
A Robotics Simulator Platform for RADOE

 Longjiang Zhou, Renjun Li, Kam Pheng Ng, Aditya Narayanamoorthy, Zhiyong Huang
Robotics Department,

Institute for Infocomm Research
Singapore 138632

 e-mail: zhoul@i2r.a-star.edu.sg

Abstract—This paper presents a new simulation platform for
the industrial project of Robot Application Development and
Operating Environment (RADOE). The simulator displays
the robot models in Gazebo and Rviz interfaces concurrently
starting from the bare bone framework. A Rviz interface
plugin is developed for users to easily load the launch files or
parameter files to the simulation platform. Experiments are
designed to show some typical industrial robots integrated with
their end effectors.

Keywords-RADOE; robotics; simulator; plugin

I. INTRODUCTION
A robotics simulator is software to produce embedded

systems for a robot without physically relying on the real
robot, thus reducing development cost and improving
efficiency by simplifying the development work. By way of
modern techniques, the behaviours of a robot can be
simulated with high accuracy in comparison to the actual
robot. Most robotics simulators can be applied to the actual
robots without need of major modifications. Moreover,
robotic systems are becoming more complex nowadays, and
requirements of the performance are higher, so robotics
simulation is vitally important in the research and
development of the robotic systems. In particular modern
applications emphasize that the robots can operate
autonomously and interact closely with humans in medical
robots [1], assistive robots [2], rescue robots [3] and so on.
Furthermore, simulators applied in robotics research are
highly efficient in examining the safety, reliability and
robustness of algorithms under development [4]. In the
education area, researchers have also shown that students can
learn programming languages faster by way of robotics
simulation [5].There are a lot of robotics simulations systems
nowadays, which can be mainly divided into two categories:
commercial and open-source.

Webots [6] is an example of a commercial simulator for
fast prototyping of mobile robots. The simulated models
have customized properties such as mass and friction
provided by the Open Dynamics Engine (ODE) Library [7]
which is used for the dynamics simulation of the rigid body.
Another kind of commercial software, V-REP (Virtual Robot
Experimentation Platform) [8], is a 3D simulator which is
used to simulate any robot, especially in distributed control
system, and is versatile application compatible with Linux,
MacOS, and Windows. V-REP is also used for fast
development of algorithm, fast prototyping, remote
monitoring, and so forth. Easy-Rob [9] is simulation

software for robotic platforms in manufacturing plants that
permits the user to visualize the operation processes like
handling and coating. Easy-Rob also has functionality of
generating AVI movies and providing libraries and the
import / export of CAD files. RobotStudio [10] is a simulator
that uses the RAPID language in Windows as software
platform for the industrial robots developed by ABB. This
software platform allows users to develop realistic
simulation environments based on virtual robots which are
exact copies of the software run in production. MRDS
(Microsoft Robotics Developer Studio) [11] is a Windows-
based 3D software developed by Microsoft to support a
variety of sensors and many other platforms. This simulator
is compatible with all versions of Windows OS and it is also
able to simulate service robots.

The commercial robotic simulation softwares usually
have high quality and advanced technologies, but at the
same time they greatly increase the development cost for
users. In addition, many commercial suppliers only provide
simulators for their own products, which may lack
versatility and flexibility in robot development. On the other
hand, open-source softwares can avoid the repetition
research work so as to improve the efficiency of research
and shorten the product development cycle as possibly by
enabling the research community to exchange their ideas,
and they are also becoming more powerful and reliable in
robotics simulation applications, so open-source robotics
simulators are attracting more and more interest nowadays.

MORSE (Modular Open Robots Simulation Engine) [12]
is a generic open-source simulator on the basis of Blender
[13] and it is mainly applied in academic fields to simulate
autonomous robots in indoor or outdoor environments. The
programs are mostly written as simple Python scripts. ARS
[14] [15] is another example of generic open-source
simulator for academic robotics written in Python. iCUB
[16] [17] is a cognitive simulation platform for a complete
humanoid robot developed with kinematics complexity.
ROS (Robot Operating System) [18] is an open-source
distributed software framework for robotics that allows
executables to be flabbily coupled at run time, which
enables robotics researchers to reuse the source codes from
ROS community. ROS is based on Linux Ubuntu operating
system and supports a variety of languages across C++,
Python, Octave, and LISP by way of a simple Interface
Definition Language (IDL). ROS reuses source codes from

numerous other open source projects such as Player [19] and
OpenRAVE [20]. ROS is a modular and tool-based platform
that makes it easy for others to build their own robotic
software systems. ROS also uses MoveIt [21] packages to
provide mobile manipulation and path planning
functionalities for robots. To solve the possible singularity
issues, an improved version called “Cartesian Path Planner
Plug-in” was created for mobile robots in MoveIt. ROS also
utilizes Rviz as its visualization plugin, which has a
Graphical User Interface (GUI) for users to configure robots.
The simulator integrated in ROS was Gazebo [22] [23], a
general purpose, high fidelity and open-source modelling
and physical simulation tool for rigid robots which is able to
do kinematics as well as dynamics simulation for complex
systems and sensor components. From Gazebo 1.9 onwards,
however, it became a stand-alone package running in
Ubuntu and separating from ROS. Fortunately, a package
called gazebo_ros_pkgs [24] was developed to combine
Gazebo with ROS, which made use of the powerful motion
planning and enriched resources of ROS and strengthened
rigid body simulation functionality of Gazebo.

For industrial applications, the software should ideally
be user - friendly and as easy as possible for programmers to
make programs and for operators to manoeuvre the practical
machines. At the same time, cost efficiency is vitally
important for the competitiveness of products. So we have
developed an open-source software called RADOE (Robot
Application Development and Operating Environment).
RADOE works on the basis of ROS Industrial packages and
it is expected to improve manoeuvrability and product
efficiency in the manufacturing industry. This paper puts
forward a new simulation platform for RADOE. Section II
describes the overall system architecture of the simulator.
Section III elaborates the methodologies of this simulator.
Section IV shows the experimental procedure and results.
Section V draws the conclusions.

II. SYSTEM ARCHITECTURE
The simulation platform uses ROS Rviz and Gazebo for

visualization as show in Fig. 1. The trajectory generator node
reads the input trajectories from external trajectory files,
parses data and ensures that the supplied data is valid. If data
is not valid, simulation stops and error messages is displayed.
If data is valid, then it is sent to the joint trajectory controller
to control the motion of the robots. The robot states are then
published and sent to the visualization tool Rviz for display.
At any point of time, simulation can be paused, resumed or
stopped using the trajectory generator node.

To support different robots, the trajectory files have a
flexible file structure where the number of robot’s joints are
not fixed and are left to the user to define. This allows easy
creation and management of the trajectory files as well as
controlling just a subset of the joints instead of the whole
robot. For example, a trajectory file can contain only the
gripper - related trajectories to perform a gripping task.

Figure 1. The Flow Chart of Rviz and Gazebo.

III. METHODOLOGIES
This project aims to develop a user-friendly simulation

platform for industrial robots. A bare-bone system file is
launched to display both Gazebo and Rviz concurrently on
the same screen without any robots or their components.
Then a robot model is imported, as seen in Fig. 2. The right-
hand side is the display of Gazebo and left-hand side is Rviz.

A Graphical User Interface (GUI) has been developed in
the Rviz framework. The GUI is developed by following the
Rviz plugin method. It could be easily plugged into the Rviz
window, as shown on the bottom left corner in Fig. 2.

There are 4 buttons in this plugin: “Import robot”,
“Import environment”, “Simulate” and “Execute”. When the
“Import Robot” button is clicked, an “Open File” window
will pop-up so that users can choose and import target
models into the simulator both in Gazebo and in Rviz.

Figure 2. The Displays of Rviz and Gazebo with a robot model.

The example robot of “rrbot” (“Revolute - Revolute
Manipulator Robot”, a simple structure of 3-link and 2-joint
robot

The configuration file of the motion controller and the
Gazebo launch file are also required of modification. For the
“rrbot_control.yaml” configuration file in the package of
“rrbot_control” , the original position control is substituted
by the trajectory control in the newly developed simulation
platform. Therefore, the configuration file may be modified
by replacing the joint position controller with the joint
trajectory controller. For the “rrbot_world.launch” file in the
“rrbot_gazebo” package, the basic settings of gazebo,
launch of “empty_world.launch”, and the trajectory
generation node have already been fulfilled in the
“bare_bone” package previously. Thus, the modified
“rrbot_world.launch” file only needs to import the rrbot
URDF file, generate the robot model in the Gazebo display,
launch the trajectory control file, and update the robot state
in the Rviz display.

) is used in this paper to demonstrate the operation
procedure of the RADOE simulation platform. The “rrbot”
is chosen through the “Import Robot” button and displayed
in both Gazebo and Rviz concurrently. Note that URDF
files of robots and their components should be adapted to
the requirements of Gazebo for version 1.9 and above. The
URDF transformation guideline can be found in the Gazebo
website [25]. Now the display of the imported robot model
can be operated respectively in Gazebo and Rviz.

The ambient objects can also be imported into the
simulation platform via the button “Import Environment”.
For example, we can import some table into the Gazebo and
Rviz displays and put some specific objects on the table for
the robot to pick up. The ambient objects are chosen from a
model library.

The “Simulate” button enables operators to simulate the
robot’s motion control by following some predefined joint
trajectories, which are stored in some bash script files (with
the extension name “.sh”). The bash script files can be
written and edited offline according to the requirements of
the robot’s trajectory. We have written a bash script file
“rrbot senddata.sh” as an example. In this file, the angular
trajectory of each movable joint is published sequentially
through a “rostopic” command.

When the “Simulate” button is clicked and the
“rrbot_senddata.sh” file is chosen through the “Open File”
pop-up window, the commands in this bash script file will be
executed step by step. The robot state in Gazebo and Rviz
displays will be updated step by step accordingly. Fig. 3
displays the ultimate states of rrbot links after the link 1
rotates for 45 degrees and the link 2 rotates for 90 degrees.

The “Execute” button is used to activate the control of
robot’s behaviours in a real world environment. This button
is not in use yet in the simulation stage, but it will be used to
guide the real world robotics motion control in future.

Figure 3. The states of rrbot links after running the joint trajecotry file.

IV. EXPERIMENTAL RESULTS
A series of experiments has been designed to incorporate

some typical industrial robots and their end effectors into the
hereby developed RADOE simulation platform.

The first model incorporated is a modified version of
ABB IRB6600 industrial robot [26]. The result of importing
the robot into the simulation platform by clicking the button
of “Import Robot” on the Rviz plugin is shown in Fig. 4. On
clicking the “Simulate” button and choosing the ABB joint
trajectory control file (“abb_senddata.sh”, a bash script file
that is written and edited offline), all the movable links can
move according to predefined trajectories generated by the
joint trajectory control file, and the displays of Gazebo and
Rviz can also be updated concurrently.

It is shown that the RADOE simulation platform
integrates the display of Gazebo with Rviz, so it can take
advantage of the two well – known frameworks that are
familiar to the task programmers and operators. For example,
Rviz is a nice 3D visualization tool which can incorporate
interactive markers and point cloud images for laser scan
data, while Gazebo is famous for its functionality of
dynamics simulation for physics of rigid bodies.

At the same time, the simulation platform that we are
developing is an open architecture that allows a plug-in to
be integrated in the similar style of GUI. Thus, it is
extendable and the same style of GUI allows users to start
using new functions easily and rapidly.

Another model that we have incorporated into our
RADOE simulation platform is KUKA LBRiiwa industrial
robot, of which the ROS packages of robot description (in
the format of URDF), Gazebo and control are found in the
Github website [27]. The packages will be modified
following rules similar to those of the example robot “rrbot”
of this paper. The KUKA robot is displayed concurrently in
Gazebo and Rviz.

Figure 4. Simulation of the ABB robot in displays of Rviz and Gazebo.

 We also wrote a bash script file “kuka_senddata.sh” as a
joint trajectory control file, where the angular trajectory of
each movable joint is published sequentially. Fig. 5 shows
the simulation result of robot motion when the joint
trajectory control file is executed by clicking the “Simulate”
button and choosing the “kuka_senddata.sh” file.

Another model incorporated into the RADOE simulation
platform is a UR10 robot [28] combined with a Meka arm
[29], as shown in Fig. 6. The joint trajectories of the arm
and the robot can be controlled concurrently through one
single “gazebo_ros_controller” by clicking the “Simulate”
button and choosing the bash script file “ur10_senddata.sh”.

One more simulation of an automatic robot taping
system [30] operated by a UR10 robot has also been
incorporated into the simulator and is shown in Fig. 7. The
Meka arm shown in Fig. 6 is replaced by another gripper as
the end-effector. The taping system is shown in Gazebo and
Rviz displays. Similarly, the joint trajectories of the gripper
and the UR10 robot can be controlled concurrently through
one single controller by clicking the “Simulate” button.

Figure 5. Simulation results of KUKA joint trajectory control

Figure 6. Simulation of a Meka arm integrated with the UR10 robot.

V. CONCLUSIONS
This paper put forward a new user friendly simulation

platform for the RADOE software framework for industrial
robotics to improve product efficiency and bring
convenience and manoeuvrability to task programmers and
operators. A Rviz plugin interface was developed to ease the
Task Programmers’ workload of loading robot models,
environment objects, controllers and other files into the
simulation system. A joint trajectory controller was applied
to control the joint trajectories of different robots and end-
effectors. The simulation platform can show the individual
robot and update its state in both the Gazebo and the Rviz
displays concurrently after execution of the joint trajectory
motion control file. The open structure of this simulation
platform allows the Rviz plugin interface to be extendable
and so enables users to develop new functions rapidly and
easily.

Experimental results by incorporating some typical
industrial robots and their end effectors showed that the
simulation platform is general can make use of advantages
of both Rviz and Gazebo in display and joint trajectory
motion control. This newly-developed simulation platform
is user friendly in the preliminary user study for simulating
the taping task. With integrating the Gazebo and Rviz
seamlessly, the task programmers and operators are able to
make use of the rich resources of the two well - known
frameworks efficiently.

Future work will be continued with a more systematic
study for more simulation tasks. We will also incorporate
other typical models of industrial robots and their end
effectors into this simulation platform. The interface
performance may be improved by incorporating more
functional buttons in the Rviz plugin. We also intend to
integrate other industrial robotics projects into this
simulation platform to make a generic purpose and standard
simulator in applications to the real world robotics
environment of manufacturing sectors.

Figure 7. Simulation of a taping system operated by UR10.

ACKNOWLEDGMENT
The work of this paper is supported by A*STAR

(Agency for Science, Technology and Research) SERC
(Science and Engineering Research Council) Industry
Robotics Programme Grant 12251 00008.

REFERENCES

[1] R. H. Taylor and D. Stoianovici, “Medicalrobotics in computer-
integrated surgery,” IEEE Trans. Robotics and Automation, vol. 19,
pp. 765 – 781, Oct. 2003.

[2] D. Kim, R. Lovelett, and A. Behal, “An imperical study with
simulated adl tasks using a vision-guided assistive robot arm,” Proc.
IEEE Int. Conf. Rehabil. Robot., June 2009, pp. 504-509.

[3] R. R. Murphy, “Human-robot interaction in rescue robotics,” IEEE
Trans. Systems, Man and Cybernetics, Part C, vol. 34, pp. 138-153,
May 2004.

[4] K. Kimoto and S. Yuta, “Autonomous mobile robot simulator – a
programming tool for sensor-based behaviour,” Autonomous Robots,
vol. 1, Jun. 1995, pp. 131-148.

[5] A. Liu, J. Newsom, C. Schunn, and R. Shoop, “Students learn
programming faster through robotic simulation,” Tech Directions, vol.
72,Mar. 2013, pp. 16-19.

[6] O. Michel, “Cyberbotics ltd webots profressional mobile robot
simulation,” Int. J. Advanced Robot. Sys., vol. 1, 2004, pp. 39-42

[7] Open Dynamics Engine. [Online]. Available: http://www.ode.org/.
[8] E. Rohmer, S. P. N. Singh, and M. Freeze, “V-REP: a versatile and

scalable robot simualtion framework,” Proc. Int. Conf. Intelligent
Robots and Systems (IROS 13), Mar. 2013, pp. 1321-1326.

[9] Easy Rob 3D robot simulation tool. [Online].
Available: http://www.easy-rob.com/easy_rob.html.

[10] L. Xu, “Robotstudio: A modern IDE-based approach to reality
computing,: Proc. The 38th

[11] J. Jackson, “Microsoft robotics studio: Atechnical introduction,”
IEEE Robotics and Automation Magazine, Dec. 2007, [Online].
Available:

 SIGCSE Technical Symposium on
Computer Science Education (SIGCSE 07), Covington, Kentucky,
Mar. 2007, pp. 440-444.

http://msdn.microsoft.com/en-us/robotics.
[12] G. Echeverria, N. Lassabe, A. Degroote, and S. Lemaignan, “Modular

open robots simulation engine: MORSE,” Proc. Int. Conf. Robot. and
Automation, 2011, pp. 46-51.

[13] Blender 3D. [Online]. Available: http://www.blender.org
[14] G. Larrain-Munoz, A robotics simulator for Python, Master Thesis,

Pontificia Universidad Catolica De Chile, Mar. 2014.
[15] ARS: Python robotics simulator. [Online]. Available: https://ars-

project.readthedocs.org/en/latest.
[16] N. G. Tsagarakis, B. Vanderborght, M. Laffranchi, and D. G.

Caldwell, “The Mechnical Design of the New Lower Body for the
Child Humanoid Robot ‘iCub’,” Proc. Int. Conf. Intelligent Robots
and Systems (IROS 09), Oct. 2009, pp. 4962-4968.

[17] V. Tikhandoff, A. Cangelosi, P. Fitzpatrick, G. Metta, L. Natale, and
F. Nori, “An open-source simulator for cognitive robotics research:
the prototype of the iCub humanoid robot simulator,” Proc. 8th

[18] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R.
Weeler, and A. Y. Ng, “ROS: An open-source robot operating
system,” Proc. ICRA Workshop Open Source Software, 2009, pp. 1-6.

Workshop on Performance Metrics for Intelligent Systems (PerMIS’
08), 2008, PP. 57-61.

[19] R. T. Vaughan and B. P. Gerkey, “Really reusable robot code and the
Player/Stage Project,” Software Engineering for Experimental
Robotics, Springer Tracts on Advanced Robotics, D. Brugali, Ed.
Springer, pp. 267-289, 2007.

[20] S. Srinivasa, D. Ferguson, J. M. Vandeweghe, R. Diankov, D.
Berenson, C. Helfrich, and H. Strasdat, “The robotic busboy: steps
towards developing a mobile robotics home assistant,” Proc. Int. Conf.
on Intelligent Autonomous Systems, vol. 10, July 2008, pp. 129-138.

[21] S. Chitta, I. Sucan, and S. Cousins, “MoveIt! [ROS Topics],” IEEE
Robotics and Automation Magazine, vol. 19, no. 1, pp. 18-19, 2012.

[22] N. Koenig, and A. Howard, “Design and use paradigms for Gazebo,
an open-source multi-robot simulator,” Proc. IEEE Int. Conf.
Intelligent Robots and Systems (IROS 04), Sep. – Oct. 2004, pp.
2149-2154.

[23] Gazebo: Robot simulation made easy. [Online].
Available: http://gazebosim.org/.

[24] Gazebo_ros_pkgs. [Online].
Available: http://wiki.ros.org/gazebo_ros_pkgs.

[25] Tutorial: Using a URDF in Gazebo. [Online].
Available: http://gazebosim.org/tutorials/?tut=ros_urdf.

[26] Abb_irb6600_support. [Online].
Available: http://wiki.ros.org/abb_irb6600_support?distro=hydro.

[27] [Online]. Available: https://github.com/rtkg/lbr_iiwa.
[28] Ur_description. [Online]. Available: http://wiki.ros.org/ur_description.
[29] Meka-ros-package. [Online].

Available: https://github.com/ahoarau/meka-ros-
pkg/blob/master/meka_description/robots/m3.urdf.xacro.

[30] T. S. Lembono, Q. Yuan, Y. Zou, and I. M. Chen, “Automatic robot
taping: system integration,” Proc. Int. Conf. Advanced Intelligent
Mechatronics (AIM 15), July 2015, pp. 784-789.

http://www.ode.org/�
http://www.easy-rob.com/easy_rob.html�
http://msdn.microsoft.com/en-us/robotics�
http://www.blender.org/�
https://ars-project.readthedocs.org/en/latest�
https://ars-project.readthedocs.org/en/latest�
http://gazebosim.org/�
http://wiki.ros.org/gazebo_ros_pkgs�
http://gazebosim.org/tutorials/?tut=ros_urdf�
http://wiki.ros.org/abb_irb6600_support?distro=hydro�
https://github.com/rtkg/lbr_iiwa�
http://wiki.ros.org/ur_description�
https://github.com/ahoarau/meka-ros-pkg/blob/master/meka_description/robots/m3.urdf.xacro�
https://github.com/ahoarau/meka-ros-pkg/blob/master/meka_description/robots/m3.urdf.xacro�

	I. Introduction
	II. System Architecture
	III. Methodologies
	IV. Experimental Results
	V. Conclusions
	Acknowledgment
	References

