Two Ellipse-based Pruning Methods
for Group Nearest Neighbor Queries

Hongga Li
Institute of Remote Sensing Applications
Chinese Academy of Sciences, Beijing, China

lihongga_lhg@yahoo.com.cn

Bo Huang
Department of Geomatics Engineering
University of Calgary, Calgary, Canada

huang@geomatics.ucalgary.ca

ABSTRACT

Group nearest neighbor (GNN) queries are a relatively new
type of operations in spatial database applications. Differ-
ent from a traditional kNN query which specifies a single
query point only, a GNN query has multiple query points.
Because of the number of query points and their arbitrary
distribution in the data space, a GNN query is much more
complex than a kNN query. In this paper, we propose two
pruning strategies for GNN queries which take into account
the distribution of query points. Our methods employ an
ellipse to approximate the extent of multiple query points,
and then derive a distance or minimum bounding rectan-
gle (MBR) using that ellipse to prune intermediate nodes
in a depth-first search via an R*-tree. These methods are
also applicable to the best-first traversal paradigm. We con-
duct extensive performance studies. The results show that
the proposed pruning strategies are more efficient than the
existing methods.

Categories and Subject Descriptors

H.2.8 [DATABASE MANAGEMENT]: Database Ap-
plications—Spatial databases and GIS

General Terms
Algorithms

Keywords

Group nearest neighbor query, GNN, Query optimization

1. INTRODUCTION

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

GIS 05, November 4, 2005, Bremen, Germany.

Copyright 2005 ACM 1-59593-146-5/05/0011$5.00.

Hua Lu
School of Computing
National University of Singapore, Singapore

luhua@comp.nus.edu.sg

Zhiyong Huang
School of Computing
National University of Singapore, Singapore

huangzy@comp.nus.edu.sg

Nearest neighbor (NN) queries and k nearest neighbor
(KNN) queries constitute a very important category of queries
in database studies. They have many kinds of applications,
including but not limited to geographic information systems
(GIS), CAD/CAM, multimedia [6], knowledge discovery [4]
and data mining. In spatial databases, datasets are usually
indexed by spatial access methods (SAM) such as the R-
tree [7] and the R*-tree [3]. Several kNN algorithms using
such SAM [13, 8] and relevant performance analysis [12, 15]
have been proposed. Besides, multi-step methods [14] and
transformation methods [16], approximation [1] and range
constraints [5] have also been proposed for kNN queries.

As an extension of the kNN query, the group nearest
neighbor (GNN) query [11] has more than one query point,
and its objective is to minimize the sum of distances from
each resultant point to all query points. For example, sev-
eral friends in a city may want to find a place to meet, and
they hope the sum of their distances to the place is minimal
so that they can reduce their total travelling cost. GNN
queries can also be applied to data clustering [9], outlier
detection [2] and abnormality detection [10].

GNN queries are more complex compared to traditional
kNN queries mainly for two reasons. One is that multi-
ple query points are specified, which requires more distance
computation. The other is that query points may be dis-
tributed within the data space in arbitrary ways, creating a
large search region. However, the ideas behind kNN query
processing can also be adapted for GNN queries.

The scenarios of GNN queries in [11] assume a static
dataset and several query points, with the former being in-
dexed by an R-tree. Based on these assumptions, several
processing algorithms were developed in that work. Those
processing techniques for GNN queries were inspired by prun-
ing metrics and corresponding algorithms used for tradi-
tional kNN queries, and were derived from adapting the old
methods to the new requirements. Those algorithms also
consider whether all query points can fit in memory, and
deal with them accordingly. For either case, three process-
ing methods are used.

The methods proposed in [11] for multiple memory-resident
query points may be reconsidered and further improved.
Specifically, the multiple query method (MQM) does not

consider the distribution of query points at all, the sin-
gle point method (SPM) approximates the centroid of all
query points instead of their extent shape, and the minimum
bounding method (MBM) simply uses the minimum bound-
ing rectangle (MBR) of all query points to prune unqualified
tree nodes. Bearing in mind that the distribution of query
points is very important to query processing, and their cen-
troid can hardly reflect their distribution accurately, we are
motivated to find new and more efficient pruning strategies
for GNN queries.

In this paper, we propose new pruning strategies for GNN
query processing via the R*-tree. We assume that all query
points can fit in main memory. Our methods take into ac-
count not only the number of query points, but also their
distribution in the data space. We use an ellipse to approxi-
mate the extent of all query points, and the distance or MBR
derived from the ellipse is used to prune intermediate index
nodes during search via the R*-tree. Our pruning strategies
are applicable to both the depth-first and best-first traversal
paradigms.

The remainder of this paper is organized as follows. Sec-
tion 2 gives a brief survey of related work. In Section 3,
we propose our ellipse-based pruning strategies for GNN
queries. In Section 4, we conduct an extensive set of ex-
periments on two real geographic datasets; the results show
that our proposed methods outperform previous methods.
Section 5 concludes the paper.

2. RELATED WORK

The problem of answering kNN queries using the R-tree
was first introduced in [13]. That algorithm searches the R~
tree in a depth-first manner, using two different metrics to
help prune intermediate nodes and leaf nodes. One metric
is optimistic mindist, which corresponds to the shortest dis-
tance between the query point and the MBR of a tree entry.
The other is pessimistic minmaxdist, which measures the
longest distance from the query point to a tree entry MBR
that ensures the existence of some data point(s). For a given
query point g, mindist and minmazdist are used to order
and prune R-tree node entries according to three heuristics:
(1) every MBR M with mindist(q, M) greater than the ac-
tual distance from ¢ to a given object o is discarded; (2)
for two MBRs M and M’, if mindist(q, M) is greater than
minmazxdist(q, M'), M is pruned; and (3) if the distance
from ¢ to a given object o is greater than minmazdist(q, M)
for an MBR M, o is discarded.

The depth-first kNN algorithm accesses more R-tree nodes
than necessary. To enable optimal index node access, a best-
first algorithm was proposed in [§8]. A memory heap is used
to hold the R-tree entries to be searched, which gives priority
to smaller mindist between an entry and the query point.
Entries for the memory heap are selected according to the
mindist between an entry and the query point. Only those
entries with a small enough mindist are pushed into the
heap and searched later with its sub-entries checked and
pushed back if necessary. With the optimization done with
the metric mindist, the best-first algorithm only accesses
those nodes containing k£ nearest neighbors, thus achieving
optimal node access.

By extending KNN queries, Papadias et al. introduced
a novel spatial query with multiple query points, i.e., the
group nearest neighbor (GNN) query [11]. A GNN query in-
volves two sets of points P = {p1, ..., pm} and Q = {q1, ..., qn },

where P is the dataset and () is a set of query points.
The distance between a data point p and the query @ is
defined as dist(p,Q) = >.i_, [pgi|, where |pg;| is the Eu-
clidean distance between p and query point ¢;. A GNN
query returns the point(s) in P with the smallest distances
to the query. Formally, we use NNg(P) to represent the
result of a GNN query, and it satisfies: Vp € NNg(P) and
Vp' € P — NNg(P), dist(p,Q) < dist(p’, Q).

Based on the pruning metrics and algorithms proposed for
kNN queries, several processing techniques for GNN queries
were proposed in [11]. Three algorithms, namely the multi-
ple query method, the single point method and the minimum
bounding method, were proposed for the case where query
set @ can fit in memory.

(1) The multiple query method (MQM) is a threshold al-
gorithm. It executes incremental NN search for each point
q; in @, and combines their results. The distance to ¢;’s
current NN is kept as a threshold ¢; for each ¢;. The sum
of all thresholds is used as the total threshold T'. best_dist
is dist(N Neur, @), where N Neyr is the candidate nearest
neighbor found so far. Initially, best_dist is set to oo and T
is set to 0. The algorithm computes the nearest neighbor
for each query point incrementally, updating the thresholds
and best_dist until threshold T is larger than best_dist.

(2) The single point method (SPM) processes a GNN
query in a single traversal of the R-tree. SPM first decides
the centroid ¢ of @), which is a point in the data space with
a small or minimum value of dist(q,@). Then a depth-first
kNN search is performed with ¢ as the query point. During
the search, some heuristics based on triangular inequality
is used to prune intermediate nodes and determine the real
nearest neighbors to Q.

(3) The minimum bounding method (MBM) regards @ as
a whole and uses its MBR M to prune the search space in
a single query, in either a depth-first or best-first manner.
Two pruning heuristics involving the distance from an in-
termediate node N to M or query points are proposed and
can be used in either manner.

Because MQM retrieves the NN for every point in query
set @), it sometimes accesses the same tree nodes for differ-
ent query points, and its cost increases fast with query set
cardinality. By contrast, both SPM and MBM perform a
single query with some pruning heuristics. SPM is a mod-
ified single depth-first NN search with the centroid of @
being the query point while MBM considers the MBR of
@ and can assume either a depth-first or best-first manner.
The distribution shape of query points in @ has an impact
on the performance of SPM and MBM because the former
approximates Q’s centroid and uses it in the single query,
and the latter takes into consideration the extent of Q when
pruning nodes. According to the comparison conducted in
[11], MBM is better than SPM in terms of node access and
CPU cost while MQM is the worst. Therefore, in this paper,
we aim to improve SPM and MBM by using more powerful
pruning strategies.

3. OUR PRUNING METHODS

3.1 Motivation

In a kNN query processing, the search bound is deter-
mined by the farthest data point in the query result, i.e., the
k-th nearest neighbor NNj. Specifically, the search bound
can be described as a circle, whose center is the query point

g and radius is dist(q, NNi). We use € to represent such a
bound.

Similarly but more roughly, a GNN query can be regarded
as the equivalent of a corresponding range query, i.e., for
the k-th distance value e, = maz {dist(p,Q) | p € GNN§}.
Both queries return the same result set and retrieve all ob-
jects in P that have a distance from () not greater than
ex. In other words, GNN§ = rangeq(er) = {pi € P |
dist(pi, Q) < ex,1 < i < k}. However, in a GNN query,
it is difficult to determine and describe the search bound
because of the number of query points and their arbitrary
distribution. Nevertheless, we can still get some inspiration
from the search bound of a kNN query.

In the kNN query context, the single query point and the
farthest qualified neighbor together decide a circle while for
GNN queries, there are more than one query point involved.
A straightforward idea is to change the circle to other pos-
sible geometry shapes since the number of query points has
increased from one to more. Then for the case of two query
points, we have a good choice — the ellipse, which is the tra-
jectory of all points whose distances to two specific points
(i.e., the two foci of that ellipse) are fixed. All points inside
the ellipse are nearer to the two foci than those on it while
all points outside are farther. This suits GNN queries with
two query points.

The ellipse idea above can be further applied to GNN
queries with more than two query points. This is because
the ellipse is the simplest geometric shape besides the circle
that can be used to deal with distance. The issue now is
how to determine an ellipse for more than two query points.
First, we need to pick two query points as the foci of the
estimated ellipse. Later, we will address how to choose foci
from the query set Q.

3.2 DistancePruning Method Usingan Ellipse

Although it is difficult to use a universal and simple equa-
tion to describe the search bound for a GNN query, we may
still use one circle or one ellipse to embrace the bounding
shape of the query set Q). The extent of that shape is de-
termined by the distance from the k-th nearest neighbor to
the query set Q.

Considering the circle and the ellipse, it is clear that at
the same distance value, the area embraced by the circle is
larger than that by the ellipse. For instance, if a pair of
points with distance ¢ > 0, then the ratio is:

Areacircle me? €

= = >1
me\/e2 — 24 \Je2 —c2/4

Our first pruning strategy is as follows: If a point or an
MBR is far away enough with respect to the two points we
choose as the approximate ellipse, they cannot be in the final
answer. The strategy is presented below:

Areaellipse

Lemma 1 Let ¢; and ¢; be a pair of query points in
Q, and max_dist be the distance of the k-th GNN found so
far. A node N in the R*-tree (or a point p) can be safely
pruned if: mindist(N, ¢;) + mindist(N, q;) > mazx_dist (or
dist(p,qi) + dist(p,q;) > mazx_dist).

ProOF. For node N, we consider any point p covered
by it. The distance from p to query set Q is dist(p,Q) =
Z‘fi‘l dist(p,qi) > 2‘22‘1 mindist(N,q) > mindist(N, q) +
mindist(N,q;). This, together with the given condition,

leads to dist(p, @) > maz_dist, which means node N does
not contain any point nearer the query set (Q than the k-th
GNN found so far. Thus, it is safe to prune node N.

For point p, we have dist(p,Q) = Zg‘l dist(p,qi) >
dist(p,q;) + dist(p,q;). This, together with the given con-
dition, also leads to dist(p,Q) > max_dist, which means p
cannot be nearer) than the k-th GNN found so far. [l

An example of Lemma 1 is shown in Figure 1. A, B, C
and D are four intermediate R*-tree nodes, and query set
Q has two points ¢, and g». Suppose the access order of all
nodes are A, D, B and then C. In the figure, the values
of mindist(N, qa) + mindist(N, g) are 17, 12, 17 and 19,
for A, B, C and D respectively. Suppose point g in A is
the current nearest neighbor, its distance to query set Q
dist(g,qa) + dist(g,qs) is 18.5. That value can be used as
a pruning distance. Thus, node D can be pruned first, and
another potential node B is considered. Point h in B will
be the new nearest neighbor, and the pruning distance will
be updated to dist(h, ga) + dist(h, g) which is 14. In node
C, there is no other point nearer to Q than h. Therefore,
the NN for @ of g, and g is point h in node B.

Figure 1: Example of Lemma 1

Algorithm GNN(Q, k)
Input: Q@ is the query points set
k is the number of NNs to retrieve

Output:GNN query result
1. answerSet = @; max_dist = oo;
2. find a pair of query points

¢; and g; with maximum distance;

// call recursive algorithm on R-tree
3. dist_ellipse_ GNN(node, Q, k, answerSet,

maz_dist, ¢, q;);

Figure 2: Framework for ellipse-based distance
pruning method

We now consider the issue of how to choose the two foci
for an approximate ellipse. For an ellipse with equation:

2 2
T Yo
§+b—271(a>b>0),
the distance sum from any point p on it to its two foci (say
do and gp) is 2a. To prune a node N or a point p’, we want

mindist(N, qq) +mindist(N,qp) or dist(p’, qa) + dist(p’, qv)

Algorithm dist_ellipse_GNN(node, Q, k, answerSet,
max—di5t7 qi, q])
Input: node is an R-tree node
Q is the query points set
k is the number of NNs to retrieve
answerSet is the set of NNs so far
max_dist is the distance to the k-th NN so far
¢i, q; are the farthest pair of points in @
Output:GNN query result
1. branchList = @;

2. if (node is not a leaf node)

3. for each entry sub in node

4 if (mindist(sub, ;) + mindist(sub, q;)
> max_dist)

5. continue;

6. insert sub into branchlList,

keep it sorted on mindist(sub, Q);

for each entry sub in branchList

8. dist_ellipse_ GNN(sub, Q, k,
answerSet, g, ¢;);

=~

9. else
10. for each data point p; in node
11. if (dist(ps, qi) + dist(ps, q5) > max_dist)
12. continue;
13. if (dist(ps, Q) > max_dist) continue;
14. insert p; into answerSet,
keep it sorted on dist(ps, Q),
and update max_dist if necessary;
// perform upward pruning
15. pruneBranchList(maz_dist, branchList, k);

Figure 3: dist_ellipse_.GNN algorithm

Algorithm pruneBranchList(maz_dist, branchList, Q, k)
Input: max_dist is the filtering distance

branchList is the list of sub-nodes to search

@ is the query points set

k is the number of NNs to retrieve
Output:updated branchList
1. for each node N in branchlList
2. if (mindist(N, Q) > max_dist)
3. remove N from branchList

Figure 4: Branch pruning algorithm

to be large. Assume N or p’ is on the ellipse, then these two
distance sums will increase as a increases. Therefore, we
prefer large possible values of a. To achieve this, we choose
two points from query set (Q between which the distance is
the largest among all pairs.

The algorithm framework for the ellipse-based distance
pruning method is presented in Figure 2. A depth-first
search for GNN queries with the ellipse-based distance prun-
ing strategy is presented in Figure 3, and it calls the branch
list pruning algorithm presented in Figure 4. Note that
though we use the depth-first traversal to explain our ellipse-
based pruning strategy, the strategy is also applicable to the
best-first traversal paradigm.

3.3 MBR Pruning Method Using an Ellipse

Unlike the distance pruning method above, which mainly
focuses on computing the distance filtering metric, the MBR

Figure 5: Example of Lemma 2

pruning method is intended for direct pruning with less dis-
tance computation. Based on an estimated ellipse derived
from query set @@ and the candidates found so far during
search, we can further reduce distance calculations by using
the MBR or the ellipse in pruning.

Lemma 2 Let ¢; and g; be a pair of points in query set
Q, and Eqg(¢i,q;, max_dist) be the estimated ellipse with
major meedist anq foci ¢; and g, where max_dist is the
distance of the k-th GNN found so far. If M BR(Eq) is the
minimum bounding rectangle of ellipse Fq(qi, ¢;, maz_dist),
a node N can be safely pruned if N disjoins M BR(Eq).

ProOOF. Consider any point p covered by node N. Its
distance to query set Q is dist(p,Q) = Z‘f:?‘l dist(p,qi) >
dist(p,q;) + dist(p,q;). On the other hand, because N dis-
joins MBR(Egq), point p must be outside MBR(Eqg) and
thus ellipse Eg. Due to the property of an ellipse, we have
dist(p,q;) + dist(p,q;) > 2a, where a is the ellipse ma-
jor which equals m2Z=4ist Therefore, we get dist(p,Q) >
max_dist, which indicates it is safe to prune node N. [

An example of Lemma 2 is shown in Figure 5. A, B,
C and D are four intermediate R*-tree nodes, and query
set @ has two points ¢, and ¢». Despite the same spatial
distribution, we use a range instead of a distance filter value
to prune nodes. Suppose the access order of all nodes are
A, C, B and then D, and point g in A is the current nearest
neighbor. We compute the MBR for the approximate ellipse
according to the equations above. With that MBR, node C
can be pruned first, and then another potential node B is
found. As the area of the MBR is larger than that of the
ellipse, several points, such as a in D, may be retained until
the last pruning. Finally, the NN for two query points ¢,
and ¢ is decided as point A in node B.

We now present how to compute the MBR of a given
ellipse. Suppose an ellipse has two foci (z1,y1) and (z2, y2),
and its long axis is 2a. The ellipse can be represented in an
equation:

[cosO(z — xc) + sinf(y — yc)]2
a2
[—sinb(z — xc) + cosfy — ye))?
b2

+

=1,

where

0 = arctan(L2—4L),
To — T1
Tl + T2
Te = ,
2
)
c— T 5
2

V{2 —y1)? + (22 — 21)?

Cc = s

b=+va2%—c2.

If partial derivatives of = and y for the ellipse equation
are used, we can obtain the extreme value of x,, and y,, as:

T = Te - \/a260329 + b2sin20

and

Ym = Yc + \/azsng + b2cos26

respectively. The ellipse is bounded by the MBR whose
corner coordinates are four (Zm,ym)s. Therefore, the area
ratio between the MBR for the ellipse and the ellipse is:

Areap, 4v/a%cos?0 + b2sin?0 - v/a2sin?0 + b2cos20
Areteiiipse o mab
When 0 equals (2k + 1)7/4 and kn/2, we can obtain the

maximum and minimum ratios of the two areas, which re-
spectively are:

4a® — 2¢*

mava? — c?

ratiomar =

and
ratiomin = —.
s

The ratio between the MBR and the ellipse indicates the
degree to which we extend our search region from a smaller
one to a bigger one. Though this extension may cause the
search region to overlap with more R-tree nodes, the sim-
plified distance computation still pays off in overall cost, as
we will show in the experimental results in Section 4.

Algorithm GNN(Q, k)
Input: @ is the query points set
k is the number of NNs to retrieve
Output:GNN query result
1. answerSet = @;
2. find a pair of query points
¢; and g; with maximum distance;
3. initialize max_dist to the product of
|Q| and the length of data space diagonal;
// call recursive algorithm on R-tree
4. MBRe_ellipse. GNN(node, Q, k, answerSet,
max—di8t7 qi, q]):

Figure 6: Framework for ellipse-based MBR pruning
method

The framework and the full algorithm for the ellipse-based
MBR pruning method are presented in Figures 6 and 7,
respectively. Similar to the ellipse-based pruning strategy
in Section 3.2, this MBR pruning strategy is also applicable
to both the depth-first and best-first traversal paradigms.

Algorithm MBR_ellipse. GNN(node, Q, k, answerSet,
maz_dist, ¢, q;)
Input: node is an R-tree node
Q is the query points set
k is the number of NNs to retrieve
answerSet is the set of NNs so far
maz_dist is the distance to the k-th NN so far
¢i, q; are the farthest pair of points in @
Output:GNN query result
1. branchList = @;
2. compute MBR eRange for ellipse determined
by i, ¢; and max_dist;
3. if (node is not a leaf node)
4. for each entry sub in node
// filter by MBR(FEq(ex))
if (disjoin(sub, eRange)) continue;
6. insert sub into branchList,
keep it sorted on mindist(sub, Q);
for each entry sub in branchList
8. MBR_ellipse_GNN (sub, Q, k, answerSet,
mam—di5t7 qi, q])a

=

9. else

10. for each data point p; in node

11. if (disjoin(pi, eRange)) continue;
12. if (dist(ps, Q) > max_dist) continue;
13. insert p; into answerSet,

keep it sorted on dist(pi, Q),
and update max_dist if necessary;
// perform upward pruning
14. pruneBranchList(max_dist, branchList, k);

Figure 7: MBR _ellipse_ GNN algorithm

4. EXPERIMENTAL STUDIES

In this section, we evaluate the efficiency of our proposed
pruning methods for GNN queries. We compare them with
the single point method and the minimum bounding method.
(Hereinafter, the four methods are denoted as DE, MBRE,
SPM and MBM, respectively.) As it has been pointed out
in [11] that SPM and MBM are better than MQM, we do
not consider MQM in the experiments.

4.1 Experimental Settings

All the experiments were programmed in C4++ and con-
ducted on a Toshiba Satellite 5105-701 laptop running MS
Windows XP, with an Intel Pentium 4 mobile CPU of 1.80GHz.
The laptop computer had 512M memory and 60G disk stor-
age.

Two real geographical datasets were used to evaluate the
proposed algorithms: the US ZIP dataset and the Singa-
pore building dataset as shown in Figure 8. The USA ZIP
dataset comprised 41,313 points while the Singapore build-
ing dataset comprised 10,453 houses. For both datasets, the
R*-tree was used as the index structure, and the page size
was set to 1K bytes. Thus one page at most contained 25
nodes.

Three performance factors were tested: (1) the cardinal-
ity n of query point set @, (2) the distribution of all query
points in @, and (3) the k value, i.e., the number of retrieved
neighbors. We used workloads of 100 queries randomly dis-
tributed in the data space, and the performance was aver-
aged over all the 100 queries. The same set of queries were

(b) Singapore building layer

Figure 8: Datasets used in the experiments

used for all methods in the comparison.

We evaluated the performance of various methods with
two measures: page accesses and response time. Page ac-
cesses were the number of R*-tree nodes fetched from the
disk into memory during query processing. Response time,
in the unit of millisecond, was measured as the overall CPU
time for query processing.

4.2 Effect of query set cardinality

First, we analyze the effect of query set cardinality on
GNN queries. Figure 9 shows the performance of different
methods, where the k value equals 1, and the extent of all
query points occupies 6.25% of the whole data space.

Both response time and page access number become larger
as query set cardinality increases. This is easy to understand
because more query points involve more distance computa-
tion. In both datasets, our methods outperform both SPM
and MBM. This is because our methods always pick two
query points that determine the “longest” ellipse covering
the query set @, and only prune unqualified nodes whose
distances to these two query points are computed, no mat-
ter how many points are specified in Q.

Though the Singapore dataset contains fewer points than
the USA dataset, the cost of query processing for the former
is higher than for the latter. This may be attributed to the
particular distribution of points in the Singapore dataset,
which is similar to a circle. This causes more “dead space”
in the R-tree nodes, and thus incurring more comparisons
that do not contribute to the final query results.

4.3 Effect of query set MBR size

Next, we consider the effect of query set MBR size. Figure
10 shows the performance of the different methods, where
the k value equals 1, the cardinality of query points is 5,
and the ratio between the MBR of the query set @ and the
whole data space varies from 6.25% to 100%.

In Figure 10, it is clear that as the overlapping area be-
tween the query set and the whole data space increases, more
pages are accessed and more processing time is needed. This
is because a larger query set MBR indicates a larger search
region.

Our methods are more steady for the less skewed dataset
(Figures 11(a) and 11(b)) whereas SPM and MBM are more
steady for the more skewed dataset ((Figures 11(c) and
11(d)). Overall, our methods outperform SPM and MBM
for both datasets. This indicates that the ellipse in our
methods determined by the farthest pair of points in @) has
more pruning power during search.

4.4 Effect of number of retrieved NNs

Finally, we consider the effect of number of retrieved near-
est neighbors. Figure 11 shows the performance of different
methods, where the cardinality of the query set @ is 5 and
the MBR, of @) occupies 6.25% of the data space.

The variance of the k value does not affect the perfor-
mance of any method significantly. The reason is that many
neighbors are found within the same tree node as declared
in [11]. Our methods still work more efficiently than both
SPM and MBM because the ellipse used in our methods
involves less distance computation during search, and can
prune unqualified nodes more efficiently.

5. CONCLUSION

Group nearest neighbor queries are more complex than
traditional kNN queries because they have multiple query
points and those query points may be in arbitrary distribu-
tion. In this paper, we have developed two pruning strate-
gies for GNN queries over spatial datasets indexed by the
R*-tree. By taking into account the distribution of all query
points, we use an ellipse to approximate the query extent.
Then a distance or MBR derived from the ellipse is used to
prune intermediate index nodes during search. Our pruning
strategies can be used in both the depth-first and best-first
traversal paradigms. The experimental results demonstrate
that our proposed methods outperform the existing ones sig-
nificantly and consistently with real geographical datasets,
in both page access number and CPU time.

6. ACKNOWLEDGMENTS

This work is part of a bigger project called SpADE (A
SPatio-temporal Autonomic Database Engine for location-
aware services) funded by A*STAR. The details can be found
at http://www.comp.nus.edu.sg/~ooibc/research.html.

7. REFERENCES

[1] S. Arya, D. M. Mount, N. S. Netanyahu,
R. Silverman, A. Y. Wu. An Optimal Algorithm for
Approximate Nearest Neighbor Searching Fixed
Dimensions. Journal of ACM, 45(6):891-923, 1998
[2] C. Aggrawal, P. Yu. Outlier detection for high
dimensional data. In Proc. of ACM SIGMOD Int’l
Conference, 2001.

200 B spv @ veM ODE OMBRE
«
o
o
0
0
]
o
o
ol
I
Query set cardinality n
(a) IO vs. n (USA dataset)
40 © spy @ MBM O DE OMBRE
0
£
(]
£
-
o
(]
0
&
o
Q0
o
1]
9
Query set cardinality n
(b) CPU vs. n (USA dataset)
3500 B spv@vEM ODE OMBRE
3000
o
® 2500
9]
S 2000
2 1500
@
& 1000
500
0
2 4 8 16 32
Query set cardinality n
(c¢) IO vs. n (SG dataset)
~ 300 & spv @MeY ODE OMBRE
£
()
£
-
D
(]
a
c
o
Q4
0
]
9
Query set cardinality n

Figure 9: Effect of query set cardinality

(d) CPU vs. n (SG dataset)

1400 O spy @ MBME DE OMBRE
1200
o
o 1000
9]
& 800
& 600
©
o 400
200
0
6.25% 12.50% 25.00% 50.00% 75.00% 100.00%
MBR size of query set
(a) IO vs. M (USA dataset)
= 140 O spv @MBM B DE OMBRE
£ 120
g 100
-
80
(0]
2 60
o
5 40
)
~ 20
0
6.25% 12.50% 25.00% 50.00% 75.00% 100.00%
MBR size of query set
(b) CPU vs. M (USA dataset)
3500 & spv @ MM O DE OMBRE
«
0
)
9]
o
]
[
o
©
A
6.25% 12.50% 25.00% 50.00% 75.00% 100.00%
MBR size of query set
(c) IO vs. M (SG dataset)
~ 200 B8 spv @ uBY O pE OMBRE
&
()
£
-
i
(0]
)
=}
o
Q.
0
Q
o

6.25% 12.50% 25.00% 50.00% 75.00% 100.00%

MBR size of query set

(d) CPU vs. M (SG dataset)

Figure 10: Effect of query set MBR size

Page access

Ospv @ vBME DE OMBRE

Number of retrieved NNs

(a) IO vs. k (USA dataset)

Response time (ms)

20 Ospv @MBM B DE OMBRE

Number of retrieved NNs

(b) CPU vs. k (USA dataset)

3500 & spy @ MBM O DE O MBRE
3000
o
® 2500
9]
3 2000
& 1500
ol
f 1000
500
0
1 2 4 8 16 32
Number of retrieved NNs
(c) 10 vs. k (SG dataset)
160 & spy @ MBM O DE O MBRE
a
E 140
] 120
5
o 100
o 80
5 60
&
o 40
o

20

Number of retrieved NNs

(d) CPU vs. k (SG dataset)

Figure 11: Effect of number of retrieved NNs

3]

(11]

(12]

(13]

(14]

(15]

N. Beckmann, H. P. Kriegel, R. Schneider, and

B. Seeger. The R*-tree: An efficient and robust access
method for points and rectangles. In Proc. of ACM
SIGMOD Int’l Conference, 1990.

M. Ester, H.-P. Kriegel, and J. Sander. Knowledge
discovery in spatial databases. Invited paper at
German Conf. On Artificial Intelligence, 1999.

H. Ferhatosmanoglu, I. Stanoi, D. Agrawal, and

A. E. Abbadi. Constrained Nearest Neighbor Queries.
In Proc. of Symposium on Spatial and Temporal
Databases (SSTD), 2001.

C. Faloutsos, M. Ranganathan, and Y. Manolopoulos.
Fast subsequence matching in time-series databases.
In Proc. of ACM SIGMOD Int’l Conference, 1994.

A. Guttman. R-tree: a dynamic index structure for
spatial searching. In Proc. of ACM SIGMOD Int’l
Conference, 1984.

G. Hjaltason, and H. Samet. Distance browsing in
spatial database. ACM Trans. on Database Systems,
24(2):265-318, 1999.

A. Jain, M. Murthy, and P. Flynn. Data clustering: A
review. ACM Comp. Surveys, 31(3):64-323, 1999.

K. Nakano, and S. Olariu. An optimal algorithm for
the angle-restricted all nearest neighbor problem on
the reconfigurable mesh, with applications. IEEFE
Trans. on Parallel and Distributed Systems,
8(9):983-990, 1997.

D. Papadias, Q. Shen, Y. Tao, and K. Mouratidis.
Group nearest neighbor queries. In Proc. of Int’l Conf.
on Data Engineering (ICDE), 2004.

A. Papadopoulos, and Y. Manolopoulos. Performance
of nearest neighbor queries in R-trees. In Proc. of Int’l
Conf. on Database Theory (ICDT), 1997.

N. Roussopoulos, S. Kelley, and F. Vincent. Nearest
neighbor queries. In Proc. of ACM SIGMOD Int’l
Conference, 1995.

T. Seidl and H. Kriegel. Optimal Multi-Step k-Nearest
Neighbor Search. In Proc. of ACM SIGMOD Int’l
Conference, 1998.

Y. Tao, J. Zhang, D. Papadias, and N. Mamoulis. An
Efficient Cost Model for Optimization of Nearest
Neighbor Search in Low and Medium Dimensional
Spaces. IEEE Trans. on Knowledge and Data
Engineering, 2004.

C. Yu, B. Ooi, K.-L. Tan, and H. V. Jagadish.
Indexing the Distance: An Efficient Method to KNN
Processing. In Proc. of Very Large Data Bases
Conference (VLDB), 2001.

