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Abstract— In this paper, we present a method of computing
the joint angles for an upper body humanoid robot correspond-
ing to task space motion data from a human demonstrator.
Using a divide-and-conquer approach, we group the motors into
pan-tilt and spherical units, and solve the inverse kinematics
in a modular fashion based on the derivative of the inverse
tangent function of the relevant task space variables. For
robustness to kinematic singularity, we add a regularization
parameter that vanishes whenever the task variables are outside
a neighborhood of zero. Furthermore, we perform scaling of
the joint angles and velocities to ensure that their limits are
satisfied and smoothness preserved. Simulation study on a
7 degree-of-freedom (DOF) robot arm shows a tradeoff of
tracking accuracy in a neighborhood of each singularity in
favor of robustness, but high accuracy is recovered outside this
neighborhood. Experimental implementation of the proposed
inverse kinematics on a 17-DOF upper-body humanoid robot
shows that user-demonstrated gestures are well-replicated by
the robot.

I. I NTRODUCTION

In recent years, there have been significant efforts to
enrich human-robot interactions, and to make robots more
appealing, by, for example, performing human-like gestures
in accompaniment to speech. A promising paradigm for
robots to learn new gestures is by imitation, wherein the
robot directly mimics the gestures of the human demonstrator
[1], [2], [3]. By providing a natural and intuitive interface
for teaching a robot how to perform coordinated gestures
involving many degrees of freedom, robotic motion program-
ming can be made accessible to common users unskilled in
robotics.

Gesture imitation involves converting a perception of
the demonstrated gesture into a sequence of robot motor
responses so as to replicate the gesture. Depending on the
nature of the movements, we may be interested in differ-
ent task features to imitate. For example, when imitating
object interactions, the actual position of the end-effector
is important. However, for gestures, the actual positions
of the end-effectors are arguably not as important as the
orientation of a body segment with respect to an adjacent
one. Hence, our approach to gesture imitation is to imitate
the relative orientations of the body segments of the human
demonstrator. Essentially, this can be cast as an inverse
kinematics problem where anon-redundantset of joint space
angles that produce the targeted task space configuration is
to be computed.
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For solving the inverse kinematics problem, much atten-
tion has been devoted to local solutions that are velocity
based, since global solutions such as the inverse transform
method [4], typically have difficulties in obtaining an appro-
priate solution from all possible solutions [5]. This problem
has been alleviated with the use of nonlinear optimization
techniques [6], [7], as well as pre-classification and parame-
trization of the solution manifolds [8]. Another problem with
global solutions associated with the use of inverse tangent
operationatan2 is that there may be discontinuous jumps
when about±180◦, since the range is only defined in the
interval (−180◦, 180◦].

On the other hand, velocity based methods typically re-
quire an approximate inversion of the Jacobian, and include
pseudoinverse methods [9] and Jacobian transpose methods
[10], [11], among others. To arrest drift inherent in open
loop integration of velocity, closed loop inverse kinemat-
ics schemes have been employed [10]-[13]. For robustness
against kinematic singularities where the Jacobian loses rank,
the method of damped least squares, based on a constant
regularization constant, has been proposed [14], [15]. How-
ever, poor choice of the regularization constant can lead to
inaccurate solutions even in regions free of singularities. To
circumvent this problem,selectivelydamped least squares,
which rely on singular value decomposition (SVD) of the
Jacobian to vary the damping parameter, has been studied in
[16], [17], [18]. The drawback is that SVD computations can
be slow [18], especially when dealing with large number of
degrees of freedom, and thus may not be suitable for online
interactive applications such as gesture imitation.

To deal with kinematic constraints such as joint and veloc-
ity limits, various approaches have been used. An algorithm
to ensure joint limit satisfaction is proposed in [1] and
involves scaling the joint trajectory non-uniformly around
a neighborhood of the segment transgressing the joint limits
while retaining most of the relevant motion that lie within
the limits. A different approach based on the weighted least
norm is proposed in [19], [20] such that joint movement is
mediated by a weight value that varies from unity at the
middle of the joint limit range to zero at the joint limits. To
satisfy velocity limits, the method presented in [1] averages
the results of simulated velocity-limited tracking controller
run forward and backward in time, while a different approach
in [19] adapts the time steps at which the joint velocity
violates the limits. While these methods of joint and velocity
scaling ensure continuity of signal across time periods with
different scaling factors, they do not ensure smoothness, and
may lead to undesirable abrupt jumps in the derivative signal



at those transition times.
In this paper, we propose a method of inverse kinemat-

ics for an upper body humanoid robot performing gesture
imitation, based on a divide-and-conquer approach where
the motors are grouped into pan-tilt and spherical modules,
as described in Section II. For each module, we design
adaptation laws for the joint angles by differentiating an
inverse tangent function of the relevant task space variables
obtained via consistent transformation matrices, and incorpo-
rating feedback error to mitigate drift. To provide robustness
to kinematic singularity, at which the denominator of the
adaptation law becomes zero, we add, to the denominator,
a regularization parameter that is activated only when in a
neighborhood of zero. Under the proposed modular frame-
work, adapting this regularization parameter is simple and
fast to compute, and do not rely on computationally expen-
sive SVD operations. We account for kinematic constraints
of the robot by employing scaling algorithms that ensure
smoothness and avoid abrupt jumps in the derivative signal
at all times, as shown in Section IV. Results of simulations
and experiments are shown in Sections III and V, including a
numerical comparison study of the proposed method against
a Jacobian based method, as well as an implementation on a
17-DOF upper-body humanoid robot for online imitation of
a human demonstrator’s gestures.

II. ROBUST MODULAR INVERSEK INEMATICS

Consider an upper body humanoid robot with kinematic
configuration as shown in Figure 1. For analytical purpose,
the configuration can be decomposed into two types of
joint modules, namely 5 pan-tilt modules for the torso and
arms, and 3 spherical modules for the head and wrists.
Grouping them this way allows us to formulate and solve the
inverse kinematics problem for gesture imitation in a modular
manner. Since our approach to gesture imitation is to imitate
the relative orientations of the body segments of the human
demonstrator, dealing with redundancy is not required.

Coordinate frames are fixed to each link of the robot, and
the zero configuration (i.e. all joint angles zero) is defined
as in Figure 1A. The orientation of the coordinate frames
are fixed according to the orientation of the modular units,
such that the notation used in the determination of the joint
angles for each module is consistent. In this way, the same
algorithms for computing the angles for one joint module
can be conveniently re-used for another joint module. Figure
1A shows that from the neck to each of the collars, the
coordinate frame is rotated about thex-axis by 90◦. From
the each collar to the corresponding upperarm, the coordinate
frame is rotated about they-axis by90◦.

Our approach to gesture imitation is to imitate the relative
orientations of the body segments of the human demon-
strator, which means that the task space positions of all
joints (waist, neck, shoulders, elbows, and wrists), as well as
orientations of the end-effectors (hands and head), are used
in the computation of the corresponding robot joint angles.

Let q be the robot joint angles, andX = {Xpos, Xorient}
is a 51-dimensional vector containing the task space po-

Fig. 1. (A) Zero configuration of the upper body humanoid robot, where
coordinate frame orientation depends on body part. (B) The robot degrees-
of-freedom are grouped into 2-DOF pan-tilt modules (squares) and 3-DOF
spherical modules (circles).

sitions of the robot jointsXpos = {Xpos,j}, j ∈
{1, 2H, 2L, 3L, 4L, 2R, 3R, 4R}, as well as the orienta-
tion of the end-effectorsXorient = {Xorient,j}, j ∈
{2H, 4L, 4R}. For ease of convenience, each3× 3 orienta-
tion matrix is written in a9 × 1 vector formXorient,j by
concatenating the columns consecutively. Then, the forward
kinematics is represented by

X = f(q) (1)

wheref(·) is a nonlinear mapping. Then, the inverse kine-
matics problem is to solve for

q = f−1(X) (2)

The first requirement is to solve the inverse kinematics
in a smooth and robust manner. Not only is the mapping
from task space to joint space nonlinear and one-to-many,
but it is also ill-conditioned when the robot is near its
singular configurations. Also, the complexity increases with
the number of DOFs of the robot. If the inverse kinematics
is not robustly solved, then the robot may exhibit rapid and
spurious changes in configuration. The second requirement
is to re-plan the motion to ensure that the joint and velocity
limits are satisfied simultaneously.



A. 2-DOF Pan-Tilt Module

For each pan-tilt unit, as illustrated in Figure 2, let(x, y, z)
be the task space information, specifically the endpoint
position of the link with respect to a local coordinate frame
(Ox, Oy, Oz) at the base of the pan-tilt joint.

Fig. 2. Pan-tilt module.

It appears straightforward to compute, via geometrical
relationship, the pan angleqp and the tilt angleqt as follows:

qp = tan−1
(y

x

)

qt = tan−1
(xr

z

)
(3)

where

xr = x cos qp + y sin qp (4)

is thex-coordinate of the new frame after the original frame
is rotated byqp about thez-axis. However, due to the fact
that atan2(·) ∈ (−180◦, 180◦], there may be discontinuous
jumps in the solution (3) when crossing±180◦.

For smooth motion, we adopt a derivative-based approach
to compute the angles. Taking the derivative of (3) yields

q̇p =
xẏ − yẋ

x2 + y2
(5)

q̇t =
zẋr − xr ż

x2
r + z2

(6)

and we simply integrate the above quantities over time to
obtain qp(t) and qt(t). At this point, it is clear that two
problems exist, namely drift and singularity. Drift results
from numerical integration wherein errors accumulate over
time, while singularity occurs whenx2 + y2 = 0.

To mitigate drift, we augment a feedback term to the carte-
sian velocity based on the error in the estimated cartesian
position. In other words, we replaceẋ by (ẋ−k(x̂−x)), ẏ by
(ẏ−k(ŷ−y)), ż by (ż−k(ẑ−z)), andẋr by (ẋr−k(x̂r−xr)),
wherek is a positive constant. The position estimates are




x̂
ŷ
ẑ


 = rotz(qp)roty(qt)PT




L
0
0




x̂r = x̂ cos qp + ŷ sin qp (7)

where L =
√

x2 + y2 + z2 is the position magnitude,
rotz, roty ∈ SO(3) are elementary rotation matrices:

rotz(?) =




cos(?) − sin(?) 0
sin(?) cos(?) 0

0 0 1




roty(?) =




cos(?) 0 sin(?)
0 1 0

− sin(?) 0 cos(?)


 (8)

and P ∈ SO(3) depends on the location of the pan-tilt
module (see Figure 1A):

P =





rotx(90◦) if shoulder pan-tilt
roty(90◦) if elbow pan-tilt
I3×3 if waist pan-tilt

(9)

For robustness against singularity, we add to the de-
nominator of (5) atime-varying regularization parameter
ε(x(t), y(t)) as follows:

ε(x, y) =





0, x2 + y2 > β2

ε0, x2 + y2 < β1

ε0 + a1(x2 + y2 − β1)3

+a2(x2 + y2 − β1)2
, β1 ≤ x2 + y2 ≤ β2

(10)
whereβ1, β2, ε0 are small positive constants, and

a1 = 2ε0/(β2 − β1)3

a2 = −3ε0/(β2 − β1)2 (11)

are obtained by considering boundary constraints when fit-
ting a third order polynomial between the two extrema of
ε. A schematic illustration ofε is shown in Figure 3. The
regularization parameter adapts according to position(x, y)
and is only active when(x, y) is in a small neighborhood of
zero. In this way, the compromise of accuracy of tracking
in favor of robustness to singularity is localized to a small
region, and accurate tracking is recovered in the rest of the
space.

−0.008 −0.004 0 0.004 0.008
0

0.5

1

x 10
−3

x2+y2 [m2]

ε

Fig. 3. The regularization parameterε is only active in a small neighbor-
hood of(x, y) = 0, but zero otherwise.

This leads to the following adaptation law for the pan and
tilt angles:

q̇p =
x(ẏ − key)− y(ẋ− kex)

x2 + y2 + ε(x, y)
(12)

q̇t =
z(ẋr − kexr )− xr(ż − kez)

x2
r + z2

(13)

wheree(•) := ˆ(•) − (•). The solutionsqp(t) and qt(t) are
initialized according to (3) by way of theatan2(·) function.



Note that the residueε(x, y) only appears in (12), not (13),
due to the fact thatx2

r + z2 = L2 6= 0. After solving for qp

and qt, the orientation of the link with respect to the base
frame is given by

Rp = rotz(qp)roty(qt) (14)

B. 3-DOF Spherical Module

Spherical units comprising 3 axes of rotation occur at
the end-effectors, namely the two hands and the head. The
orientation matrix of the hand with respect to the forearm
can be decomposed into 3 ordered rotationsrotz, roty, rotx
about the local axesz, y, x respectively:

Rs = {rij}, i, j = 1, 2, 3
= rotz(q1)roty(q2)rotx(q3) (15)

whererotz and roty are defined in (8), and

rotx(?) =




1 0 0
0 cos(?) − sin(?)
0 sin(?) cos(?)


 (16)

By right-multiplying both sides of (15) with the transpose of
rotz(q3), we obtain

Rs rotxT (q3) = rotz(q1)roty(q2) (17)

Equating matrix coefficients on both sides of the above
equation yields

q3 = tan−1

(
r32

r33

)

q2 = tan−1

( −r31

r32 sin q3 + r33 cos q3

)

q1 = tan−1

(
r13 sin q3 − r12 cos q3

r22 cos q3 − r23 sin q3

)
(18)

Similar to our approach for a pan-tilt unit, as described in
Section II-A, we take the derivatives of the right hand sides
of (19), and augment feedback terms and a regularization
parameter. This leads to the adaptation laws for the joint
angles

q̇3 =
r33(ṙ32 − ker32)− r32(ṙ33 − ker33)

r2
32 + r2

33 + ε(r32, r33)

q̇2 =
r31(α̇1 − keα1)− α1(ṙ31 − ker31)

r2
31 + α2

1

q̇1 =
α3(α̇2 − keα2)− α2(α̇3 − keα3)

α2
2 + α2

3

(19)

where the regularization parameterε(·, ·) is defined in (10),
and

α1 := r32 sin q3 + r33 cos q3

α2 := r13 sin q3 − r12 cos q3

α3 := r22 cos q3 − r23 sin q3 (20)

Note, from (19), that only the denominator of the right hand
side of theq̇3 equation containsε. This is due to the fact
that both(r2

31 + α2
1) and(α2

2 + α2
3) are bounded away from

zero.

The orientation estimates used in the feedback error terms
are given by

r̂31 = − sin q2

r̂32 = cos q2 sin q3

r̂33 = cos q2 cos q3

α̂1 = cos q2

α̂2 = sin q1

α̂3 = cos q1 (21)

These are obtained from (15) and (17) by comparing matrix
coefficients on both sides of the equations. The solutions
q1(t), q2(t) and q3(t) are initialized according to (18) by
way of theatan2(·) function.

C. Module-to-Module Transformation Matrices

The pan-tilt module adaptation law in (12)-(13) only
derives pan and tilt angles in a local coordinate frame for
a single pan-tilt unit. To ensure that the same equations can
be consistently used for adjacent pan-tilt units in a recursive,
modular fashion, an additional coordinate transformation
matrix:

Pj =





rotx(90◦) if j ∈ {2L, 2R}
roty(90◦) if j ∈ {3L, 3R}
I if j ∈ {1, 2H, 4L, 4R}

(22)

is required when computing joint angles for some pan-tilt
modules.

As shown in Figure 1A, there are orientation offsets at
the zero configuration, specifically between the collar and
upper-arm, as well as between the torso and collar. These
offsets preserve the coordinate system defined in Section II-
A for computing pan-tilt inverse kinematics and allow the
algorithms to be used in a modular fashion across multiple
pan-tilt joints of the robot.

However, with the offsets, the coordinate frameafter
rotations through the shoulder pan-tilt module will no longer
coincide with the coordinate framebeforerotations through
the elbow pan-tilt module, and similarly when considering
after rotations through the waist pan-tilt andbeforerotating
through the shoulder pan-tilt. The transformation matrixPj

accounts for the orientation offset and bridges the transition
from one pan-tilt module to another.

Apart from the collar-upperarm and torso-collar pairs, the
rest of the links do not have any orientation offsets, so
transformationPj is not required, i.e.Pj = I.

The pan-tilt and spherical joint modules require local task
space information in order to compute the joint angles. Let
the task space information0Ej be

0Ej =
{

0Xpos,j+1 − 0Xpos,j if pan-tilt module
0Xorient,j if spherical module

(23)

wherej ∈ {1, 2H, 2L, 3L, 4L, 2R, 3R, 4R} is the index of
the joint, j + 1 the index of the child joint,Xpos,j is the
position of joint j, and Xorient,j the orientation of linkj.
Since0Ej is specified with respect to the global frame0, it



needs to be transformed to the local frame of the parent link
j − 1, as follows:

j−1Ej = j−1R0
0Ej (24)

wherejR0 is the orientation of the global frame0 relative to
the local frame of thejth link. This matrix can be computed
incrementally byjR0 = jRj−1

j−1Rj−2 ...1R0, where

jRj−1 = (Rmj
Pj)T (25)

for j ∈ {1, 2H, 2L, 3L, 4L, 2R, 3R, 4R}, with

Rmj
=

{
Rp(qpj

, qtj
) if j ∈ {1, 2L, 3L, 2R, 3R}

Rs(q1j , q2j , q3j ) if j ∈ {2H, 4L, 4R}
(26)

For example, to compute the joint angles for the left shoulder
pan-tilt module, we first compute the position of the elbow
relative to the shoulder in the coordinate frame of the collar,
by transforming the global task frame to a local one, i.e.

1E2L = 1R0
0E2L

= (Rm0P1Rm1P2L)T 0E2L

= (rotz(qp1)roty(qt1)rotx(90◦))T 0E2L (27)

Then, we feed1E2L = (x, y, z)T into the pan-tilt inverse
kinematics (12)-(13) and integrateq̇p andq̇t to obtainqp and
qt respectively. Figure 4 shows a summary of the coordinate
transformations required for each joint module.

Fig. 4. Module-to-module transformations for the entire robot.

III. C OMPARISON WITH JACOBIAN BASED INVERSE

K INEMATICS

In this section, we provide a simulation example of the
proposed method and a comparison with closed loop Jaco-
bian Based Inverse Kinematics (see e.g. [13]), described by

q̇ = J∗(Ẋ − kJeX) (28)

wherekJ is a positive constant,J∗ the right pseudo-inverse
of the JacobianJ = ∂X/∂q regularized by a positive definite
constant matrixΛ:

J∗ = JT (JJT + Λ) (29)

and eX = X̂ − X the tracking error with X̂ =
(X̂T

elbow, X̂T
wrist, X̂

T
hand)

T computed via forward kinematics
using recently estimated values ofq1, ..., q7:

X̂elbow = rotz(q1)roty(q2)l1e1

X̂wrist = rotz(q1)roty(q2)
× (l1ex + P rotz(q3)roty(q4)l2e3)

R̂ = rotz(q1)roty(q2)P rotz(q3)roty(q4)
×rotz(q5)roty(q6)rotx(q7)

X̂hand =(R̂11, R̂21, R̂31, R̂12, R̂22, R̂32, R̂13, R̂23, R̂33)T

whereP = roty(90◦), e1 := (1, 0, 0)T , e3 := (0, 0, 1)T , and
l1, l2 are the lengths of the upper and lower arms respectively.

In this study, we setΛ = diag{λi}, whereλi = 0.1 for i =
1, ..., 6 andλi = 10 for i = 7, ..., 15, which provides fairly
good tracking performance and robustness for comparison
purpose.

For ease of illustration, we only consider a 7-DOF arm,
with the shoulder as the origin of the global coordinate
system. To evaluate joint tracking performance, we set si-
nusoidal desired joint trajectories to pass through 3 singular-
ities: qd2 = −90◦, qd4 = 0◦, andqd6 = 90◦. They are given
by (in radians):

qd1 = 0.5 sin(0.01t)− π/4
qd2 = 0.5 sin(0.01t)− π/2
qd3 = 0.5 sin(0.02t)− 0.4
qd4 = π/2 sin(0.01t)− π/4
qd5 = 0.5 sin(0.01t) + π/4
qd6 = 0.3 sin(0.015t) + π/2− 0.3
qd7 = 0.2 sin(0.01t) (30)

Then, we compute, via forward kinematics similar to (30),
the desired task trajectories, which are then fed to the inverse
kinematics algorithms to estimate the joint trajectories.

Figure 5 shows the joint angles estimated from the in-
verse kinematics algorithms, along with the actual joint
angles. For the proposed Modular Inverse Kinematics, the
estimated (solid) and actual (dotted) joint trajectories are
closely matched everywhere except when near singularities,
where a modest deviation is observed. However, for the
Jacobian Based Inverse Kinematics, the deviations, some of
which are substantial, are persistent and do not vanish even
when away from singularities. Figure 6 shows that the joint
tracking errors based on the proposed method are intermittent
and less than13◦ while those of the Jacobian Based Inverse
Kinematics are persistent and reach as high as37◦.

That the tracking errors vanish when away from singular-
ities is due to the adaptive regularization termsεp1 , εp2 , and
εs1 , which only become active when near the singularities
q2 = −90◦, q4 = 0◦, andq6 = 90◦ respectively, as shown in
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Fig. 5. Computed (solid) and actual joint angles (dotted) for proposed
Modular Inverse Kinematics (IK) in comparison with Jacobian Based
Inverse Kinematics.

0 2 4 6 8 10 12
−40

−20

0

20

40
Jacobian IK

time [s]

er
ro

r 
[d

eg
]

0 2 4 6 8 10 12
−40

−20

0

20

40
Modular IK

time [s]

er
ro

r 
[d

eg
]

Fig. 6. Error between computed and actual joint angles.

Figure 8. Under the proposed framework, the regularization
terms are easily and intuitively designed, based on task space
information, according to (10). Although it is also possible to
design adaptive regularization terms for the Jacobian based
method based on [16], [17], [18], they require singular value
decomposition of the Jacobian at every time step, which can
be computationally intensive.

To investigate the robustness of the inverse kinematics
algorithms to noise and singularities, we specified the fol-
lowing desired joint trajectories:

qdi = 0.02(2pi − 1), i = 1, 3, 4, 5, 7
qd2 = 0.02(2p2 − 1) + π/2
qd6 = 0.02(2p6 − 1)− π/2 (31)

where pi ∈ [0, 1], i = 1, ..., 7, are uniformly distributed
random numbers. Thus, the robot is to track a noisy trajectory
within a small neighborhood of 3 concurrent singularities.
Figure 8 shows that the proposed Modular Inverse Kinemat-
ics is robust to noise at the singularities, and the tracking
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Fig. 7. Adaptive regularization terms become active only when near
singularities.

error remains below7◦. Although a gentle drift is observed
over a long duration of50s, the same phenomenon is ex-
hibited for Jacobian Based Inverse Kinematics. Fortunately,
for turned based gesture imitation that we are dealing with,
the duration of each trajectory is usually modest(< 10s).
Hence, the drift is unlikely to be a technical concern in our
application.
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Fig. 8. The proposed Modular Inverse Kinematics (top) is robust to noise
at singularity, although it exhibits a gentle drift, similar to Jacobian Based
Inverse Kinematics (bottom).

A limitation of the proposed method is that it is not
equipped to handle redundancy that may be present in
general applications. For these purposes, Jacobian Based In-
verse Kinematics provide a convenient and general solution.
Nevertheless, for the specific application of gesture imitation,
the proposed method is more advantageous, as shown in this
comparison study.



IV. H ANDLING K INEMATIC CONSTRAINTS

We consider kinematic constraints in the form of joint
limits q

i
, qi and velocity limits±q̇i, i = 1, ..., ndof , which

need to be satisfied simultaneously by the gesture trajectory.
To this end, we define the admissible zones for joint position
and velocity as:

Ωqi
= {qi ∈ R : q

i
≤ qi ≤ qi}

Ωq̇i
= {q̇i ∈ R : |q̇i| ≤ q̇i} (32)

such thatqi, q̇i are to satisfyqi ∈ Ωqi and q̇i ∈ Ωq̇i for all
t ∈ [0, T ], whereT is the duration of the gesture.

Additionally, the modified trajectory is required to main-
tain its original profile as much as possible. Thanks to
the turn-based imitation framework, batch modification of
trajectory is feasible, and allows us to perform trajectory
scaling while preserving the profile.

A. Position Scaling

Our method is based onnon-uniformscaling of the joint
position profile, such that relevant segments that transgress
the joint limits are diminished while segments that remain
within the limits are preserved. Additionally, smoothness is
maintained despite the use of different scalings in different
portions of the profile. Each joint is scaled independently.

First, we obtain the extrema of the segments ofqi(t) that
are outside the admissible zone, i.e.qi(t) /∈ Ωqi for some
t ∈ [0, T ]. For thekth extremum(k = 1, ..., nei), we have:

q∗i,k =





max
t∈[ci,k,ci,k]

qi(t), if qi(t) > qi

min
t∈[ci,k,ci,k]

qi(t), if qi(t) < q
i

(33)

t∗i,k =





arg max
t∈[ci,k,ci,k]

qi(t), if qi(t) > qi

arg min
t∈[ci,k,ci,k]

qi(t), if qi(t) < q
i

(34)

for t ∈ [ci,k, ci,k], where ci,k, ci,k are the times at which
the joint position leaves and re-enters, respectively, the
admissible zoneΩqi .

Subsequently, we extract a segment occurring beforet∗i,k,
such that it joinsq∗i,k to the nearest turning point inside
the admissible zone, or the nearest extremum outside the
admissible zone, whichever is closer. Let[t−i,k, t̄−i,k] be the
time interval for this ‘before-segment’. Define the sets:

T1 = {t ∈ [t∗i,k−1, t
∗
i,k] : |q̇i(t)| < ε, qi(t) ≤ qi}

T2 = {t ∈ [t∗i,k−1, t
∗
i,k] : |q̇i(t)| < ε, qi(t) ≥ q

i
} (35)

where 0 < ε ¿ 1 is a small positive tolerance. Then, we
have

t−i,k =





max Ωε1 , if T1 6= ∅ andq∗i,k > qi

max Ωε2 , if T2 6= ∅ andq∗i,k < q
i

0, if T1 = ∅ andT2 = ∅
t̄−i,k = t∗i,k (36)

wheret∗i,0 = 0.

Similarly, we can extract a segment occurring aftert∗i,k.
Let [t+i,k, t̄+i,k] be the time interval for this ‘after-segment’.
Define the sets:

T3 = {t ∈ [t∗i,k, t∗i,k+1] : |q̇i(t)| < ε, qi(t) ≤ qi}
T4 = {t ∈ [t∗i,k, t∗i,k+1] : |q̇i(t)| < ε, qi(t) ≥ q

i
} (37)

Hence, we have

t+i,k = t∗i,k

t̄+i,k =





min Ωε3 , if T3 6= ∅ andq∗i,k > qi

min Ωε4 , if T4 6= ∅ andq∗i,k < q
i

0, if T3 = ∅ andT4 = ∅
(38)

wheret∗i,nei
+1 = T .

As such, each extreme pointq∗i,k is associated with two
segments – one before and one after. For convenience of
representation, we define new labels for the segments as
follows:

(tai,j , tbi,j ) := (t−i,k , t̄−i,k)

(tai,j+1 , tbi,j+1) := (t+i,k , t̄+i,k)
(qai,j , qbi,j ) := (qi(tai,j ) , qi(tbi,j )) (39)

wherej = 1, ..., 2nei andk = 1, ..., nei .
Define a saturation function as:

S(?) :=





?, if ? > ?
?, if ? ≤ ? ≤ ?
?, if ? < ?

(40)

where ? and ? denote the upper and lower limits of?,
respectively. Then, the modified positionqmi for theith joint
is obtained as follows:

qmi(t) =





sqi,j (qi(t)− qai,j ) + S(qai,j ), t ∈ [tai,j , tbi,j ]
j = 1, ..., 2nei

qi(t), otherwise
(41)

where

sqi,j =
|S(qbi,j )− S(qai,j )|

|qbi,j − qai,j |
(42)

is the scaling factor for thejth segment of the trajectory of
joint i.

Since the interface between any two segments is always a
turning point, where the derivative approaches zero, mul-
tiplying different scale factors for the two segments still
results in the derivative approaching zero from both sides.
This ensures smooth blending of the segments despite non-
uniform scalings along the profile.

B. Velocity Scaling

A by-product of scaling down the joint positions to their
limits is that the velocitiesq̇mi are automatically reduced
too, so it makes sense to perform velocity scaling after
joint scaling. Velocity scaling is performed in a similar way
as joint scaling, with the exception that we applyuniform
scaling across all joints over the entire movement. Let
di,k, di,k be the times at which the joint velocity leaves and



re-enters, respectively, the admissible zoneΩq̇i
. In addition,

denote the set of times for whicḣqi(t) /∈ Ωq̇i as follows:

Tv := { t ∈ [di,k, di,k], k = 1, ..., nvex} (43)

The scaling factor0 < sv ≤ 1 is a constant described by

sv = max
i,j

q̇i

|q̇∗i,k|
(44)

wherek = 1, ..., nevi , and

q̇∗i,k =

{
max

t∈[di,k,di,k]
|qi(t)|, if t ∈ Tv

q̇i, otherwise
(45)

The velocity scaling law (44) is simpler than its position
scaling counterpart due to the symmetrical nature of the
velocity constraints and the fact that each movement is
discrete, i.e. zero initial and final velocities. Finally the
modified trajectory is given by

qfi(t) =
∫ t/sv

0

sv q̇m,i(t) dt (46)

which has an extended duration(T/sv) ≥ T so that
displacement is preserved.

V. ROBOTIC GESTUREIMITATION EXPERIMENT

We have implemented the proposed inverse kinematics
algorithms for gesture imitation on an upper body humanoid
robot namedOlivia, which has 17 DOFs in total: 6 for each
arm, 2 for the torso, and 3 for the head. Olivia is a social
robot designed mainly for human-robot communication and
interactions using speech, vision, and gestures. To teach
gestures to the robot, we use turn-based imitation, where
the human completes a full demonstration before the robot
performs a similar motion. This process emulates human-to-
human imitation learning for intuitive teaching of gestures to
robot without motion feedback from the robot, which may
disturb human demonstration. Turn-based gesture imitation
allows us to perform offline data processing, inverse kinemat-
ics, and motion replanning to satisfy kinematic constraints,
before the final motion plan is executed by the motor
controllers.

To capture human motion data in task space, we use the
Measurand ShapehandPlus system, which is an upper body
motion capture system comprising arrays of fibre optic bend
and twist sensors to measure arm and hand movements, as
well as inertial sensors to measure torso and head move-
ments. Motion data is captured at 80Hz and consists of
global Cartesian positions of the neck, shoulders, elbows
and wrists, as well as global orientation Euler angles for
the hands and head, all with respect to a reference frame
located at a point on the hip. A motion segment from the
human user is detected by using a velocity threshold, such
that data is considered to be motion if any task velocity
exceeds a threshold for a certain duration.

From the task space human trajectories, inverse kinematics
based on the proposed method is performed to obtain the
corresponding desired trajectories for the robot joints, and

modified to satisfy kinematic constraints. Finally the desired
motion is executed by a Proportional-Derivative controller.

Fig. 9. Imitation of waving gesture.

The results of robotic imitation of waving, music-
conducting, and forearm rotation gestures are shown in Fig-
ures 9-11 respectively. For each figure, the left column shows
snapshots of the motion demonstrated by the user, whereas
the right column shows the motion performed by the robot
after the end of the demonstration. The imitated gestures
are visually similar to the demonstrated ones, indicating that
the proposed inverse kinematics scheme is effective. Figure
12 shows the the elbow flexion limit of80◦ in the robot
is respected when imitating a human gesture with elbow
flexion > 90◦. Turn-based imitation is useful when gestures
involve the head, as seen in Figure 11, since it allows the
demonstrator to focus on observing the robot’s imitation
motion after the demonstration is finished.

VI. CONCLUSIONS

We have presented a robust modular inverse kinemat-
ics scheme for an upper body humanoid robot performing
gesture imitation, based on pan-tilt and spherical modules.
We have designed adaptation laws for the joint angles
based on the derivative of the inverse tangent function of
the relevant task space variables. Robustness to kinematic
singularity has been ensured via a time-varying regularization
parameter, and kinematic constraints have been satisfied by
using smooth scaling laws.

The proposed method is advantageous for applications
such as gesture imitation where redundancy resolution is
not required. The advantages include a better accuracy-
robustness tradeoff with recovery of accuracy outside a
neighborhood of the singularity, the ease of adapting the
regularization parameter without relying on computationally
expensive SVD operations, and avoidance of abrupt jumps
in the derivative signal due to joint and velocity scaling.

Our simulation study has shown that the proposed method
is robust to measurement noise and results in smaller overall
error than a Jacobian based method with fixed damping.
Furthermore, experimental implementation on an upper-body
humanoid robot has shown that the robot replicates user-
demonstrated gestures closely. The proposed robust modular



Fig. 10. Imitation of a music-conducting gesture.

inverse kinematics is useful for providing a natural and
intuitive interface for a user to teach rich, highly coordinated,
and possibly complex movements to a robot.
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