
April 14, 2003 14:10 WSPC/117-ijseke 00121

International Journal of Software Engineering
and Knowledge Engineering
Vol. 13, No. 1 (2003) 1–25
c© World Scientific Publishing Company

VISUALIZING ANIMATION DATABASES

AKANKSHA∗,§, Z. HUANG∗,¶, B. PRABHAKARAN†,‖ and C. R. RUIZ, JR.‡,∗∗

∗School of Computing, National University of Singapore, Singapore
†Department of Computer Science, University of Texas at Dallas, USA

‡College of Computer Studies, De La Salle University Manila, Philippines
§akanksha@comp.nus.edu.sg
¶huangzy@comp.nus.edu.sg

‖praba@utdallas.edu
∗∗consruiz@email.com

Accepted 15 October 2002

We consider a repository of animation models and motions that can be reused to generate
new animation sequences. For instance, a user can retrieve an animation of a dog kicking
its leg (in air) and manipulate the result to generate a new animation where the dog
is kicking a ball. In this particular example, inverse kinematics technique can be used
to retarget the kicking motion of a dog to a ball. This approach of reusing models and
motions to generate new animation sequences can be facilitated by operations such as
querying of animation databases for required models and motions, and manipulation of
the query results to meet new constraints. However, manipulation operations such as

motion retargeting are quite complex in nature. Hence, there is a need for visualizing
the queries on animation databases as well as the manipulation operations on the query
results.

In this paper, we propose a visually interactive method for reusing motions and
models, by adjusting the query results from animation databases for new situations while
at the same time, keeping the desired properties of the original models and motions.
Here, a user first queries for animation objects, i.e., geometric models and motions.
Then, the user interactively makes new animations by visually manipulating the query
results. Depending on the orders in which the GUIs (Graphical User Interfaces) are
invoked and the parameters are changed, the system automatically generates a sequence
of operations, a list of SQL-like syntax commands, and applies it to the query results of
motions and models. With the help of visualization tools, the user can view the changes
before accepting them.

Keywords: Animation databases; human computer interactions; metadata of animations;
reusing animations; visualization.

1. Introduction

Computer animation is a subject with both theoretic research interest and practical

applications in multimedia production, entertainment, simulation, etc. Reusing has

become an interesting approach for computer animation with the popularity of the

use of motion capture devices and 3D digitizers [16, 11, 12, 8]. The main idea in

1

April 14, 2003 14:10 WSPC/117-ijseke 00121

2 Akanksha et al.

reusing animations is to adjust the existing motion sequences for new situations

while at the same time, keeping the desired properties of the original motion. In

[8], motions are considered as signals so that the techniques of signal processing

can be applied to adapt them. A variant of the above method called the motion-

displacement mapping was discussed in [16]. In [11, 12], the problem is retargeting

motion of one articulated figure to another with the same structure but different

lengths.

Database approach for reusing animations is to adjust the query results from

animation databases for new situations while at the same time, keeping the desired

properties of the original models and motions. Here, motion sequences along with

geometric models represented as a hierarchical data structure (called scene graphs)

are stored in a database. A set of object metadata is defined and used for the storage

and query of the animations in the database. New motion sequences and models

can be created through a series of operations that manipulate the query results.

1.1. Need for visualization

Manipulations of query results (i.e., geometric models and motions) are complex

operations. For instance, Fig. 1 shows one example where a 3D humanoid is reaching

the bar located in the same position and orientation. In Fig. 1(a), the target was

reached with the elbow hanging high (the original motion). By specifying the height

limit of the elbow as a constraint, a new animation in Fig. 1(b) can be generated.

(For brevity, only the last frame of each motion sequence is shown in the figure.)

In the above example, a new animation is generated by making the lifting motion

of the elbow joint to meet a different height constraint. This type of manipulation

can be carried out by using a technique called inverse kinematics, originally de-

veloped for robotics control [9]. Inverse kinematics is a motion editing technique

1

(a) (b)

Figure 1. Same Target in (a) and (b) but Reached with Different Final Postures. In (b), A

Secondary Task is Specified for the Elbow to Constraint its Height

(a) (b)

Fig. 1. Same target in (a) and (b) but reached with different final postures. In (b), a secondary
task is specified for the elbow to constraint its height.

April 14, 2003 14:10 WSPC/117-ijseke 00121

Visualizing Animation Databases 3

2

Figure 2. Direct and Inverse Kinematics

Joint Space

Direct
Kinematics

Inverse Kinematics

Cartesian Space

Fig. 2. Direct and inverse kinematics.

especially for articulated figures. An articulated figure is a structure consisting of

multiple components connected by joints, e.g., human and robot arms and legs. An

end effecter is the last piece of a branch of the articulated figures, e.g., a hand for

an arm. Its location is defined in Cartesian space, three parameters for position

and another three for orientation. At each joint, there are a number of degrees of

freedom (DOFs). All DOFs form a joint (or configuration) space of the articulated

figure (Fig. 2). Given all the values of DOFs in joint space, the kinematics method

to compute the position and orientation of end effecter in Cartesian space is called

direct kinematics. Inverse kinematics is its opposite.

An end effecter location depends on the current joint state. The set of non-

linear equations establishing the end effecter location as a function of the joint

state is called the direct geometric model in Robotics. Inverting it is possible if the

dimensions of joint space and Cartesian space are the same. The motion editing is

done using inverse kinematics by specifying constraints to the end effecters. More

constraints can be specified if the secondary task is used. After the specification,

the inverse kinematics solver can compute the changes for each DOF in the joint

space. Thus, an existing motion sequence will be adjusted to meet the constraints.

Let us illustrate it by one example of motion retargeting. For ease of understanding,

we illustrate it in a 2D case. In Fig. 3(a), it shows a movement of the articulated

figure to have the end effecter to reach the target. This motion sequence represents

the original motion. Now we move the target point to a new position (Fig. 3(a))

4

(a) (b)

Figure 4. Retargeting to Generate a New Motion

offset vectors
target

the fixed end

the end effecter

the fixed end

the end effecter

target

(a) (b)

Fig. 3. Retargeting to generate a new motion.

April 14, 2003 14:10 WSPC/117-ijseke 00121

4 Akanksha et al.

and show how inverse kinematics can be applied to adjust the original motion, i.e.,

retargeting, generate a new motion (Fig. 3(b)).

Motion in Fig. 3(b) is achieved by applying the following equation for inverse

kinematics:

∆θ = J+∆x + (I − J+J)∆z (1)

where:

∆θ is the unknown vector in the joint variation space, of dimension n.

∆x describes the main task as a variation of the end effecter position and

orientation in Cartesian space. For example in Fig. 3(b), the main

task assigned to the end of the chain is to follow a curve or a line in

the plane under the small movements hypothesis. The dimension m

of the main task is usually less than or equal to the dimension n of

the joint space.

J is the Jacobian matrix of the linear transformation, representing the

differential behavior of the controlled system over the dimensions

specified by the main task.

J+ is the unique pseudo-inverse of J providing the minimum norm solu-

tion which realizes the main task.

I is the identity matrix of the joint variation space n × n.

(I − J+J) is a projection operator on the null space of the linear transformation

J . Any element belonging to this joint variation sub-space is mapped

by J into the null vector in the Cartesian variation space.

∆z describes a secondary task in the joint variation space. This task is

partially realized via the projection on the null space. In other words,

the second part of the equation does not modify the achievement of

the main task for any value of ∆z. Usually ∆z is calculated so as to

minimize a cost function.

The inverse kinematics solver applies the above equation (1) (no secondary task,

thus, ∆z = 0) to Fig. 3(a). Using (1) the offset vector ∆x of the target and the end

effecter position for each frame, and (2) the configuration at each frame as initial

posture, it (the solver) automatically generates a new configuration in joint space

to reach the new target.

Clearly, the task of using manipulation operations on query results is quite

complex in nature. Querying for models and motions in animations is also involved.

Hence, there is a need for visualizing the querying and manipulation operations in

animation databases.

1.2. Visualization of animation databases

Visualization of animation databases is promising for reuse of motions and models.

Some reasons are:

April 14, 2003 14:10 WSPC/117-ijseke 00121

Visualizing Animation Databases 5

(1) The data of animation is visual in nature. The 3D models for animation are

represented geometrically. The quality of animation results is judged visually

too (though there are efforts to devise automatic evaluation algorithms but the

results are still not acceptable).

(2) Reusing animation involves the process of manipulating 3D models and adjust-

ing motion parameters. The human computer interaction by using GUIs and

visualization is a natural way.

(3) Reusing animation requires a series of SQL-like commands to access animation

databases. For deriving a simple animation, such a command list is too difficult

for users to write correctly. By using GUIs and visualization, it will become an

intuitive process and the correct command list can be generated automatically.

In this paper, we propose a visually interactive method for animation database

in which a set of graphical user interfaces (GUIs) is developed that converts the

human-computer interactions into sequences of operations on the query results of

motions and models. These GUIs translate the user defined operations and param-

eters into SQL-like commands. The GUIs also allow users to modify the properties

of geometric models and motion sequences that are returned as results to a user

query. For example, a user query can be for a running motion of a human model.

The resulting running motion can be modified through another GUI by changing

certain properties, say, the speed of running.

Organization of the paper: Next, we describe the features of the animation

database and the operations that help in reusing for creating new animation se-

quences. In Sec. 3, we discuss the design and implementation GUIs that help to

query animation databases and to generate new animation sequences. In Sec. 4,

we present the implementation of an animation database system supporting model

and motion reuse with the visualization features presented in Sec. 3. We outline

related research efforts in Sec. 5 before concluding our paper in Sec. 6.

2. Animation Database Features and Operation Set

Animation sequences involve animation objects, which are referred to as geometric

models. A scene graph is a hierarchical structure to describe a geometric model.

In [1], we augment the scene graph model to represent an animation sequence of a

specific geometric model by defining a new node, called Interpolator Node, for the

motion, e.g., a walking sequence for a human body model. A relational database

approach for representing and storing augmented scene graph has been adopted.

The database design, based on the Entity-Relationship diagram, is such that the

database can be indexed by propagating the metadata of the objects upward. In

this way, a scene would have all the metadata of its children (models and motion).

The search would be conducted first in the scene level and will go down to the

object level only if a match is found.

April 14, 2003 14:10 WSPC/117-ijseke 00121

6 Akanksha et al.

5

Figure 5. An Animation Reuse Example Applying a Walking Sequence of a Woman [Ball97] to a

Man [Vcom98]

Fig. 4. An animation reuse example applying a walking sequence of a woman [6] to a man [24].

A set of manipulation operations has also been defined using the animations

which can be modified. These operations manipulate either the spatial character-

istics of the augmented scene graph or the motion characteristics. The operations

can be broadly classified into three categories: spatial, temporal, and motion adjust-

ment. The augmented scene graph is used as an intermediate structure providing a

consistent framework for the approach. Below, we show some of the operation state-

ments with the help of an example. Figure 4 shows a snapshot of the animation

generated.

INSERT Andy TO Scene PARENT room WHEN [6, 12] SAVE AS Andy in room

GET walking FROM Nancy SAVE AS walking1

USE walking1 TO Andy in room.Andy

CROP Andy.walking1 BY 50
JOIN Nancy.walking WITH translation (0, 0, 20)

Spatial operations on animations involve changing the position, size, and orien-

tation of models. In our implementation, they are INSERT, DELETE, EXTRACT,

and EDIT. The operations that manipulate motion are USE, GET, JOIN, and

DISREGARD. Another temporal operation, PROJECT, facilitates the projection

of a portion of an animation. In most cases, when motion of a model is reused to

another model, it is necessary to adjust the motion to the new scene. Motion is

usually very specific and hence it is desirable to have a set of operations to help the

user alter the motion according to the new scene. These operations can be used in

various combinations to alter the existing animations and generate the animation

sequences required by the user. An example containing these operations is given in

Sec. 3.3.9. The details of these operations can be found in [1].

April 14, 2003 14:10 WSPC/117-ijseke 00121

Visualizing Animation Databases 7

6

Figure 6. Phases of the OVID Model

Task
analysis

ObjectsInteractions Views

Tasks

Fig. 5. Phases of the OVID model.

3. Design and Implementation of Graphical User Interfaces

In the previous section, we have discussed the operations for animation production.

The operation syntax is quite similar to the popular query language SQL. We use

the OVID (Object, View, and Interaction Design) methodology [18] to describe our

design and implementation since our system is object-oriented. The OVID addresses

the steps of interface design by analysis of the tasks that will be carried out using the

interface. An object model is created which includes the descriptions of all objects

that users will use to perform their tasks, the properties of the objects and the

interactions between them. The model is presented in the form of views. Each view

implements a subset of the tasks to be performed. Users utilize input/output (I/O)

mechanisms to interact with the views and carry out the tasks. Figure 5 depicts

the different phases of the process. The arrows indicate the transfer of information

between the phases.

Employing this model, several GUIs have been designed to use the operations

more efficiently and easily. These interfaces facilitate the reuse of animation se-

quence and the visualization feedback.

3.1. Task analysis

The first step, the task analysis, in the development is identification of the tasks

that will be carried out. For the animation reuse system, the task list is given in

Table 1 below:

3.2. Object model

From the above task list, five objects are identified: the user, scene graph, motion,

model and database.

User: The person using the system

Animation database: The storage for the animation

Scene Graph: The hierarchical structure to describe an animation

Model: The spatial properties of an animation

Motion: The temporal properties of an animation

The database contains one or more scene graphs of motions and models. They can

April 14, 2003 14:10 WSPC/117-ijseke 00121

8 Akanksha et al.

Table 1. The task list.

7

1. Create new scene Open scene graph to create new scene

2. Query model Search for model in the database according to specification

3. Select model Choose the model to be inserted

4. Insert model Insert model into scene graph

5. Delete model Delete model from scene graph

6. Extract model Extract model from one scene to insert into another

7. Change position of model Edit the position properties of model

8. Change orientation of Edit the orientation properties of model

9. Change size of model Edit the size of model

10. Query motion Search for motion in the database according to specification

11. Select motion Choose the motion to be used

12. Use motion Apply the motion to a model in the scene graph

13. Get motion Extract motion from one scene/model to use to another

14. Disregard motion Delete the motion interpolators

15. Project motion Use only specified duration of complete animation

16. Join motion Combine to motions to use on a single model

17. Reduce duration of motion Crop the duration of motion

18. Increase duration of motion Replicate motion a certain number of time to get longer

19. Change speed of motion Change speed of motion

20. Retarget motion Target motion to new model

21. Open scene Open the scene graph of an existing scene

22. Generate VRML Generate the VRML Text for animation

23. Save scene to file Save the VRML Text to a file

24. Save scene to database Save the animation as a record in database

Table 1. The Task Listbe part of one or more scene graphs. The motions belong to models. This object

model is presented in Fig. 6.

3.3. Views and GUIs

After the development of the object model, the views with more detailed object

models, which include the views, are developed. The model with the motion ad-

justment view and the query view is given in Fig. 7.

Views are identified to accommodate key groupings of tasks and to embody

key relationships between objects such that each view performs tasks leading to a

specific outcome. For this system, seven views are identified: Query, Scene Graph,

Motion Adjustment, Timeline, Retarget Motion, Motion Mapping, and Model Meta-

data Views.

3.3.1. Query view

The query view, shown in Fig. 8, is an integral part of the system. Through this

view, the user is able to interact with the database in order to get required models

April 14, 2003 14:10 WSPC/117-ijseke 00121

Visualizing Animation Databases 9

Fig. 6. Object model for the system.

Fig. 7. Detailed object model with views.

and motions. Within the query view there are two views: one for model query and

the other for motion query.

The Query GUI: It is the starting point of all animation reuse process. It contains

an ActiveX object Web Browser that invokes the default web browser of the system

April 14, 2003 14:10 WSPC/117-ijseke 00121

10 Akanksha et al.

Fig. 8. Query view.

with the installed VRML browser, such as Cosmo Player or MS VRML viewer. The

interface also displays a ranked list of query results. Users can query for models or

motions by specifying one or more of the metadata requirements. The search for the

animation objects is automatically converted to an SQL-like statement to retrieve

the best matching objects from the database. Retrieved objects are shown as a list.

By clicking on an object the user selects it and can view it in the browser. Figure

9(a) depicts the selection of a rolling motion after the search. Once the user finds

an object, s/he can INSERT (for models) or USE (for motion) it in the scene graph.

For instance, Insert operation on an animation scene will be carried out using the

pseudo-code listed in Fig. 9(b).

3.3.2. Scene graph view

The motions and models inserted from the query view are displayed in the scene

graph view (Fig. 10). From the scene graph view, the properties of the motions

and models can be viewed and changed using other views. VRML text can also be

generated through this view.

The Scene Graph GUI: The scene graph can be activated directly by selecting

a new file from the menu or via the query GUI. The scene graph is the anchoring

point of reuse. All operations other than USE and INSERT are carried out, directly

or indirectly, via this interface. Depending on the object and type of interaction

with this interface, different views will pop up; these views cater to the various

modification requirements. Users can DELETE or EXTRACT models and DIS-

REGARD or GET motions from the scene graph. These interactions will lead to

the generation of the respective operation command. The user can also explicitly

tell the VRML Text Generator to generate the VRML text using this interface.

Figure 11(a) shows this window in detail and Fig. 11(b) lists the pseudo-code of

generating the VRML text from the scene graph.

April 14, 2003 14:10 WSPC/117-ijseke 00121

Visualizing Animation Databases 11

(a)

 Procedure INSERT(ObjectID as Integer) {
 Open Database for reading
 Query the database table Object
 Inner Joined with VRMLTEXT through SQL for the ObjectID

 Create a temporary scene graph node
 Read from the database record the necessary record fields

to fill in the attributes and metadata required by the node:
ObjectID, Category, ID, Name, Type, Size, Position, Color and
VRMLText

 Parse through the current scene graph

 If no duplicates are found Then
 Insert the temporary node into the scene graph

Else

Change the unique key of the temporary node and declare

 as a new instance

Insert the modified temporary node

End if

Close Database

}

(b)

Fig. 9. Query (motion) GUI and pseudo-ode for inserting an object from the database into the
scene graph.

3.3.3. Model metadata view

The model metadata view, Fig. 12, provides users with the capability to change the

properties of the models. The changes can be previewed in a browser before they

are applied.

April 14, 2003 14:10 WSPC/117-ijseke 00121

12 Akanksha et al.

Fig. 10. Scene graph view.

Model Metadata GUI: It is activated when the user double clicks on a model

icon in the scene graph. It generates the EDIT operation of the spatial operation

set. Users can modify the spatial properties, size, orientation and position, of the

models using this. Figure 13 shows this window in detail. For the example given,

the EDIT statement generated after making the modifications and accepting them

will be similar to the following:

EDIT Dog Wagging POSITION (0, 0, 0) SIZE (1, 1, 1) ORIENTATION (0, 0, 0, 0) OF Scene

One or more of POSITION, SIZE and ORIENTATION options will be used de-

pending on the parameters changed by the user. Changes made by the user will

then be reflected in the VRML file. Users can preview the changes in the browser.

Figure 14 also shows the VRML Text GUI which pops up when the generate VRML

button is clicked. This GUI shows the VRML text that is generated for the scene.

3.3.4. Motion adjustment view

Similar to the model metadata view, the motion adjustment view allows users to

alter the temporal properties of the motion; i.e., the duration and the speed. This

view is shown in Fig. 14.

Motion Adjustment GUI: Similar to the Model Metadata GUI, this GUI is

activated when the user double clicks on the motion icons. As the name suggests,

this GUI caters to the operations in the Motion Adjustment operation set. This

GUI supports the CROP, DUPLICATE and CHANGE SPEED operations. One or

more SQL-like statements will be generated depending on the parameters to which

changes have been made. These statements will modify the timing values associated

with a motion in the VRML file. A detailed view of this interface can be seen in

Fig. 15. The statements generated for this example will be:

CHANGE SPEED green ball.rolling BY 2
DUPLICATE green ball.rolling BY 2

3.3.5. Motion retarget view

The retarget motion view, Fig. 16, facilitates the retargeting of a motion to another

scenario, in terms of position and/or model. The effect of the retargeting can be

previewed in a browser before they are applied.

April 14, 2003 14:10 WSPC/117-ijseke 00121

Visualizing Animation Databases 13

(a)

Procedure SceneGraph2File(Root as Node) {

 Declare PrototypeText, NodesText
 RouteText as String
 Declare AnimationEngine as String

 javascript node that controls motion times

 Traverse all the nodes of the scene graph by DFS
 For each node {

 If node.type = object then
 Append node.prototypetext to PrototypeText
 Append node.text including new translation,
 scaling an orientation to NodesText
 Else if it is a motion
 Append node.text NodesText
 Append node.routetext to RouteText
 Get temporal information

and update AnimationEngine

 End if
 }
 Open File
 Save to File ("#VRML V2.0 utf8")
 Save to File (PrototypeText + NodesText +
 RouteText + AnimationEngine)
 Close File

}

(b)

Fig. 11. The scene graph GUI and the pseudo-code to convert the scene to file.

For interactive using inverse kinematics for motion retargeting, it is necessary to

develop GUI with visualization of 3D models and the animation, including the orig-

inal and resulting motion sequences. Using GUI the user can specify the articulated

figure and new position/orientation for which the motion is retargeted. There are

three major components of this GUI, visualization window, scene graph, and control

April 14, 2003 14:10 WSPC/117-ijseke 00121

14 Akanksha et al.

Fig. 12. Model metadata view.

Fig. 13. Model metadata GUI.

Fig. 14. Motion adjustment view.

panel. One example is shown in Fig. 17(a), where we retarget the kicking motion to

the ball. From the control panel, the model (ball) and its position can be specified

and used as the new target of the end effecter of the front left leg. The 3D model

and animation are displayed in the visualization window, being able to be viewed

from different viewpoints and zooming factors. In this way, users can intuitively

adjust the motion sequences for reuse purpose. Once the result is satisfactory, it

will be recorded and stored in the database. In Fig. 17(b), the pseudo-code is listed

for motion mapping.

3.3.6. Motion mapping view

Using the motion mapping view seen in Fig. 18, the interpolators of one model-

motion combination can be mapped to another one. The mapping can also be

auto-assigned.

April 14, 2003 14:10 WSPC/117-ijseke 00121

Visualizing Animation Databases 15

17

Figure 16. Motion Adjustment GUIFig. 15. Motion adjustment GUI.

Fig. 16. Retarget motion view.

Motion Mapping GUI: This GUI is activated when a motion is used on a model

other than the original model. Using this interface the interpolator nodes of one

model can be linked to that of the other model. A sample Motion Mapping GUI is

shown in Fig. 19. The pseudo-code for motion mapping is similar to Fig. 17(b). The

USE statement generated after using and mapping the motion will be as follow:

USE wiping TO Scene Maggie on Bed with dog ball.Maggie

MAP Barmaid.r shoulderXOI.OrientationInterpolator TO
Maggie.r shoulderXOI.OrientationInterpolator

3.3.7. Time line view

The time line view, Fig. 20, allows the adjustment of the timing of the different

motions. It helps in the generation of the project and join operations.

April 14, 2003 14:10 WSPC/117-ijseke 00121

16 Akanksha et al.

(a)

Procedure Use_Motion (MotionNode as SceneGraphNode,
 ObjectNode as SceneGraphNode) {

Parse through the VRML Text Description of the Motion Node
and extract the defined interpolator nodes and their type
(Orientation or Position)
Parse through the VRML Text Description of the Object Node
and extract the defined joints/segments/nodes
Using the GUI, a user can assign the correspondence

 between a joint and an interpolator node; otherwise, the
 default one will be applied
 Extract the Timer used in the MotionNode
 Clear the MotionNode.RouteText

 For every Joint in the Object Node {
 If Joint has an assigned Interpolator node Then

 MotionNode.RouteText= MotionNode.RouteText +
 “ROUTE ” + TimerName +”.fraction_changed TO” +
 Interpolator +”.set_fraction

 If Interpolator.Type = Orientation Then
 MotionNode.RouteText = MotionNode.RouteText +
 “ROUTE ” + Interpolator +”.value_changed TO” +
 JointName +”.set_rotation
 Else Type = Position

 MotionNode.RouteText = MotionNode.RouteText +
 “ROUTE ” + Interpolator +”.value_changed TO” +
 JointName +”.set_translation
 End if

}
 Update Scene Graph Nodes
}

(b)

Fig. 17. Motion retargeting GUI and pseudo-code for motion mapping in VRML.

April 14, 2003 14:10 WSPC/117-ijseke 00121

Visualizing Animation Databases 17

Fig. 18. Motion mapping view.

22

Figure 20. Motion Mapping GUI
Fig. 19. Motion mapping GUI.

Fig. 20. Time line view.

Time Line GUI: Users can specify the temporal restrictions using this interface.

For creating complex motions, more than one motion can be used for the same

model. The time frame during which motions are applied can be changed using

the Time Line GUI. The JOIN statement will be generated in the case when two

motions are applied to the same model and the motions are overlapping in time.

Figure 21 shows the Time Line GUI and depicts a scenario in which the following

April 14, 2003 14:10 WSPC/117-ijseke 00121

18 Akanksha et al.

Fig. 21. Time line GUI.

Fig. 22. Block diagram of GUI invocation sequence.

JOIN statement is generated:

JOIN kicking WITH dog wagging.wagging WHEN (50, 60)

A block diagram to show the order in which a user can invoke these GUIs is

given in Fig. 22.

3.3.8. Other GUIs

VRML Text GUI: This GUI displays the generated VRML Text to the user. It

is activated when the Generate VRML button on the Scene Graph GUI is used.

The user can only view the generated VRML but cannot interact physically with

this interface. The user also has the menus and GUIs to save the new animations.

These animations can be saved as VRML files from the Files menu as well as an

element in the database using the Database Management GUI of the Tools menu.

The Tools menu also provides a GUI in which the weights of the various metadata

can be changed.

The Database Management GUI: This GUI provides the user with the func-

tions for managing the database. The user can browse the database and add, delete

and update animation objects in the database.

April 14, 2003 14:10 WSPC/117-ijseke 00121

Visualizing Animation Databases 19

3.3.9. Example

Now, we will describe an example of using GUIs to produce an animation of a

woman sitting on the bed and a dog kicking a ball. Human computer interaction

and related GUIs are listed as follow.

Table 2. Summary of human computer interaction and related GUIs.

The Query GUI : The 3D models, i.e., a woman, a dog, a bed, a sofa, and a ball, etc. are
retrieved together with their original motion sequences.

Model Metadata GUI : The position and orientation of 3D models are adjusted according to
the new requirements.

Motion Adjustment GUI : The motion of the woman is adjusted from the original wiping to
sitting on the bed. The motion of the dog is adjusted according to the new path specification.

Motion Retarget GUI : The running motion of the dog is retargeted to kick the ball at the end
of the running.

Motion Adjustment GUI : The motion of the ball is generated and adjusted reacting to the
kicking.

Time Line GUI : Time of each motion is adjusted for the consistency.

The snapshots of the scene along the human computer interaction are shown in

Fig. 23, where the total number of GUIs invoked were 15, the user clicked about

46 times and changed 18 parameters.

The pseudo-code of the above example is listed in Table 3. It is clear that by

human computer interaction using the visualization and GUIs greatly reduces the

complexity for producing animation scene by avoiding to write the command list

directly.

4. Implementation and Software Structure

For the animation reuse toolkit the system was designed in Visual Basic along with

a database in MS-Access. The software structure of the Animation toolkit consists

of five components. These are the Animation Database, VRML Text Generator,

Scene Graph Generator, Operation Generator and the user interface system. Figure

25 gives an overview of the communications between the various elements in the

system, followed by a brief description of these elements.

The Animation Database: This component is the database of animations in MS-

Access 97. It contains the animations in the form of scene graphs along with the

metadata to describe the content of the animations. By using GUI a user interacts

with this component to retrieve the matching animation objects. The user can also

save the new animations that are generated.

April 14, 2003 14:10 WSPC/117-ijseke 00121

20 Akanksha et al.

27

 (a) (b) (c)

 (d) (e) (f)

 (g) (h)

Figure 24. The snapshots from a human computer interaction example to produce an animation

scene

Fig. 23. The snapshots from a human computer interaction example to produce an animation
scene.

The Operation Generator: This component generates the SQL-like operations

according to the parameters which the user specifies through the various interfaces.

Each time the user makes changes through the user interfaces of the Modification

process, this component generates the corresponding operation sequence. The op-

eration sequence generated is passed on to the Scene Graph Generator. Inverse

kinematics is implemented in this component.

The Scene Graph Generator: This component generates the scene graph from

the original scene and the operations generated. This process is executed in real-

time with the modifications made to the animation. The scene graph can be saved

to the database.

The VRML Text Generator: This component generates the VRML text from

the scene graph. The text representing animation sequences, can be viewed through

the browser and provides the user with continuous visual feedback. Such feedback

is necessary to see the effect of the changes made and to let the user decide whether

April 14, 2003 14:10 WSPC/117-ijseke 00121

Visualizing Animation Databases 21

Table 3. The SQL syntax commands automatically generated from human computer interactions.

28

1. DELETE sofa FROM Maggie_on_sofa SAVE AS Maggie

2. INSERT bed TO Maggie PARENT ROOT SAVE AS Maggie_Bed

3. EDIT bed POSITION (0, 0, 0) SIZE (1, 1, 1) ORIENTATION (1, 0, 0, 1) OF Maggie_Bed SAVE

AS Maggie_on_Bed

4. INSERT Dog_Wagging TO Maggie_on_Bed PARENT ROOT SAVE AS Maggie_on_Bed_dog

5. EDIT Dog_Wagging POSITION (0, 0.1, 0) SIZE (0.6, 0.6, 0.6) ORIENTATION (1, 0, 0, 1)] OF

Maggie_on_Bed_dog

6. EXTRACT ball1 FROM Croquet SAVE AS green_ball

7. INSERT green_ball TO Maggie_on_Bed_dog

PARENT ROOT SAVE AS Maggie_on_Bed_with_dog_ball

8. EDIT green_ball POSITION (0, 0, 0.2) OF Maggie_on_Bed_with_dog_ball

9. GET wiping FROM Barmaid_wiping_table.Barmaid SAVE AS petting

10. CROP petting BY 10 SAVE AS petting

11. USE petting TO Maggie_on_Bed_with_dog_ball.Maggie MAP

Barmaid.r_shoulderXOI.OrientationInterpolator TO

Maggie.r_shoulderXOI.OrientationInterpolator SAVE AS Maggie_pettingDog

12. RETARGET Maggie_pettingDog.petting TO dog (0.1, 0.3, 0) SAVE AS Maggie_pettingDog.petting

13. GET falling FROM Tennis.ball SAVE AS falling

USE falling TO Maggie_ pettingDog.green_ball SAVE AS Maggie_pettingDog_fallingBall

14. GET kicking FROM Dog_kicking.dog SAVE AS kicking

15. JOIN kicking WITH

Maggie_ pettingDog_fallingBall.dog.wagging WHEN (50, 60)

SAVE AS Maggie_kickingDog.kicking_wagging

16. RETARGET Maggie_kickingDog.dog.kicking_wagging TO green_ball (0.1, 0.3, 0)

17. GET rolling FROM Bowling_Alley.ball SAVE AS rolling

18. USE rolling TO Maggie_kickingDog.green_ball WHEN (60, 90) SAVE AS

Maggie_kickingDog_rollingBall

19. JOIN Maggie_kickingDog_rollingBall.green_ball.rolling WITH translation (0.6, 0.4, 0)

20. CHANGE SPEED Maggie_kickingDog_rollingBall. green_ball.rolling BY 2

21. DUPLICATE Maggie_kickingDog_rollingBall. green_ball.rolling BY 2

Table 3. The SQL Syntax Commands Automatically Generated from Human Computer

Interactions
the changes should be kept or not.

5. Related Work

Databases have been used in computer animation. In [1, 2], techniques and tools

are developed to generate new animation sequences by reusing existing geometric

April 14, 2003 14:10 WSPC/117-ijseke 00121

22 Akanksha et al.

Fig. 24. Software structure of the animation reuse toolkit.

models and their motion sequences stored in animation databases. New animation

sequences can be created through a series of operations that facilitate the searching

of databases and manipulation of the properties of geometric models and motion

information. Though these operations have syntax similar to that of the database

query language SQL, they are still not intuitive to use. Other database approaches

do not address the problem of motion reuse. They include [21], where an Informed

Environment is proposed that creates a database dedicated to urban life simulation.

Using a set of manipulation tools, the database permits integration of the urban

knowledge in order to simulate more realistic behaviors. Another related work that

makes use of databases in animation is presented in [14]. It uses a scene graph and

an animated agent in multimedia presentations. Similarly, Ayadin et al. [5] have

used databases based on divisions of the reachable space of a virtual actor to guide

the grasping movement of virtual actors.

Motion editing refers to any method that adjusts the existing motion sequences

constrained by new requirements. Among all motion editing method, Inverse kine-

matics, originally developed in robotics control [9], is the most popular method and

it is also used in our implementation. Note that the motion editor is an indepen-

dent module in our system. Thus, any motion editing methods [16, 11, 12, 8] can

be adapted for our purposes.

Visualization has been attracting the interest of researchers and substantial

amount of work has been reported in recent years to make data and processes vi-

sual in nature. One major reason for an increase in visualization is that it is easier

to comprehend things as pictures rather than in the form of texts. Visualization has

April 14, 2003 14:10 WSPC/117-ijseke 00121

Visualizing Animation Databases 23

been applied to several fields such as data analysis, training and learning systems.

In [3], the inductive bias is derived for multi-dimensional clustering from visualiza-

tion in which the user selects parameters that are difficult to specify automatically.

Geroimenko et al. [10] developed an immersive collaborative environment in VRML

to teach and learn VRML. Watson et al. [25] designed a generic computer-based

Training Information System (TIS) and visualization of the data that it generates.

Schroeder et al. [19] describe the object-oriented toolkit they developed for 3D

graphics and visualization. They have defined a graphics model that has several

types of objects, which capture the essential features of 3D models and a visualiza-

tion model, based on the data-flow paradigm.

Graphical user interfaces (GUIs) are important in visualization that allows users

to effectively perceive and express information. The advantages of GUIs are [20]:

(1) They are relatively easy to learn and use. Users with no computing experience

can start to use it after a brief training session.

(2) The user has multiple screens (windows) for system interaction. Switching from

one task to another is possible without losing sight of information generated

during the first task.

(3) Fast, full-screen interaction is possible with immediate access to anywhere on

the screen.

GUIs have been used in several domains including that of generating graphics

themselves. One such work is that of Igarashi et al. [13], in which the gesture in-

terfaces are extended for more general use. The proposed GUI allows users to give

hints about the operation desired by selecting the related geometric components.

The system then infers and returns the possible operations and returns them as

thumbnails. The users perform the operation by clicking on the desired thumbnail.

Arvo et al. [4] present a user interface for sketching which couples shape recognition

and morphing. The input strokes are continuously morphed into pre-defined geo-

metric shapes. Thus the users are apprised of the shape recognition process while

being in control of the process.

6. Conclusions

Animations are an interesting data type that can help in creating interesting multi-

media presentations. The main hurdle in using animations for multimedia presenta-

tions is that it requires a lot of skill and effort to produce good quality animations. A

database approach helps in reusing models and motions to generate new animation

sequences. However, this approach is quite complex in terms of using the various

querying, model and motion manipulation operations. In this paper, we proposed

a visually interactive method that can help users to handle the various animation

database operations and generate new animation sequences. This method involves

a set of GUIs that enable users to carry out complex animation generations in a

simple manner while allowing them to visualize the changes being made.

April 14, 2003 14:10 WSPC/117-ijseke 00121

24 Akanksha et al.

References

1. Akanksha, Z. Huang, B. Prabhakaran, and C. R. Ruiz, Jr., “Reusing motions and
models in animations”, in Proc. of EGMM 2001, pp. 11–22. Also appeared in J. A.
Jorge, N. M. Correia, H. Jones and M. B. Kamegai (eds.), Multimedia 2001, Springer-
Verlag/Wien, 2002, pp. 21–32.

2. Akanksha, B. Prabhakaran, Z. Huang, C. R. Ruiz, Jr., “Animation toolkit based on
database approach for reusing motions and models”, preparing for submission.

3. M. Ankerst, M. M. Breunig, H. P. Kriegel, and J. Sander, “Optics: Ordering points
to identify the clustering structure”, in Proc. 1999 ACM SIGMOD Int. Conf. on

Management of Data, Philadelphia, PA, USA, 1999, pp. 49–60.
4. J. Arvo and K. Novins, “Fluid sketches: continuous recognition and morphing of

simple hand-drawn shapes”, in Proc. ACM UIST ’00, 2000, pp. 73–80.
5. Y. Ayadin, H. Takahashi, and M. Nakajima, “Database guided animation of grasp

movement for virtual actors”, in Proc. Multimedia Modeling ’97, 1997, pp. 213–225.
6. N. C. Ballreich, “3D Model. 3Name3D”, http://www.ballreich.net/vrml/h-anim/

nancy h-anim.wrl. (1997).
7. R. Boulic, Z. Huang, N. Magnenat-Thalmann, and D. Thalmann, “Goal-oriented de-

sign and correction of articulated figure motion with the track system”, Journal of

Computers & Graphics 18(4) (1994) 443–452.
8. A. Bruderlin and L. Williams, “Motion signal processing”, in Proc. ACM SIGGRAPH

’95, 1995, pp. 97–104.
9. K. S. Fu, Gonzalez, and C. S. G. Lee, Robotics, Control, Sensing, Vision, and

Intelligence, McGraw-Hill, 1987, pp. 52–76, 84–102, and 111–112.
10. V. Geroimenko and M. Phillips, “Multi-user VRML environment for teaching VRML:

Immersive collaborative learning”, in Proc. Information Visualization, 1999.
11. M. Gleicher, “Retargeting motion for new characters”, in Proc. ACM SIGGRAPH

’98, 1998, pp. 33–42.
12. J. Hodgins and N. Pollard, “Adapting simulated behaviors for new characters”, in

Proc. ACM SIGGRAPH ’97, Los Angeles, CA, 1997, pp. 153–162.
13. T. Igarashi and J. F. Hughes, “A suggestive interface for 3D drawing”, in Proc. ACM

UIST ’01, 2001, pp. 173–181.
14. K. Kakizaki, “Generating the animation of a 3D agent from explanatory text”, in

Proc. ACM MM ’98, 1998, pp. 139–144.
15. W. M. Lee and M. G. Lee, “An animation toolkit based on motion mapping”, IEEE

Computer Graphics International, 2000, pp. 11–17.
16. Z. Popovic and A. Witkin, “Physically based motion transformation”, in Proc. ACM

SIGGRAPH ’99, 1999, pp. 11–19.
17. A. Reitemeyer, Barmaid Bot, http://www.geometrek.com/web3d/objects.html.
18. D. Roberts, D. Berry, S. Isensee, and J. Mullaly, Designing for the user with

Ovid: Bridging User Interface Design and Software Engineering, Macmillan Technical
Publishing, London, 1998.

19. W. J. Schroeder, K. M. Martin and W. E. Lorenson, “The design and implementation
of an object-oriented toolkit for 3d graphics and visualization”, IEEE Visualization

’96, 1996, pp. 93–100.
20. I. Sommerville, Software Engineering, Addison-Wesley, Fifth Edition, 1996, pp. 319–

344.
21. D. Thalmann, N. Farenc and R. Boulic, “Virtual human life simulation and database:

Why and how”, in Proc. Int. Symp. on Database Applications in Non-Traditional

Environments (DANTE’99), IEEE CS Press, 1999.

April 14, 2003 14:10 WSPC/117-ijseke 00121

Visualizing Animation Databases 25

22. D. Tolani, A. Goswami, and N. Badler, “Real-time inverse kinematics techniques for
anthropomorphic limbs”, Graphical Models 62(5) (2000) 353–388.

23. The VRML Consortium Incorporated, The Virtual Reality Modeling Language,
http://www.vrml.org/Specifications/VRML97/. International Standard ISO/IEC
14772-1 (1997).

24. Vcom3D, Inc., Seamless Solutions, Andy-H-Anim Working Group, 1998.
http://www.seamless-solutions.com/html/ animation/humanoid animation.htm.

25. J. Watson, D. Taylor and S. Lockwood, “Visualization of data from an intranet train-
ing systems using virtual reality modeling language (VRML)”, in Proc. Information

Visualization, 1999.

