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Abstract—In this paper, we present a method of computing For solving the inverse kinematics problem, much atten-
the joint angles for an upper body humanoid robot correspond-  tion has been devoted to local solutions that are velocity
ing to task space motion data from a human demonstrator. - paqeq since global solutions such as the inverse transform

Using a divide-and-conquer approach, we group the motors into . o S .
pan-tilt and spherical units, and solve the inverse kinematics Method [4], typically have difficulties in obtaining an appro-

in a modular fashion based on the derivative of the inverse Priate solution from all possible solutions [5]. This problem
tangent function of the relevant task space variables. For has been alleviated with the use of nonlinear optimization
robustness to kinematic singularity, we add a regularization techniques [6], [7], as well as pre-classification and parame-
parameter that vanishes whenever the task variables are outside trization of the solution manifolds [8]. Another problem with

a neighborhood of zero. Furthermore, we perform scaling of lobal soluti iated with th fi t t
the joint angles and velocities to ensure that their limits are global solutions associated wi € use or inverse tangen

satisfied and smoothness preserved. Simulation study on a Operationatan2 is that there may be discontinuous jumps
7 degree-of-freedom (DOF) robot arm shows a tradeoff of when about+180°, since the range is only defined in the
tracking accuracy in a neighborhood of each singularity in interval (—180°, 180°].
favor of robustness, but high accuracy is recovered outside this 5, the other hand velocity based methods typically re-
neighborhood. Experimental implementation of the proposed uire an a| roximate’inversion of the Jacobian, and include
inverse kinematics on a 17-DOF upper-body humanoid robot q . pp . d
shows that user-demonstrated gestures are well-replicated by Pseudoinverse methods [9] and Jacobian transpose methods
the robot. [10], [11], among others. To arrest drift inherent in open
loop integration of velocity, closed loop inverse kinemat-
| h h b i & ics schemes have been employed [10]-[13]. For robustness
n recent years, t, ere have been signi icant efforts t:'aninst kinematic singularities where the Jacobian loses rank,
enrich human-robot interactions, and to make robots MOIRe method of damped least squares, based on a constant
gppeallng, by_, for example, pﬁrfcxmmg hu,man'“kedgeStufr%gularization constant, has been proposed [14], [15]. How-
mba(t:cotmp:anlment to spf[eec . bpr(.)ml[skr.\g parrf:\ 'gm tr?éver, poor choice of the regularization constant can lead to
robots to learn new gestures 1s by imitation, Wnerein thiaccrate solutions even in regions free of singularities. To

robot directly mimics the gestures of the human demonStrathrcumvent this problemselectivelydamped least squares,

[11. [2]. [3]' By providing a natural and intuitive interface which rely on singular value decomposition (SVD) of the
for tegchmg a robot how to perform co_orquted gestures, -obian to vary the damping parameter, has been studied in
involving many degrees of freedom, robotic motion program[16], [17], [18]. The drawback is that SVD computations can

ming can be made accessible to common users unskilled 8. siow [18], especially when dealing with large number of

robotics. T . . egrees of freedom, and thus may not be suitable for online
Gesture imitation mvolve_s converting a perception OFnteractive applications such as gesture imitation.

the demonstrated gesture into a sequence of rok_)ot MOty Geal with kinematic constraints such as joint and veloc-

responses so as to replicate the gesture. Depending on H}elimits, various approaches have been used. An algorithm

hature of the movements, we may be interested in diffe 0 ensure joint limit satisfaction is proposed in [1] and

ent task features to imitate. For example, when imitating o scaling the joint trajectory non-uniformly around

object interactions, the actual position of the end-effectofg neighborhood of the segment transgressing the joint limits

'Sf er:lporta:jnt.ﬁHotwever, for gesbtlures,tthe _actuatl ptos't'op\%/hile retaining most of the relevant motion that lie within
of the end-efiectors aré arguably not as important as rfﬁe limits. A different approach based on the weighted least

orientation of a body segment with re_sp_ect. to an ad@ce%rm is proposed in [19], [20] such that joint movement is
one. Hence, our approach to gesture imitation is to imita

. . . Yediated by a weight value that varies from unity at the
the relative orientations of the body segments of the hum y g y

d trator. E tially. thi b i "UMaliddle of the joint limit range to zero at the joint limits. To
emonstrator. Essentially, this can be cast as an mverggtisfy velocity limits, the method presented in [1] averages
kinematics problem whererson-redundanset of joint space

i - the results of simulated velocity-limited tracking controller
angles that produce the targeted task space conflguratlonnlj.?] forward and backward in time, while a different approach
to be computed. ’

in [19] adapts the time steps at which the joint velocity
This work is supported by the A*STAR SERC Inter-RI Robotics Pro-violates the limits. While these methods of joint and velocity
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at those transition times.

In this paper, we propose a method of inverse kinemat-
ics for an upper body humanoid robot performing gesture
imitation, based on a divide-and-conquer approach where
the motors are grouped into pan-tilt and spherical modules,
as described in Section Il. For each module, we design
adaptation laws for the joint angles by differentiating an
inverse tangent function of the relevant task space variables
obtained via consistent transformation matrices, and incorpo-
rating feedback error to mitigate drift. To provide robustness
to kinematic singularity, at which the denominator of the
adaptation law becomes zero, we add, to the denominator,
a regularization parameter that is activated only when in a
neighborhood of zero. Under the proposed modular frame-
work, adapting this regularization parameter is simple and
fast to compute, and do not rely on computationally expen-
sive SVD operations. We account for kinematic constraints
of the robot by employing scaling algorithms that ensure
smoothness and avoid abrupt jumps in the derivative signal
at all times, as shown in Section IV. Results of simulations
and experiments are shown in Sections Il and V, including a
numerical comparison study of the proposed method against
a Jacobian based method, as well as an implementation on a
17-DOF upper-body humanoid robot for online imitation of
a human demonstrator’s gestures.

II. ROBUSTMODULAR INVERSE KINEMATICS

Consider an upper body humanoid robot with kinemati€io- 1‘. (A) Zero cqnfiguration of the upper body humanoid robot, where
. . . . . coordinate frame orientation depends on body part. (B) The robot degrees-
conflgurgtlon E_lS shown in Figure 1. For a_malytlcal PUrpoS&s freedom are grouped into 2-DOF pan-tilt modules (squares) and 3-DOF
the configuration can be decomposed into two types @&pherical modules (circles).
joint modules, namely 5 pan-tilt modules for the torso and

arms, and 3 spherical modules for the head and wrists.

Grouping them this way allows us to formulate and solve thegitions of the robot joints X0 = {Xposj} J €
inverse kinematics problem for gesture imitation in a modulaf1, 27,21, 3L, 4L, 2R, 3R, 4R}, as well as the orienta-
manner. Since our approach to gesture imitation is to imitatéon of the end-effectorsX,,;en: = {Xorientj}, J €

the relative orientations of the body segments of the huma i1, 41, 4R}. For ease of convenience, eatlx 3 orienta-

demonstrator, dealing with redundancy is not required.  tion matrix is written in a9 x 1 vector form X, ic,s,; by
Coordinate frames are fixed to each link of the robot, andoncatenating the columns consecutively. Then, the forward

the zero configuration (i.e. all joint angles zero) is definedtinematics is represented by

as in Figure 1A. The orientation of the coordinate frames

are fixed according to the orientation of the modular units, X = f(q) 1)

such that the notation used in the determination of the joint

angles for each module is consistent. In this way, the sam¢here f(-) is a nonlinear mapping. Then, the inverse kine-

algorithms for computing the angles for one joint modulenatics problem is to solve for

can be conveniently re-used for another joint module. Figure

1A shows that from the neck to each of the collars, the q=fHX) (2)

coordinate frame is rotated about theaxis by 90°. From

the each collar to the corresponding upperarm, the coordinafe first requirement is to solve the inverse kinematics

frame is rotated about thg-axis by 90°. in a smooth and robust manner. Not only is the mapping
Our approach to gesture imitation is to imitate the relativrom task space to joint space nonlinear and one-to-many,

orientations of the body segments of the human demomwt it is also ill-conditioned when the robot is near its

strator, which means that the task space positions of alingular configurations. Also, the complexity increases with

joints (waist, neck, shoulders, elbows, and wrists), as well age number of DOFs of the robot. If the inverse kinematics

orientations of the end-effectors (hands and head), are usscdot robustly solved, then the robot may exhibit rapid and

in the computation of the corresponding robot joint anglesspurious changes in configuration. The second requirement
Let ¢ be the robot joint angles, antl = {X,,s, Xorient} IS t0 re-plan the motion to ensure that the joint and velocity

is a 51-dimensional vector containing the task space ptimits are satisfied simultaneously.



A. 2-DOF Pan-Tilt Module where L = +/22+y2+ 22 is the position magnitude,

. . . - t,, rot, € SO(3) are elementary rotation matrices:
For each pan-tilt unit, as illustrated in Figure 2, (2ty, 2) FObe Ty (3) y

be the task space information, specifically the endpoint cos(x) —sin(x) 0
position of the link with respect to a local coordinate frame rot,(x) = sin(x)  cos(x) 0
(04,0, 0,) at the base of the pan-tilt joint. 0 0 1]
cos(*x) 0 sin(x) |
O, (xy.2) roty(x) = 0 1 0 (8)
| —sin(x) 0 cos(x) |

and P € SO(3) depends on the location of the pan-tilt
module (see Figure 1A):

roty(90°) if shoulder pan-tilt
P =< rot,(90°) if elbow pan-tilt 9
I3ys if waist pan-tilt
For robustness against singularity, we add to the de-
nominator of (5) atime-varying regularization parameter
e(z(t),y(t)) as follows:

0, x4+ y2 > [y
€0, 2?4+ y? < By

g0 +ay(z? +y? — B1)3
—:az(x%(—i— yQEm)gl) , PL<at+yt < B

Fig. 2. Pan-tilt module.

It appears straightforward to compute, via geometrical(z, ) =
relationship, the pan anglg and the tilt angley as follows:

— tan-! (¥ (20)
p = tan ( x) where3;, 32, €9 are small positive constants, and
1 (%
@ = tan! (7> 3) a1 = 2e0/(f2— )’
az = —3eo/(B2— B1)? (11)
where . L . .
are obtained by considering boundary constraints when fit-
T, = mzcosq,+ysing, (4) ting a third order polynomial between the two extrema of

e. A schematic illustration ot is shown in Figure 3. The
is thez-coordinate of the new frame after the original framegegularization parameter adapts according to positiary)
is rotated byg, about thez-axis. However, due to the fact and is only active whefz, y) is in a small neighborhood of
that atan2(-) € (—180°,180°], there may be discontinuous zero. In this way, the compromise of accuracy of tracking
jumps in the solution (3) when crossingl80°. in favor of robustness to singularity is localized to a small
For smooth motion, we adopt a derivative-based approaéggion, and accurate tracking is recovered in the rest of the
to compute the angles. Taking the derivative of (3) yields Space.

. Ty —yx x10°
@ = i (5) 1f
. 2T — TpZ
qr = W (6) € o05f
and we simply integrate the above quantities over time to o0 0004 o 0,004 0008
obtain g,(t) and g.(¢). At this point, it is clear that two Xo+y? [m]

problems exist, namely drift and singularity. Drift results
from nume“(_:al |nte.grat|on wherein errors accumulate Oquig. 3. The regularization parameteiis only active in a small neighbor-
time, while singularity occurs when? + y2 = 0. hood of (z, y) = 0, but zero otherwise.
To mitigate drift, we augment a feedback term to the carte- ) _
sian velocity based on the error in the estimated cartesian This leads to the following adaptation law for the pan and

position. In other words, we repladeby (i —k(&—z)), y by filt angles:

(y*k(@*y)), z by (ka(éfz)); andir by (ir*k(jr*xr))u . o x(y — k‘eu) — y(l‘ — kex)
herek is a positive constant. The position estimates are 9 = 2 2 12)
w p p 22 +y? +e(x,y)
. . 2(&, — keg, ) —x (2 — ke,
X " L qt = ( :L.2)+ 2;2 ( ) (13)
0 = rot,(gp)roty(q:) P 0 . r
z 0 wheree(,) := () — (o). The solutionsg,(t) and ¢(t) are

Tr = Zcosgp+ ysing, (7) initialized according to (3) by way of thetan2(-) function.



Note that the residug(x, y) only appears in (12), not (13), The orientation estimates used in the feedback error terms
due to the fact that? + 22 = L? + 0. After solving forq, are given by
and ¢, the orientation of the link with respect to the base

frame is given by 31 = —sing
T32 = COS(@2Sings
Ry, = rot,(qp)roty(q:) (14) .
T3z = COS(g2COSQ3
B. 3-DOF Spherical Module G = cosgs
Spherical units comprising 3 axes of rotation occur at &y = sing
the end-effectors, namely the two hands and the head. The R
Qa3 = CO0Sq (21)

orientation matrix of the hand with respect to the forearm
can be decomposed into 3 ordered rotatiesis, roty, rotx  These are obtained from (15) and (17) by comparing matrix

about the local axes, y, z respectively: coefficients on both sides of the equations. The solutions
R, = {ry}, i,j=123 q1(t), q2(t) and gs(t) are initialized according to (18) by
way of theatan2(-) function.
= rOtz(ql)rOty(QQ)rOtx(Q3) (15)
whererot, androt, are defined in (8), and C. Module-to-Module Transformation Matrices
1 0 0 The pan-tilt module adaptation law in (12)-(13) only
roty(x) = 0 cos(x) —sin(x) (16) derives pan and tilt angles in a local coordinate frame for

a single pan-tilt unit. To ensure that the same equations can
_ o . . be consistently used for adjacent pan-tilt units in a recursive,
By right-multiplying both sides of (15) with the transpose ofmodular fashion, an additional coordinate transformation

0 sin(*)  cos(x)

rot,(gs), we obtain matrix:
R, rot, T (g3) = rot,(q1)roty (g2) a7) roty(90°) if j € {2L,2R}
. . -~ . P; =< roty(90°) if j € {3L,3R} (22)
Equat.mg matrlx coefficients on both sides of the above 7 if j € {1,2H,4L, 4R}
equation yields
, is required when computing joint angles for some pan-tilt
g3 = tan”' (32) modules.
"33 As shown in Figure 1A, there are orientation offsets at
¢ = tan~! < i 31 > the zero configuration, specifically between the collar and
32 SINg3 + 733 COS g3 upper-arm, as well as between the torso and collar. These
_ _1 (r13sings —ri2 cos g3 offsets preserve the coordinate system defined in Section II-
g1 = tan - (18) . o ) )
T'99 COS g3 — T'23 SiN ¢3 A for computing pan-tilt inverse kinematics and allow the

Similar to our approach for a pan-tilt unit, as described iglgorithms to be used in a modular fashion across multiple

Section II-A, we take the derivatives of the right hand side82n-tilt joints of the robot. _
of (19), and augment feedback terms and a regularizationHowever, with the offsets, the coordinate framaéter

parameter. This leads to the adaptation laws for the joiﬁptations through the shoulder pan-tilt module will no longer
coincide with the coordinate frameeforerotations through

angles ) ] the elbow pan-tilt module, and similarly when considering
g3 = 733(T32 — Keryy) — T32(733 — kery;) after rotations through the waist pan-tilt ameforerotating
735 + 735 + (732, 733) through the shoulder pan-tilt. The transformation maffix
. r31(da —kea,) — ai(31 — ke, ) accounts for the orientation offset and bridges the transition
@ = T3+ oF from one pan-tilt module to another.
. as(be — keq,) — ao(ds — keg,) 19 Apart from the collar-upperarm and torso-collar pairs, the
= o + a2 (19)  rest of the links do not have any orientation offsets, so

transformationp; is not required, i.eP; = I.

where the regularization parametdf, ) is defined in (10),  he pan-tilt and spherical joint modules require local task

and space information in order to compute the joint angles. Let
a1 = Tr39sings + ra3cosgs the task space informatioCth be
Q2 = Ti3Sings — 712C08G3 0 O X posj+1 — "Xpos,; if pan-tilt module
o o E; = ox if spherical modul (23)
Q3 = T92C0S(Q3 — rogsings (20) orient,j if spherical module

Note, from (19), that only the denominator of the right handvhere; € {1,2H,2L,3L,4L,2R,3R,4R} is the index of
side of thegs equation containg. This is due to the fact the joint, j + 1 the index of the child joint,X,,, ; is the
that both(r3, + o%) and (a3 + a3) are bounded away from position of joint j, and X,,ens,; the orientation of link;.
zero. SinceE; is specified with respect to the global frareit



needs to be transformed to the local frame of the parent linkherek; is a positive constant/* the right pseudo-inverse

j — 1, as follows: of the Jacobiay = 0.X/dq regularized by a positive definite
i i constant matrixA:
7', = I7'Ry °E; (24) o
wherel Ry is the orientation of the global franterelative to AJ =J (JJ" +4) ) (29)
the local frame o_f theth link. This matrix can be computed and ex = X — X the tracking error withX =
incrementally by Ry = 'R; 1 7"'R;_, ..." Ry, where (X s X P s X )T computed via forward kinematics
jRjil = (Rm, Pj)T (25) u?|ng recently estimated values @f, ..., g7:
for j € {1,2H,2L,3L,4L, 2R, 3R, 4R}, with Ketbow = 1oty(q1)roty(g2)lrex
. pris = t, t
o Bolaya) if j € {1,2L,3L,2R, 3R} t rota (a1 )roty (a2)
i Rs (qu » 425, Q3_7) if .7 € {2H7 4La 4R} ~ % (1163; +F rOtZ(Q3)rOty(Q4)l263)
(26) R = rot,(q1)roty(g2)P rot,(gs)roty(ga)

For e_xample, to compute the joint angles fgr the left shoulder x10t, (g5 )Toty (g6 )Toty (g7)
pan-tilt module, we first compute the position of the elbow _ —(Bos Bor Bat Bro Bon Beo Bre. Bon. Baa)T
relative to the shoulder in the coordinate frame of the collar,” "4 = (R, Ry, Ray, Rua, Ron, Rao, Rus, Ras, Ras)
by transforming the global task frame to a local one, i.e. whereP = rot,(90°), e; := (1,0,0)7, e5 := (0,0,1)7, and

1 _ 1p 0 11,15 are the lengths of the upper and lower arms respectively.

Eyy, = "Ry Esp . ) )

B Tog In this study, we seh = diag{\;}, where\; = 0.1 fori =

= (BmoPrBm, Por) 2L 1,...,6 and \; = 10 for i = 7, ..., 15, which provides fairly
= (rotz(qm)roty(qtl)rotX(QOO))T °Eyr, (27) good tracking performance and robustness for comparison

Then, we feed' By, = (z,y,2)7 into the pan-tilt inverse PUPOSE-

kinematics (12)-(13) and integrafg andd, to obtaing, and For ease of illustration, we only consider a 7-DOF arm,

q: respectively. Figure 4 shows a summary of the coordina%g'th the shoulder as t_he origin of the global coordmate_
transformations required for each joint module. system. To evaluate joint tracking performance, we set si-

nusoidal desired joint trajectories to pass through 3 singular-
6, 9B, %Ey °Es “Ew ‘Ew  “En o ities: g4, = —90°, g4, = 0°, andgy, = 90°. They are given

l l l l l l l by (in radians):
(T T N qé, = 0.5sin(0.01¢) — 7 /4
i Rm PZ Rm P.? Rm PZ i .
! [ pa )| o) (Roban ) = qa, = 0.5sin(0.01t) — /2
i [ RNIZLP_?L ] [ R)712RP3R ] i_;? qdd - 05 Sin(OOQt) N 04
12 qq, = m/2sin(0.01t) —7/4
§ R, Pat R, Par s Gas = 0.5sin(0.01t) + /4
Py v v i qa, = 0.3sin(0.015¢t) + 7/2 — 0.3
i Transpose ) G, = 02sin(0.017) (30)
| Then, we compute, via forward kinematics similar to (30),
"Ex| "Ex "Ex | *Ese| "Ew|  ["Ea "EZH the desired task trajectories, which are then fed to the inverse
oo Tt Modu Sohorical ModLIe kinematics algorithms to estimate the joint trajectories.
‘ Invarse Kinematies ’ Imveras Kinematios Figure 5 shows the joint angles estimated from the in-
verse kinematics algorithms, along with the actual joint
l l l l l l i l angles. For the proposed Modular Inverse Kinematics, the
Gpi oo Gpa rse oz Ve Al Aoy estimated (solid) and actual (dotted) joint trajectories are

4y 4y, q;, Gy Q13 Ly Ly 92y

closely matched everywhere except when near singularities,
quR q‘;dl. q‘?ZH

where a modest deviation is observed. However, for the
Jacobian Based Inverse Kinematics, the deviations, some of
Fig. 4. Module-to-module transformations for the entire robot. which are substantial, are persistent and do not vanish even
when away from singularities. Figure 6 shows that the joint
I1l. COMPARISON WITH JACOBIAN BASED INVERSE tracking errors based on the proposed method are intermittent
KINEMATICS and less thari3° while those of the Jacobian Based Inverse
Kinematics are persistent and reach as high@s

In this section, we provide a simulation example of the : . .
; . That the tracking errors vanish when away from singular-
proposed method and a comparison with closed loop Jacg- . . o
lies is due to the adaptive regularization terys, <,,,, and

bian Based Inverse Kinematics (see e.g. [13]), described 2}; which only become active when near the singularities

qg= J*(X —kyex) (28) g2 = —90°, ¢4 = 0°, andgg = 90° respectively, as shown in
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Fig. 5. Computed (solid) and actual joint angles (dotted) for proposed
Modular Inverse Kinematics (IK) in comparison with Jacobian Baseci:ig 7

Inverse Kinematics. Adaptive regularization terms become active only when near

singularities.

Modular IK
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error remains below®. Although a gentle drift is observed
over a long duration of0s, the same phenomenon is ex-
hibited for Jacobian Based Inverse Kinematics. Fortunately,
for turned based gesture imitation that we are dealing with,

error [deg]
o

20} 4

% 2 P 8 10 12 the duration of each trajectory is usually modést 10s).
smels] Hence, the drift is unlikely to be a technical concern in our
40 ‘ application.

Modular IK
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error [deg]

=
s
time [s] 5
Fig. 6. Error between computed and actual joint angles. ¢

_10 ‘ ‘ ‘ ‘
0 10 20 30 40 50
. . . time [s]
Figure 8. Under the proposed framework, the regularization Jacobian IK

terms are easily and intuitively designed, based on task space
information, according to (10). Although it is also possible to 10
design adaptive regularization terms for the Jacobian based
method based on [16], [17], [18], they require singular value

decomposition of the Jacobian at every time step, which can  -5¢

o

error [deg]

be computationally intensive. -10, m m o m =
To investigate the robustness of the inverse kinematics time [s]
alg(_)rlthms _tO n_OI_SE an_d 5'”9“'3”“95- we SpeCIfled the fo'lfig. 8. The proposed Modular Inverse Kinematics (top) is robust to noise
lowing desired joint trajectories: at singularity, although it exhibits a gentle drift, similar to Jacobian Based
) Inverse Kinematics (bottom).
qq, = 0.02(2p;, —1), i=1,3,4,57
qd, = 0.02(2pe — 1)+ 7/2 A limitat ‘i J hod s that it |
Imitation of the proposed method Is that It IS not

Q. = 0.02(2p5 —1) —7/2 (31) prop

equipped to handle redundancy that may be present in
wherep; € [0,1], i« = 1,...,7, are uniformly distributed general applications. For these purposes, Jacobian Based In-
random numbers. Thus, the robot is to track a noisy trajectomerse Kinematics provide a convenient and general solution.
within a small neighborhood of 3 concurrent singularitiesNevertheless, for the specific application of gesture imitation,
Figure 8 shows that the proposed Modular Inverse Kinematiie proposed method is more advantageous, as shown in this
ics is robust to noise at the singularities, and the trackingpmparison study.



IV. HANDLING KINEMATIC CONSTRAINTS Similarly, we can extract a segment occurring aftgf.

+ + 5 H H ‘
We consider kinematic constraints in the form of joint-€t [Lix, 7;;] be the time interval for this ‘after-segment’.
limits ¢,,g, and velocity limits+q;, i = 1,..., n4of, Which Define the sets:
need to be satisfied simultaneously by the gesture trajectory. _
. . e o " Ts={te
To this end, we define the admissible zones for joint position
and velocity as:

()] <€, ait) <@}
6:(1)] <€, a:(t) > q,} (37)

[ti ks tiksa] -
Ty ={t €[t ti )1l :

Hence, we have

Qy = {weR ¢ <q<7q}
Q, = {aeR : |al <q;} (32) tie = tik
such thatg;, ¢; are to satisfyg; € Q,, andg; € Q, for all - i e, '; 773 70 ang qivk > 4i
t € [0,T], whereT is the duration of the gesture. t = § min Q, ifT#0andg <g; (38)
Additionally, the modified trajectory is required to main- 0, if 7o =0 and7, = 0
tain its original profile as much as possible. Thanks tQuheret* =T.

the turn-based imitation framework, batch modification of ag Sfjgﬁ,JréaCh extreme point, is associated with two

trajectory is feasible, and allows us to perform trajectorgegments — one before and one after. For convenience of
scaling while preserving the profile. representation, we define new labels for the segments as

A. Position Scaling follows:
Our method is based omon-uniformscaling of the joint (taiy » toiy) = (g tig)
position profile, such that relevant segments that transgress (tasjur s thiypn) = (zjk , fjk)
the joint limits are diminished while segments that remain ’<q N éb- ) = (qlﬁ(t R ; sh)) (@)
within the limits are preserved. Additionally, smoothness is g7 A P
maintained despite the use of different scalings in differewhere;j = 1,...,2n., andk = 1,..., n,,.
portions of the profile. Each joint is scaled independently. Define a saturation function as:
First, we obtain the extrema of the segments;;¢f) that 5 ifx>F
are outside the admissible zone, ig(t) ¢ Q, for some () = *’ T (40)
t € [0,T]. For thekth extremum(k = 1, ..., n., ), we have: ' *’ ifr <%
. te[glkafék]ql'(t)’ if ¢i(t) >4 where * and x denote the upper and lower limits of
Yik = min a(t), if q(t) <q (33) .respecftively. Then, the modified positigp, for theith joint
t€le; 1 Ci k] - is obtained as follows:
arg max qi(t), if qi(t) > q; Sq;,; (qi(t) - qam) + S(qai,j)7 t. € [tai,j’tbi,j]
tr = te[gi'k"a"k] (34) dm, (t) = ] = 1, 0 27’lei
bk argmin ¢;(t), if ¢:(t) <g, qi(t), otherwise
tG[QiYk,Eq‘,,k] (41)
. . where
for t € [c; 4, i), Wherec, ;,¢; ) are the times at which 1S(qw, ) — S(qa, )|
the joint position leaves and re-enters, respectively, the Sqi; = - - (42)

admissible zond,, . 1961 = das.s|
Subsequently, we extract a segment occurring before is the scaling factor for thgth segment of the trajectory of

such that it joinsg;, to the nearest turning point inside joint i.

the admissible zone, or the nearest extremum outside theSince the interface between any two segments is always a

admissible zone, whichever is closer. ler’kj;k] be the turning point, where the derivative approaches zero, mul-

time interval for this ‘before-segment’. Define the sets:  tiplying different scale factors for the two segments still

results in the derivative approaching zero from both sides.

Ty ={tetir_1tis] + la®)] <e a(t) <7} This ensures smooth blending of the segments despite non-
To={teltintid « 0 <e alt)>q) (35)

uniform scalings along the profile.
where0 < € < 1 is a small positive tolerance. Then, weB. Velocity Scaling

have A by-product of scaling down the joint positions to their
max §,, if 77 #0 andgq;, >, limits is that the velocities;,,, are automatically reduced
iy = max ., if lo#0 andg;, < q, too, so it makes sense to perform velocity scaling after
0, if 7 =0and7Z; =0 joint scaling. Velocity scaling is performed in a similar way
o= t, (36) as joint scaling, with the exception that we appigiform

scaling across all joints over the entire movement. Let

wheret; , = 0. di,kﬁi,k be the times at which the joint velocity leaves and



re-enters, respectively, the admissible zéhe. In addition, modified to satisfy kinematic constraints. Finally the desired

denote the set of times for whiaf(¢) ¢ €2, as follows: motion is executed by a Proportional-Derivative controller.
7;1 = { te [di’]wai,k?])k = 13 ---anvez} (43)
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The scaling factod < s, < 1 is a constant described by

Sy = max q*’ (44)
(2 |qi,k|
wherek =1, ..., ne,,, and
max |q(t)], ifteT,
Gp = q telidi (45)
4> otherwise

The velocity scaling law (44) is simpler than its positio
scaling counterpart due to the symmetrical nature of t
velocity constraints and the fact that each movement is
discrete, i.e. zero initial and final velocities. Finally the Fig. 9. Imitation of waving gesture.
modified trajectory is given by
t/50 The results of robotic imitation of waving, music-
q5,(t) = / Sum.i(t) dt (46) conducting, and forearm rotation gestures are shown in Fig-
0 ures 9-11 respectively. For each figure, the left column shows
which has an extended duratiofi’/s,) > T so that shapshots of the motion demonstrated by the user, whereas

displacement is preserved. the right column shows the motion performed by the robot
after the end of the demonstration. The imitated gestures
V. ROBOTIC GESTUREIMITATION EXPERIMENT are visually similar to the demonstrated ones, indicating that

We have implemented the proposed inverse kinemati¢Be proposed inverse kinematics scheme is effective. Figure
algorithms for gesture imitation on an upper body humanoi@i2 shows the the elbow flexion limit 0° in the robot
robot namedOlivia, which has 17 DOFs in total: 6 for eachis respected when imitating a human gesture with elbow
arm, 2 for the torso, and 3 for the head. Olivia is a socidlexion > 90°. Turn-based imitation is useful when gestures
robot designed mainly for human-robot communication anihvolve the head, as seen in Figure 11, since it allows the
interactions using speech, vision, and gestures. To teadamonstrator to focus on observing the robot’s imitation
gestures to the robot, we use turn-based imitation, whemaotion after the demonstration is finished.
the human completes a full demonstration before the robot
performs a similar motion. This process emulates human-to-
human imitation learning for intuitive teaching of gestures to We have presented a robust modular inverse kinemat-
robot without motion feedback from the robot, which mayics scheme for an upper body humanoid robot performing
disturb human demonstration. Turn-based gesture imitatiesture imitation, based on pan-tilt and spherical modules.
allows us to perform offline data processing, inverse kinema#e have designed adaptation laws for the joint angles
ics, and motion replanning to satisfy kinematic constraintfjased on the derivative of the inverse tangent function of
before the final motion plan is executed by the motothe relevant task space variables. Robustness to kinematic
controllers. singularity has been ensured via a time-varying regularization

To capture human motion data in task space, we use tparameter, and kinematic constraints have been satisfied by
Measurand ShapehandPlus system, which is an upper baasing smooth scaling laws.
motion capture system comprising arrays of fibre optic bend The proposed method is advantageous for applications
and twist sensors to measure arm and hand movements,sash as gesture imitation where redundancy resolution is
well as inertial sensors to measure torso and head mowvast required. The advantages include a better accuracy-
ments. Motion data is captured at 0 and consists of robustness tradeoff with recovery of accuracy outside a
global Cartesian positions of the neck, shoulders, elbowwsighborhood of the singularity, the ease of adapting the
and wrists, as well as global orientation Euler angles faregularization parameter without relying on computationally
the hands and head, all with respect to a reference framegpensive SVD operations, and avoidance of abrupt jumps
located at a point on the hip. A motion segment from thén the derivative signal due to joint and velocity scaling.
human user is detected by using a velocity threshold, suchOur simulation study has shown that the proposed method
that data is considered to be motion if any task velocitys robust to measurement noise and results in smaller overall
exceeds a threshold for a certain duration. error than a Jacobian based method with fixed damping.

From the task space human trajectories, inverse kinematigsrthermore, experimental implementation on an upper-body
based on the proposed method is performed to obtain themanoid robot has shown that the robot replicates user-
corresponding desired trajectories for the robot joints, andemonstrated gestures closely. The proposed robust modular

VI. CONCLUSIONS
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Fig. 10.

Imitation of a music-conducting gesture.

inverse kinematics is useful for providing a natural and
intuitive interface for a user to teach rich, highly coordinated
and possibly complex movements to a robot.
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