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Abstract

This paper presents a new visual tracking method that
can achieve accurate estimation of affine transformation
and precise spatial-color representation. The estimation of
transformation provides more information than translation
for better motion understanding and also helps maintain the
precise representation; the precise representation enables
tracking objects in highly-cluttered environment. The basis
of the method is a kernel-based similarity measure called
affine matching that describes the relationship between im-
age regions with respect to affine transformation parame-
ters. Based on the similarity measure, a mathematical so-
lution is derived for estimating the transformation parame-
ters for moving objects in videos. Various experiments have
vielded positive results.

1. Introduction

Visual tracking is one of the most important disciplines
in computer vision and play key roles in many scientific and
engineering fields. A challenging issue in visual tracking is
how to model an object (using likelihood functions or sim-
ilarity measures) to precisely correlate a pictorial observa-
tion and the object’s state [1], especially when the object is
undergoing transformations.

In appearance-based approaches, the object model is
usually set up over image regions in terms of spatial and
color features. The literature has seen a great deal of rel-
evant research on region modeling and tracking. Table 1
summarizes them into two rough categories — color models
and spatial-color models.

The first category places emphasis on the color features
of target objects. A very popular methodology in this cate-
gory is to exploit color distributions in simple-shape regions
such as blobs. For instance, faces are typical blobs that were
represented by single Gaussian distributions in [2]. Some
further endeavors to deal with mixtures of colors resort to

multimodal Gaussians with Expectation-Maximization al-
gorithm [3, 4], while it is still an open problem how to
choose the right number of Gaussians.

In recent years, a number of non-parametric techniques
have been suggested for color modeling and tracking. Un-
like above methods they do not rely on presumptions about
the probability distributions. In particular, color histograms
have been widely used in tracking faces, hands and people
[5, 6, 7, 8]. A remarkable work in this field is given by
Comanicui et al. who combine spatial kernels and color
histograms to obtain spatially-smooth similarity function
which leads to a mean-shift [14] optimization procedure to
tracking [9]. The method has demonstrated impressive per-
formance in many challenging tasks [15], and in [10] it has
also been extended to deal with scaling objects.

A drawback with color-based methods lies in their dis-
advantages in correlating spatial and color features. Due to
the loss of spatial information, the color models may not be
suited for handling objects/background with similar color
distributions, nor for recovering accurate pose information
such as rotation angles and deformation parameters.

The second category (spatial-color models) puts empha-
sis on the correlation between spatial and color features. A
conventional approach called image templates uses an ob-
ject’s sample images or their high-level statistics as repre-
sentations [11, 12, 16]. For tracking, one may search in a set
of image windows and compare them with the template to
tell if the relevant object is present. However, conventional
templates often have difficulty in handling the deformations
of images with complex spatial-color features.

More recently, Elgammal et al. suggested a new way to
address the correlation between spatial and color features,
by using kernel density techniques [13]. The key point there
is to consider both feature values and feature locations in a
joint probabilistic framework, thus providing an approach
to precise spatial-color representation. The authors also in-
troduced an entropy-based measure to describe the similar-
ity between image regions, and developed an algorithm for
tracking objects under translations. In [17], an alternative



| Category | Method | Translation | Rotation | Deformation* | Accuracy | Ref. |
Color Models BIObS v v X low [2, 3, 4]
Color-Hist.&Kernels Vv Vv X average | [5,6,7,8,9, 10]
Spatial-Color Irpage templates Vv X X h¥gh [11,12]
Models Spatial-feature kernels Vv X X high [13]
Our method Vv Vv Vv high

Table 1. Categorization of Appearance-based Methods for Visual Tracking.

* Deformation here refers to shearing and non-uniform scaling.

similarity measure was proposed based on the expectation
of the density estimates over the model or target image. But
our investigation suggests that these methods might not be
suited for handling image transformations like scaling or
shearing. A brief discussion will be given at the end of Sec-
tion 2.

It is therefore important and challenging to develop an
approach to tracking objects under transformations with
precise spatial-color representations. Such an approach
would have two general advantages: the precise represen-
tation allows to track objects in highly-cluttered environ-
ments; the estimation of transformations can provide more
information than translation for motion understanding and
also makes it possible to maintain the precise representa-
tion.

This paper presents a new tracking method to address the
above issue, especially for objects under affine transforma-
tions. We first formulate a kernel-based similarity measure
between image regions under affine transformations. From
the similarity formulation we derive a mathematical solu-
tion for accurately estimating the transformation parame-
ters for moving objects. We examined the proposed method
under different levels of image noise. We also tested it on
various real objects. Positive results have been obtained.

2. The Kernel-based Affine Matching

Consider a given object that appears as an image region
Q = {(x4,u;)} consisting of a set of points at positions
{x;} with colors {u; = u(x;)}, ¢ = 1,..., N. A proba-
bilistic way to represent the region is by modeling the joint
position-color distribution [13]:
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Here k, and k, are kernel functions (we use Gaussians
in the paper) with particular bandwidths for spatial and
color features, and « is a normalization constant that gives
[ fdudx = 1.

In appearance-based tracking, it is important to formu-
late the similarity measure which can tell the likelihood of
a candidate region ), being an instance of the model (.

Here we propose an [, norm measure on the basis of their
kernel-based density functions (p and ¢)
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It is obvious that the highest similarity value Dy would be
zero, which happens if and only if the two density functions
are exactly the same.

Now consider an object €2, undergoing an affine trans-
formation which combines shearing, scaling, rotation and
translation sequentially. Thereby, the points in the region
will make the following movement

x") = M(a,s,0)%; + % 3)
Here x; represents the displacement of the whole region.
The M is a matrix defining the region deformation by the
scaling factors a = [a, a,]”, shearing factor s and rotation
angle 6:

a,cosf
azsinf

—aysind + sagcosf

M(a, 5,6) = @, cosf + sa,sinf

“4)

Note that it is possible to consider M as a simple ma-
trix without physical parameterization. From such an M
we can derive a different form of similarity measure over
affine transformation. Our study shows that, however, the
consequent tracking algorithm would not be very robust be-
cause it does not take advantage of physical constraints for
seeking the true affine parameters on rather complex hyper-
surfaces of similarity functions. On the other hand, as to
be ellaborated in Section 4, the physically-modeled M will
allow us to design a coarse-to-fine searching scheme for ro-
bust tracking.

Without loss of generality, we set the center of the ob-
ject model at origin. Hence x; in Eq. (3) will represent the
center (referred to as the location) of the target object.

We assume that in affine transformation the color fea-
tures are consistent while the positions are subject to
change. Hence, the transformed region can be represented



by Eq. (1) with replaced locations by Eq. (3). With the new
representation, we can calculate the integrals in Eq. (2) nu-
merically, and derive the similarity between €2, and Q,(T')
(the transformed object model) with respect to the transfor-
mation parameters T' = { M, x;}.
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where I, I> and I3 are representations of the three addenda.

The similarity function Eq. (5) relates two regions under
transformations in a much simpler way. As a result, it al-
lows a direct and mathematical solution to the problem of
similarity-maximization and tracking, as will be shown in
the following.

Comparing Eq. (5) with those similarity functions intro-
duced in [13, 17], it is interesting to note that the apparent
form of our function has two extra terms ([, I3). Our study
(details omitted here due to space limitation) suggests that
the two terms are crucial for relating model and target image
over transformations — especially scaling and shearing.

3 The Optimization Procedure

To recover the transformation relationship between a
model region 2, and a candidate region €Q,,, it is essential
to find such a transformation configuration that maximizes
the affine similarity given by Eq. (5). It can be seen that for
a given model, the term I3 in Eq. (5) is constant. Therefore
the similarity Dy to be maximized can be substituted by

D(pr,q) = —Ii(pr,ps) + I2(Pr,q) (6)

Thanks to the smooth and differentiable nature of Gaussian
kernel functions, the objective function can be written as

oD oD oD oD

(N
which implies that Vi, =0, Va =0,Vy =0and V, =0
are to be satisfied simultaneously. The corresponding solu-
tions are given below.

3.1 Computing Translation Vector x;

Consider the similarity measure Eq. (5). It can be shown
that I; (p,, q) is independent upon x;. So there is

inD(pT 9 q) = _vXt Il (pT 7pT) + vxt I2(pT ) q)
=0+2 Z w;j(x¢ + M(a, s, G)XEP) - xg-q)) (8)
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where the weight w;; is given by
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with g4(-) representing the derivative 0ks(x)/0z. If ks is
a Gaussian kernel function, g5 would also take a Gaussian
form.

The equation Vx, D(p,,q) = 0 leads to the following
solution.

L Y wi(x — M(a, s, 0)xP)

X, =
¢ Zz] Wij

(10)

Since x; is involved in the weights {w;;} (see Eq. (9)) on
the right side, this is indeed an iterative solution for com-
puting the translational vector x;.

3.2 Computing Rotation Angle ¢

Consider the partial derivative of I (p,., p,.) with respect
to 6. Denote

i3
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which is independent upon . From Eq. (5), we have

(1)/2) || (r) _ u(p)||2

NQZ ku( 2 -

aIl(pT7pT _

)=0

(12)
So I (p,,p,) is also independent upon 6.
Consider the partial derivative of I>(p.., g) with respect
to . Let

Y = M(a,s,6)xP  (13)

and

£ == - &2 (14)



Then there is
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where c;; is a variable independent upon 6.
Hence we have
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Here w;; has been given in Eq. (9), and 3, (- are given by
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i,j

Therefore, VoD(p,,q) = 0 would lead to Scosf +
B2sinf = 0. And the solution is

P
VB + 83
Since in fact 31 » on the right side indirectly involve (via
w;; in Eq. (9)) the parameter 6, the solution implies an it-
erative procedure to achieving VoD (p,.,q) = 0. Besides,
because of the property of arcsine, Eq. (17) would suggest
two values: 6 and 6 + 7. In practice we can choose the one
that produces relatively larger similarity distance D(p.., q).

6* = —sin™!(

) (17)

3.3 Computing Scaling Factors a

Let’s first consider the partial derivatives of Iy (p,,p,)
with respect to a. By introducing Eq. (11) to I; and I, we
have
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And similarly,
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where w;; is given by Eq. (9).

Therefore, for VaD(p,,q) =
I,(p,,q)) = 0 we have
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Since a, , is involved in both w;; and v;; on the right sides,
the equations imply an iterative procedure to computing
scaling factors.



3.4 Computing Shearing Factor s

Consider now the partial derivatives of I (p,., p,) with
respect to s.
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Now consider I5(p,., q). Let’s rewrite fi(]?) in Eq. (15) as
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Therefore, the solution to VsD(p,,q) =
Vi(=Ii(pr,pr) + L(pr,q)) = 0 can be derived
as

r_ 2T (27)
Z1 — X3

This solution implies an iterative procedure to computing
shearing factors because both w;; and v;; on the right side
involve the shearing factor s.

The above equations (10,17,23,27) provide an iterative
approach to seeking the optimal transformation state T,
which represents a local maximum in the state space. Be-
cause of the smooth nature of the similarity measure (see
Eqg. (5)), the gradient-based optimization technique would
converge to that solution, provided the initial guess is within
a sufficiently small neighborhood of the maximum.

4 The Tracking Algorithm

For a given candidate region €, the above optimiza-
tion procedure will exactly recover its relation in terms of

affine transformation to the model region },. Therefore,
the tracking means to seek a proper candidate, i.e. the true
image of the object, for finding the true state of the object
model. In real tracking situations, however, the practical
candidates may be corrupted by various image noises, plus
they may include many background pixels due to inaccu-
rate information about the object’s state. In this section we
propose a tracking algorithm to address the problem.

According to our empirical study, the imperfect candi-
dates have different levels of impact on different types of
transformations. In specific, the robustness of the affine
matching varies in a decreasing order from that on trans-
lation to shearing/rotation and then to scaling.

Based on the findings we propose a coarse-to-fine
tracking scheme, by computing the translation, rotation-
shearing, and scaling parameters in a sequential and recur-
sive manner. The scheme uses a flexible candidate extrac-
tion method: for the object model 2, with estimated trans-
formation T, it extracts the candidate region by

0 - il (min (17

Xj q

%m—wW><d (8)

Here € is a relaxation factor. Since the 7' may not be very
accurate, an (2, with larger e is more likely to cover the
true object image, at the cost of including more background
pixels, and vice versa.

The coarse-to-fine scheme uses different e in computing
different parameters. When a new frame is first presented,
the available information about the present state is limited.
So we use a relatively larger € to obtain a candidate that
would better cover the object. As per the above findings the
candidate can be used for computing the translation vector.
With the new information then recovered, we can obtain
better candidates with smaller e for computing other trans-
formation parameters. In order to increase the robustness
and accuracy, the whole process may repeat for a few times.

The following details the proposed tracking algorithm.
The particular e should be selected according to the true sit-
uations such as the object’s size and uncertainties in motion,
and our experience suggests that the system is usually not
very sensitive to it.

1. Initialization: create the object model €2, using a sample im-
age; set frame no. £ = 0 and the object’s initial state To;

2. Proceed to next frame: k = k + 1;

3. Obtain the prediction of the transformation state Ty, = {x(()k) s
ON s(k), a(k)}; here we may just set them to T, = Tk—1;

4. Estimating the transformation parameters:

(a) Estimating translation vector x(k).

i. Extract a candidate region €2, according to T,
with appropriate € (Eq. (28));

i. Update xok) by Eq. (10);



iii. If the iteration converges, i.e. d(xék)) < €z,
where €, is a preset small value and d(x(()k)) is

the change of x(()k) in current iteration step, pro-
ceed to Step (b); otherwise go back to Step 4.a.i;

(b) Estimating rotation angle and shearing factor
{g(k)7 S(k)}:
i. Extract a candidate region 2, according to T},
with appropriate € (Eq. (28));
ii. Update §*) by Eq. (17);
iii. Update s®) by Eq. (27);
iv. If d(8®)) < € and d(s®)) < e, proceed to
Step (c); otherwise return to Step 4.b.i;
(c) Estimating scaling factors a(*):
i. Extract a candidate region 2, according to T},
with appropriate € (Eq. (28));
ii. Update a® by Eq. (23);
iii. If d(a(k)) < €4, proceed to Step 5; otherwise go
to Step 4.c.i.

5. If (a)(b)(c) yield no change in T}, go to Step 2 for next frame;
otherwise go to Step 4 to further optimize the estimations.

It can be seen that the total computational complexity
largely depends on the cost of each iteration. In computing
translation vector, each iteration costs O(N,N,) computa-
tional time. Similarly, the computational cost on rotation
angle is also about O(N,N,). But for scaling factors and
shearing factor, additional O(N7) time is needed to com-
plete each iteration. Hence, we conclude that the overall
computational cost is approximately O(N, N, + N7).

In addition, our experiments show that the approach
can converge to the objective function maximum in a few
iterations (typically within 5 iterations in the step 4.(a),
4.(b) or 4.(c)). In a real implementation on a conventional
1.3GHz Pentium-M PC, the tracking system could process
two frames per second for a target object of 1000 pixels in
rgb colors. We believe that the employment of fast Gauss
transform (see [18]) will produce a significant speed-up that
enables real time applications.

5. Evaluations with Synthetic Videos

This section aims to evaluate the tracking algorithm’s
performance against image noises. The target is a synthetic
diamond-shaped object that randomly moves through syn-
thetic image sequences (examples shown in Figure 5), with
each sequence corrupted by an additive zero-mean Gaussian
noise with (¢2). It can be seen that high levels of noises
pose a serious problem to accurate tracking.

The first test compares the proposed method with the
mean-shift tracker [9] on tracking a translational object. In
order to obtain accurate evaluation, we ran 8 independent
trials at each noise level and averaged the results. Figure 2

c,= 0

Figure 1. Synthetic objects under various lev-
els of noise.

N

Meanshilt

N

Our method

Mean Square Error of X L<10g)

20 60 100 140
Noisc level (o)

Figure 2. Comparative results on tracking
synthetic objects, with our method and the
mean-shift tracker [9].

plots the tracking errors as functions over the noise level.
The proposed method could accurately track the object un-
der o < 70, while the mean-shift tracker worked well only
when the noise level is much lower (o < 30).

Another test further examines the proposed method on
tracking objects under fully affine transformation. As
above, the results were also obtained on the basis of eight
independent trials at each noise level. Figure 3 plots the
results, where circles denote the true state and the curves
represent tracking results in individual trials. Clearly, the
method could accurately determine the object’s state despite
heavy noise corruptions in the images.

6 Tracking Real-World Objects

The goal of this section is to examine the proposed
method in tracking various real-world objects such as
hands, faces, tanks and a special circular object. Note that
some tracking videos can be viewed at http://perception
.i2r.a-star.edu.sg/AffineKernelTracking/KernelAffine. html.

The hand video (Figure 4) was captured in a lab envi-
ronment using a video camera. The test sequence has 160
frames at 360x288 pixels. The goal was to track the left
hand, while the two hands in the video display same color
features. The estimated regions (by the propopsed method)
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Figure 3. Tracking synthetic objects with affine transformation under image noise at o = 40.
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Figure 4. Hand tracking with the proposed method.

Figure 5. Face tracking.

of the target hand are outlined in the figure. We also exam-
ined the mean-shift tracker but it failed tracking the hand
usually after a few frames.

The face video (Figure 5) has over 500 frames at
160x 120 pixels. The face was continuously moving and
rotating, resulting in large variations in size and pose angle.
The tracking results are shown here using the estimated out-
lines of the moving face.

The tank video (Figure 6) has about 200 frames at
356 x 288 pixels. The tracking is made very challenging by
the close similarity in appearance between the camouflaged
tank and the meadow background. Note that due to the con-
siderable out-of-plane rotation, some parts of the tanks dis-
appear in the first frame but appear later, and they are not
taken into consideration in the object modeling. The figure
shows the tracking results using the outlines of estimated
object regions.

The experimental results show that the proposed method

can accurately recover various objects’ states in challenging
tasks. They also demonstrate that the kernel-based spatial-
color representation model can well distinguish visual ob-
jects even though they have similar color features.

Another important experiment aims to test the method
on a special task (Figure 7). The target is a red-white circu-
lar object that moves and rotates on a red-white chessboard.
The tracking task appears to be very difficult (even for hu-
man vision system), since the circle looks quite similar to
the background. Figure 7 shows the object model as well
as the tracking results with the recovered outlines and di-
rections. The inset images draw the details of the windows
emcompassing the moving target. It is shown that the pro-
posed method can accurately determine the object’s state
throughout the sequence. We also tested other methods in-
cluding the mean-shift tracker or Condensation [19] (a con-
tour tracker with particle filtering), but they failed tracking
the circular object. This suggests that neither histogram or
contour informationi might be well suited to distinguishing
an object from background if both exhibit similar colors and
rich textures.

7. Conclusion

We have presented a visual tracking method that can
achieve accurate estimation of affine transformation and
precise spatial-color representation. On the basis of kernel-
based spatial-color representations we formulated a similar-
ity measure called affine matching between image regions,
and we derived a mathematical solution for the estimation
of transformation parameters for moving objects. We also
described an iterative algorithm for robust tracking. Various



Figure 6. Tank tracking images.
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Figure 7. Tracking circle with the proposed method.

experiments on synthetic data and real-world videos were
conducted, and the results attest to the method’s excellent
performance in challenging tasks.
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