in accu-
racy by tapping into latent features and harnessing temporal

information. However, they typically require complex neural
networks and extensive training data, and their outcomes are
hard to interpret. Thus, deploying them in real-world industries
for early anomaly detection is troublesome.

To tackle the aforementioned challenges, we recently in-
troduced CAD [2], a novel AD method based on correlation
analysis. CAD focuses on monitoring underlying sensor cor-
relations and identifying anomalies by looking at the unusual
changes in their correlations. CAD first converts the MTS into
a sequence of Time Series Graphs (TSGs). In these TSGs,
each vertex represents an individual sensor, and the edges
are established between sensors and their highly correlated
neighbors. To detect anomalies, CAD begins by finding subsets
of vertices exhibiting altered correlations. It then tracks these
unusual correlation variations across a series of TSGs. Even if
the sensors do not manifest significant anomalous behaviors,
their correlations are likely to break down when an anomaly
occurs. By analyzing such changes, CAD can report affected
sensors and detect anomalies in their early stages.

In this demonstration, we propose EADS, an Early Anomaly
Detection System built upon CAD for sensor-based MTS.
EADS is a web-based application comprising three main
components: (1) Early AD Performance Evaluation: Users
can rigorously juxtapose CAD detection outcomes with the
results from other AD methods. (2) Community Change Visu-
alization: It assists users in understanding CAD’s operational
mechanics and its superior efficacy rationale. (3) Sensor Cor-
relation Exploration: It permits users to explore the sensor cor-
relation through TSG visualization. Upon deployment, EADS
provides invaluable insights to both academic researchers and
industry experts through three key scenarios:

(1) Early AD Benchmark Platform: While various AD
benchmark platforms exist [7], [13], none specifically
focus on early anomaly detection capabilities. EADS
fills this gap by establishing itself as an early AD
benchmark platform, granting users the opportunity to
test, compare, and assess the performance of different
AD methods in terms of early detection.

(2) Abnormal Time Interpretability: While CAD excels
at early anomaly detection by identifying unusual com-
munity changes, its interpretability has remained largely
unexplored. EADS demystifies the CAD process and
community shifts during the anomalies, enhancing the
interpretability of abnormal timings.

https://anonymous.4open.science/r/EADS-9A80/
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Fig. 1. An overview of the CAD framework.

(3) Predictive Maintenance Support: In numerous real-
world maintenance scenarios, having an intuitive sys-
tem is paramount for industry professionals to enable
effective predictive maintenance. EADS assists industry
experts in exploring potentially abnormal sensors and
undertaking prompt repairs.

II. CAD: THE METHODOLOGY

A. Problem Formulation
We assume that an MTS T with n sensors is represented

as a matrix, i.e., T = (s1, · · · , sn)T. Let l be the time series
length. Each time series si (1 ≤ i ≤ n) can thus be denoted as
an l-dimensional vector, i.e., si = (xi,1, · · · , xi,l). Here, xi,j

(1 ≤ j ≤ l) signifies a sensor reading from si at a specific
time point tj . As anomalies typically manifest within a brief
period, it is hard to detect anomalies directly from a long
MTS. To address this, using a sliding window w and a step s
(1 ≤ s < w), we define R = (l − w)/s + 1 and partition T
into R overlapping sub-matrices {T1, · · · ,TR} of length w,
where T1 = T [1 : w], T2 = T [1 + s : w + s], etc.

To track sensor correlations and promptly detect anomalies
through notable variations, we convert each Tr into a k-
Nearest Neighbor Graph Gr = (V,Er). In Gr, each vertex
v ∈ V represents an individual sensor, and Er connects each
v to its top k correlated vertices. The edge weight ω(e), for
e = (u,v) ∈ Er, is set by the Pearson Correlation [14] of u
and v. We prune edges in Gr with absolute weights below a
correlation threshold τ , yielding a Time Series Graph (TSG).

Unlike MTS, TSGs emphasize strong sensor correlations
through edges and often exhibit community structures [12]. In
a round r, Gr has m communities {Cr,c}mc=1. Any anomalous
sensor shifts can then immediately manifest as community
changes between consecutive rounds. Given this backdrop, we
define the affected vertices as follows.

Definition 1 (Affected Vertices):For a TSG Gr = (V,Er)
(r ∈ (1, R]) encompassing m communities, a vertex subset
Vr ⊆ V is affected if every v ∈ Vr moves into or out of Cr,c

between two consecutive rounds, i.e., Vr = {v ∈ V | (v ̸∈
Cr−1,c and v ∈ Cr,c) or (v ∈ Cr−1,c and v ̸∈ Cr,c)}.

We denote each affected sensor v ∈ Vr as one variation if
it changes across two consecutive rounds.

Definition 2 (Abnormal Time and Abnormal Sensors):Given
an abnormal time threshold ξ ∈ [1, n] and R rounds of affected
vertices {V1, · · · , VR}, the abnormal time RZ comprises con-
secutive rounds with |Vr| ≥ ξ for each r ∈ R, and the
abnormal sensors VZ are the union of Vr across all r ∈ RZ .

B. The CAD Framework

Figure 1 depicts an overview of CAD for anomaly detection
through a sequence of TSGs.
Phase 1: Community Detection. For each round r ∈ [1, R],
we employ the Louvain method [4] to partition the TSG Gr

into m communities. This enables CAD to track the unusual
correlation variations among vertices. Changes in community
structure often signify alterations in machine operating states.
We will elucidate this aspect in Section IV.
Phase 2: Co-appearance Mining. We mine the co-appearance
relationships of vertices from their communities. By assess-
ing the co-appearance between two vertices over consecutive
rounds, one can monitor community changes of all vertices in
each round. For a round r ∈ (1, R] and a vertex v transitioning
from its previous community Cr−1,c to current Cr,c′ , its co-
appearance Sr(v,u) with any u ∈ V is computed as:

Sr(v,u) =

{
1, if u ∈ Cr−1,c and u ∈ Cr,c′

0. otherwise

Furthermore, the co-appearance number Sr(v) for each vertex
v is given by Sr(v) =

∑
u∈V ∧u̸=v Sr(v,u). This num-

ber, Sr(v), counts the total vertices that have co-appeared
with v. Note that Sr(v) may vary across rounds, especially
when an anomaly occurs. To gain deeper insights into the
co-appearance dynamics, we introduce the Ratio of Co-
appearance Number (RC). For each v ∈ V , its RC for round
r ∈ (1, R] is determined by: RCv,r = 1

r(n−1)

∑r
i=1 Si(v).

We then assess if v is an outlier in round r by comparing
RCv,r with a predefined outlier threshold θ. The set of
outliers for a given round r is denoted as Or and defined
as Or = {v ∈ V | RCv,r < θ}.
Phase 3: Variation Analysis. To precisely determine the
abnormal time, we focus on the transitions of a vertex between
its normal and abnormal states. For a round r ∈ (1, R], nr

represents the number of vertices undergoing such a transition,
i.e., nr =

∑
v∈V ((v /∈ Or−1 and v ∈ Or) or (v ∈ Or−1 and

v /∈ Or)). According to the Weak Law of Large Numbers and
Chebyshev’s inequality, we derive:

P (|nr − µ| ≥ η · σ) ≤ 1
η2 ,

where η is a constant; µ and σ are the mean and standard
deviation of nr, respectively. We set η = 3 for precise anomaly
detection. Hence, the abnormal time threshold, as defined in
Definition 2, is ξ = 3σ. A round r is abnormal if |nr − µ| ≥
3σ, as the communities in this round change significantly from
prior rounds, deeming the outliers as abnormal sensors.



III. EADS: SYSTEM OVERVIEW

We now introduce EADS. Its Graphical User Interface
(GUI) is a stand-alone web application developed using Python
3.7 and the Dash framework [6]. The system architecture of
EADS is showcased in Figure 2, and screenshots capturing
the essence of EADS are presented in Figure 3. EADS incor-
porates basic functions, such as a control panel (as depicted
in Figure 3(a.1)) for data uploading and parameter setting and
a “Sensor-based Multivariate Time Series Overview” canvas
(visible in Figure 3(a.2)) that provides tools for data selection
and raw MTS visualization. Notably, EADS is built around
three principal components that enhance user interaction: (1)
Early AD Performance Evaluation, (2) Community Change
Visualization, and (3) Sensor Correlation Exploration.
Component 1: Early AD Performance Evaluation. This
component is designed to equip users to systematically gauge
different AD methods, particularly the capability of early
anomaly detection. For CAD, users can initiate it by setting the
values of τ and θ, followed by clicking the “Run CAD” button
(visible in Figure 3(a.3)). Upon completion, the detected
abnormal times are displayed on the main screen (as shown
in Figure 3(a.4)). If ground truth data is provided, it will be
juxtaposed with the detected anomalies for a more intuitive
comparison. One of the characteristics of CAD is its adeptness
in identifying abnormal sensors. When users navigate to the
detected abnormal times, these abnormal sensors are automati-
cally highlighted, facilitating a profound comprehension of the
anomaly’s nature. In addition to CAD, EADS is compatible
with other AD methods, such as ECOD [8], IForest [10], and
RCoders [1]. Users can execute these by clicking on the “Run
Selected Methods” button. Their outcomes are displayed along
with CAD’s results, enabling a comprehensive comparison.
The system also supports a zoom-in feature, allowing users to
closely inspect each identified anomaly.

In the second row of “Early AD Performance Evaluation”
(Figure 3(a.5)), users can evaluate various AD methods under
the modes of Point Adjustment (PA) [3], [15] and Delay-
Point Adjustment (DPA) [2]. The measures encompass three
aspects: (1) Effectiveness measures like F1-score (F1), Preci-
sion, Recall, and the confusion matrix values, computed using
provided ground truths. EADS automatically determines the
optimal abnormal threshold by performing a grid search rang-
ing from 0 to 1, with a step of 0.001; (2) Relative comparisons
between two methods, Ahead and Miss, providing clarity on
the timeliness of detected anomalies; (3) Efficiency measures
such as the training and testing time.
Component 2: Community Change Visualization. EADS
allows users to visualize community changes for each round,
as displayed in Figure 3(b.1). The flow diagram depicts
community alterations. Within each column, distinct black
line segments represent specific communities for a round,
while the flows trace the transitions of communities tied to
individual sensors. To enhance the viewing experience, EADS
offers two display modes: (1) The “by Range” mode lets users
specify a range of rounds. (2) The “by Anomaly” mode is
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Fig. 2. The system architecture of EADS.

tailored to facilitate the exploration of community dynamics
around an anomaly, providing deeper insight into community
transitions during selected rounds. It is crucial to note that
even if sensors do not show pronounced abnormal behaviors
when an anomaly occurs, their correlations could be disrupted,
leading to community changes. CAD adeptly captures such
changes, timely identifying outliers.
Component 3: Sensor Correlation Exploration. Delving
into community changes, EADS provides an exploration of
sensor correlations through TSG visualization, as seen in
Figure 3(b.2). Each vertex in the TSG represents an individ-
ual sensor, with edges representing the correlation intensity
between sensors–the thicker the edge, the higher the corre-
lation. Vertices are color-coded by their associated commu-
nities. For enhanced user interaction, clicking on a vertex
reveals comprehensive information about that sensor, given
it’s provided. In rounds detected as abnormal, the abnormal
sensors stand out with a square shape outlined in yellow color.
Hovering over these vertices highlights a ranked list of sensors
correlating with the abnormal one, ordered by decreasing
correlation strength. Such visualization is paramount, offering
users insights into the abnormal sensors’ role within a TSG and
their surrounding correlations. It facilitates timely maintenance
actions, allowing users to address potentially faulty sensors.

IV. DEMONSTRATION SCENARIOS

This demonstration pursues three key objectives: (1) func-
tions as an early AD benchmark, facilitating the evaluation of
diverse AD methods for early anomaly detection; (2) enriches
users understanding of the CAD process, bolstering abnor-
mal time interpretability; (3) guides industry experts towards
timely predictive maintenance upon anomaly detection.
Scenario 1: Early AD Benchmark Platform. In this scenario,
EADS serves as an early AD benchmark platform, catering
to both researchers and industry experts to evaluate the early
AD capabilities of various methods. When inputting a real-
world sensor-based MTS, e.g., SMD 1 6 [15], two prolonged
anomalies are highlighted in yellow. After executing CAD and
other AD methods, their results are evident in Figure 3(a.4).
Users can further zoom into specific rounds to discern when
each method reports the anomaly. Figure 3(a.5) provides a
comparative evaluation by various measures, guiding users in
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Fig. 3. Screenshots of EADS.

selecting suitable AD methods. Moreover, EADS facilitates the
addition of new AD methods through a user-friendly control
panel checklist, enhancing adaptability.

Scenario 2: Abnormal Time Interpretability. The second
scenario offers users a deeper understanding of the CAD
process, especially how communities change across different
rounds during an anomaly, thereby improving the interpretabil-
ity of abnormal times. We proceed with the SMD 1 6 dataset,
activate the “by Anomaly” mode, and select “Anomaly 6,” as
depicted in Figure 3(b.1). EADS then pinpoints rounds before
and after this anomaly is detected, expanding the visualization
range from Round 229 to Round 239. A significant shift is
observed starting from Round 234, with swift community
alterations and rapid sensor membership changes, especially
from Round 235. These insights offer researchers a clear
interpretation of anomaly timelines and equip industry experts
with actionable data to optimize operations. Take the case of
grid energy managers, who need prompt, informed decisions.
Understanding community change patterns and sensor interac-
tions helps determine anomaly credibility and severity. When
many stable communities shift significantly, it probably hints
at a critical concern, necessitating immediate intervention.

Scenario 3: Predictive Maintenance Support. The last
scenario assists users in identifying potential abnormal sensors,
thereby supporting timely predictive maintenance. Referencing
“Anomaly 6” in Figure 3(b.2), EADS presents the TSG for
Round 235. The five communities are visible in different
colors, and the detected abnormal sensors are distinctly marked
with yellow squares. Inspecting each abnormal sensor, EADS
ranks its associated sensors based on their correlation. This
granularity not only enhances interpretability for researchers
but also provides additional insights for industries that need
urgent action. Take the manufacturing sector as an example:
a minor ignition in machinery might initially yield a subtle
temperature rise, causing certain sensors to be flagged as
abnormal. Yet, if maintenance technicians delve into sensors
linked to these abnormal sensors, they can rapidly identify
vulnerable machinery and institute prompt countermeasures.
Thus, EADS helps professionals preemptively tackle anoma-
lies, reducing disruption risks and ensuring timely restoration.

V. CONCLUSIONS

This demonstration introduces EADS, a novel early AD
system for sensor-based MTS. Leveraging CAD–an advanced
early AD method grounded in sensor correlation variations–
EADS serves as a pivotal tool for both academia and industry.
It benchmarks the capabilities of diverse AD methods for early
anomaly detection, enhances abnormal time interpretability,
and streamlines predictive maintenance processes.

REFERENCES

[1] A. Abdulaal, Z. Liu, and T. Lancewicki, “Practical approach to asyn-
chronous multivariate time series anomaly detection and localization,”
in KDD, 2021, pp. 2485–2494.

[2] Y. Ang, Q. Huang, A. K. Tung, and Z. Huang, “A stitch in time saves
nine: Enabling early anomaly detection with correlation analysis,” in
ICDE, 2023, pp. 1832–1845.

[3] J. Audibert, P. Michiardi, F. Guyard, S. Marti, and M. A. Zuluaga,
“USAD: Unsupervised anomaly detection on multivariate time series,”
in KDD, 2020, pp. 3395–3404.

[4] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” Journal of Statistical
Mechanics: Theory and Experiment, vol. 2008, no. 10, p. P10008, 2008.

[5] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “LOF: Identifying
density-based local outliers,” in SIGMOD, 2000, pp. 93–104.

[6] P. T. Inc., “Dash,” https://plotly.com/dash/, 2021.
[7] V. Jacob, F. Song, A. Stiegler, B. Rad, Y. Diao, and N. Tatbul, “Exathlon:

A benchmark for explainable anomaly detection over time series,” Proc.
VLDB Endow., vol. 14, no. 11, pp. 2613–2626, 2021.

[8] Z. Li, Y. Zhao, X. Hu, N. Botta, C. Ionescu, and G. Chen, “ECOD:
Unsupervised outlier detection using empirical cumulative distribution
functions,” TKDE, 2022.

[9] Z. Li, Y. Zhao, J. Han, Y. Su, R. Jiao, X. Wen, and D. Pei, “Multivariate
time series anomaly detection and interpretation using hierarchical inter-
metric and temporal embedding,” in KDD, 2021, pp. 3220–3230.

[10] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in ICDM,
2008, pp. 413–422.

[11] L. Martı́, N. S. Pi, J. M. Molina, and A. C. B. Garcia, “Anomaly
detection based on sensor data in petroleum industry applications,”
Sensors, vol. 15, no. 2, pp. 2774–2797, 2015.

[12] M. E. Newman, “Modularity and community structure in networks,”
PNAS, vol. 103, no. 23, pp. 8577–8582, 2006.

[13] J. Paparrizos, Y. Kang, P. Boniol, R. S. Tsay, T. Palpanas, and M. J.
Franklin, “Tsb-uad: an end-to-end benchmark suite for univariate time-
series anomaly detection,” Proc. VLDB Endow., vol. 15, no. 8, pp. 1697–
1711, 2022.

[14] K. Pearson and F. Galton, “Notes on regression and inheritance in
the case of two parents,” Proceedings of the Royal Society of London,
vol. 58, pp. 240–242, 1895.

[15] Y. Su, Y. Zhao, C. Niu, R. Liu, W. Sun, and D. Pei, “Robust anomaly
detection for multivariate time series through stochastic recurrent neural
network,” in KDD, 2019, pp. 2828–2837.

https://plotly.com/dash/

	Introduction
	CAD: The Methodology
	Problem Formulation
	The CAD Framework

	EADS: System Overview
	Demonstration Scenarios
	Conclusions
	References

