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ABSTRACT
To enhance the performance of hidden Markov models for
EEG signal classification, we present here a new model re-
ferred to as kernel based hidden Markov model (KHMM).
Due to the embedded HMM structure, this model is capa-
ble of capturing well the temporal change of a time-series
signal. Furthermore, KHMM has better discrimination and
generalization capability inherited from kernel methods.
We evaluate the kernel based hidden Markov model by ap-
plying it to EEG signal classification when motor imagery
is performed, yielding positive experimental results.
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1 Introduction

The hidden Markov model (HMM) is a statistical model
that has been widely applied to many scientific and engi-
neering areas [1, 2]. It can well model temporal or sequen-
tial structures of signals by combining the observation and
hidden state in an elegant manner. Therefore, it is particu-
larly suitable for modeling temporal signals, such as speech
and bio-signals.

On the other hand, support vector machine (SVM) is
a maximum margin classifier with solid background in sta-
tistical learning theory. In principle, SVM constructs a hy-
perplane in the kernel space so as to maximize the margin
of separation between positive and negative examples [3].
Thereby, it has a good generalization performance while
retaining the advantage of discriminative approaches.

Considering the advantage of HMM and SVM, a few
recent endeavors resort to combining HMMs and SVM in
a unified framework which can capture well the temporal
information as well as preserve the superior classification
and generalization capability. An impressing work in this
field was given by Altun et al. [4] who proposed a so-called
hidden Markov support vector machine (HM-SVM) for se-
quences labeling. It aims at identifying the states of indi-
vidual observation by effectively learn nonlinear discrim-
inant function while retaining the ability to capture corre-
lations in structured examples. More recently, Taskar et
al. [5] proposed an effective optimization algorithm based
on quadratic program such that it has an polynomial-size

formulation, as opposed to HM-SVM which requires an
exponential number of constraints.

HM-SVM and similar methods can identify well the
label sequences of signals belonged to a single class. How-
ever, these methods may not be effective in classifying con-
tinuous signals. In our case, we are given a number of
trials of EEG data. Each trial of EEG corresponds to a
particular mental activity (for example, imagination of left
or right hand movement). We know that each trial does
contain a segment of signal which is elicited by one of the
mental activities. But we have no information about when
this segment starts and how long it lasts. To classify these
trials, a straightforward method is to convert these con-
tinuous signals into the sequences of discrete symbols by
HM-SVM, and then classify the sequences. Unfortunately,
this method may bring distortions and therefore degrade the
performance of classification. Therefore, it will be advanta-
geous to model and classify the continuous signals directly.

In this paper we propose a novel model to address the
signal classification problem, by combining hidden Markov
model and maximum margin principle in a unified kernel-
based framework. We refer to the model as the kernel-
based hidden Markov model (KHMM). The training is for-
mulated as finding the maximum margin between the true
model and the best runner-up while minimizing the classi-
fication error simultaneously. Unlike previous methods, it
may not compulsively know the hidden states of individ-
ual observation in advance. Besides, it has been applied to
motor imagery classification tasks, yielding positive exper-
imental results.

The organization of the paper is as follows. Section 2
presents the KHMM framework by introducing a loss func-
tion. Section 3 presents how to train the model using the
maximum margin optimization, followed by 4. In that sec-
tion we propose a training algorithm. Section 5 is devoted
to evaluate the kernel based hidden Markov model by a mo-
tor imagery classification task. Finally, we conclude our
paper in the last section.

2 Loss function and kernels

To build hidden Markov models for multi-class classifica-
tion problem, we need to to learn the models {λk} from
the corresponding training data. In the classification phase,



recognition is performed according the following criterion,

hλ(O) = arg max
k

P (q|O, λk) (1)

where q is a state sequence related to the observation se-
quence O such that the class conditional probability is
maximum.

To learn the models, a good approximation to the ob-
servation probability P (O|λ) has to be found. The most
popular representation, for continuous signals or observa-
tions, is a finite mixture of Gaussian densities. In this paper,
we represent directly the conditional probabilityP (q|O, λ)
in another way using the theorem of random fields [6]

P (q|O, λk) ∝
∏

(i,j)∈E

ψij(O, qi, qj) (2)

where ψij are the network potentials and E is the set of
dependencies between states. For simplicity, here we as-
sume state-state interaction is the first order Markov chain.
Therefore, the conditional probability can be derived as

P (q|O, λk) =
∏

t

exp[wk
qt
· f(O, qt, qt−1)] (3)

where wk
qt

is the weight modeling the correlation between
observation and state for class k at state qt, and the depen-
dency between state qt−1 and stateqt.

Let us denote the basis function for the observation
model in (3) as f(O, qt, qt−1) = ft(O). A possible basis
function is

ft(O) = ρ(qt, qt−1)Φ(ot, ot−1) (4)

where ρ(qt, qt−1) is an indicator function for the state
transaction and Φ(ot, ot−1) could be a kernel feature of
the observation vector ot and ot−1. According to statistical
learning theory [7], the inner-products of kernel features
can be replaced by a kernel function K(·, ·) that satisfies
Mercer’s conditions.

By combining (1) with (3), we obtain the following
objective function in logarithm form

hλ(O) = arg max
k

∑

t

wk
qt
· ft(O) (5)

Unlike the basic HMM, where the maximum likeli-
hood (ML) criterion estimates the model parameters such
that the class conditional probability of the training data is
maximized, our proposed method is to choose the models
carefully such that the corresponding classification error is
minimized.

By taking into account the misclassification and mar-
gin simultaneously, the loss function can be estimated us-
ing the following piecewise linear bound [8]

I ≤
1

m

m
∑

i=1

[

max
k

{

∑

t

wk
qt
· ft(Oi) + 1 − δyi,k

}

−
∑

t

wyi

qt
· ft(Oi)

]

(6)

where δp,q is equal to 1 if p = q and 0 otherwise, and yi is
the label of true class for the i-th example.

To minimize the classification error, the loss function
I has to be minimum by optimizing a set of w. When a
sample set S is linearly separable, the above loss function
value is equal to zero subject to the following constraints
for all the examples in S

∀i max
k

{

∑

t

wk
qt
· ft(Oi) + 1 − δyi,k

}

−
∑

t

wyi

qt
· ft(Oi) = 0 (7)

Equivalently, (7) could be rewrite as

∀i, k
∑

t

wyi

qt
· ft(Oi)

+δyi,k −
∑

t

wk
qi
· ft(Oi) ≥ 1 (8)

However, in practice the samples may not be neces-
sarily linearly separable. In this case, we add slack vari-
ables ξi ≥ 0 and modify (8) to have

∀i, k
∑

t

wyi

qt
· ft(Oi) + δyi,k

−
∑

t

wk
qi
· ft(Oi) ≥ 1 − ξi (9)

3 Maximum margin Optimization

In the maximum margin classification, one has to either re-
strict the norm of w, or fix the functional margin [3]. Here
we employ the latter strategy and thus have the following
Lagrangian optimization

J(w, ξ, η) =
1

2
β
∑

k

∑

qt

||wk
qt
||22 +

∑

i

ξi

+
∑

i,k

ηi,k

[

∑

t

wk
qt
· ft(Oi)

−
∑

t

wyi

qt
· ft(Oi) − δyi,k + 1 − ξi

]

(10)

where ηi,k are a dual set of variables for the constraints (9).
It is known that the saddle point of the Lagrangian

would be the minimum for the primal variables {w, ξ} and
the maximum for the dual variables η. To find the mini-
mum over the primal variables, we require the following
two conditions
∂J

∂ξi
= 1 −

∑

k

ηi,k = 0 =⇒
∑

k

ηi,k = 1 (11)

∂J

∂wk
qt

= βwk
qt

+
∑

i

ηi,k

∑

qr=qt

fr(Oi)

−
∑

i,yi=k

∑

k

ηi,k

∑

qr=qt

fr(Oi) = 0 (12)



By incorporating (11), we rewrite (12) and thus have

wk
qt

= β−1

[

∑

i

(δyi,k − ηi,k)
∑

qr=qt

fr(Oi)

]

(13)

To postulate the dual problem for our primal problem,
we first expand (10), as follows:

J(w, ξ, η) =
∑

i

ξi

(

1 −
∑

k

ηi,k

)

+
∑

i,k

ηi,k

[

∑

t

wk
qt
· ft(Oi)

]

−
∑

i,k

ηi,k

[

∑

t

wyi

qt
· ft(Oi)

]

+
∑

i,k

ηi,k(1 − δyi,k) +
1

2
β
∑

k

∑

qt

||wk
qt
||22 (14)

The first term on the right-hand side of (14) is zero by virtue
of the optimality condition of (11). Furthermore, from (12)
we have

∑

i,k

ηi,k

[

∑

t

wk
qt
· ft(Oi)

]

= β−1
∑

i,j

fi · fj
∑

k

ηi,k(δyj ,k − ηj,k) (15)

where fi · fj =
∑

t

∑

qr=qt
ft(Oi) · fr(Oj). Similarly, the

third and fifth terms of (14) can be expressed as follows,
following forms, respectively.

∑

i,k

ηi,k

[

∑

t

wyi

qt
ft(Oi)

]

= β−1
∑

i,j

fi · fj
∑

k

δyi,k(δyj ,k − ηj,k) (16)

1

2
β
∑

k

∑

qt

||wk
qt
||22 =

1

2
β−1

∑

i,j

fi · fj

∑

k

(δyi,k − ηi,k)(δyj ,k − ηj,k) (17)

Accordingly, by setting the objective function J(w, ξ, η) =
Q(η), we may reformulate (14) as

Q(η) = −
1

2
β−1

∑

i,j

fi · fj
∑

k

(δyi,k − ηi,k)(δyj ,k − ηj,k)

+
∑

i,k

ηi,k(1 − δyi,k) (18)

Now the objective function Q is only the function of
η and concave for this variable. Therefore, The maximum
value of Q(η) is unique and could be found by using stan-
dard quadratic programming (QP) techniques.

4 A Training Algorithm

In this section, we introduce our model learning algorithm.
To find the optimum model parameters in the framework,
the “hidden” states sequence needs to be estimated first.
This inference can be done by performing the Viterbi al-
gorithm, as the state-state transaction cost αt(i) is solve
recursively.

α1(i) = wk
i · Φ(o1) (19)

αt+1(i) = αt + wk
i · f(ot+1, i, qt) (20)

When the state sequence is estimated, new model pa-
rameters will be found by performing maximum margin
optimization.

Algorithm 4.1 (learning algorithm)

1. initialize the models using the k-means clustering.

2. search the best states sequences by using Viterbi algo-
rithm

3. find the optimum models parameters given (O,Y ,Q)
based on the maximum margin optimization.

4. classify the evaluation set based on the above opti-
mum models.

5. stop when classification performance decreases or
predefined steps have reached.

6. goto 2.

5 Experiments

We evaluate our approach on the classification of EEG sig-
nal for motor imagery, to distinguish left and right hand
movement imagination [9]. The experiments were per-
formed by one male subject (38 years old).

In our experimental paradigm, the subject was in-
structed to fixate on a computer screen about 180cm in
front of him. Each trial was 6 seconds long, starting with
a blank screen which indicated a pause. At 2nd second,
the blank screen was replaced by a prompting arrow stim-
ulus, pointing either to the left or to the right lasting for 4
seconds. Following the direction of the arrow, the subject
performed motor imagery accordingly. The complete ex-
periment consisted of five runs, each run consisted of 20
trials. The number of left and right hand imaginations are
balanced.

EEG signals were recorded using the Neuroscan
SynAmp2 system, sampled at 250 Hz. 28 channels of EEG
around the C3 and C4 region related to the sensorimotor
cortex were then chosen from the 64 scalp electrodes. EEG
signals between 100 ms before stimuli and 4000 ms after
stimuli were extracted for later processing. The extracted
signal is filtered using the Infinite Impulse Response (IIR)
band-pass filter with the frequency bandwidth of 8-36Hz.
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Figure 1. Motor imagery classification accuracy.

All data were divided into 20 folds of 95 training and
5 test samples each. Before classification, the time se-
quences are first divided into segments of 200ms length
for feature extraction. There are 100ms overlap between
neighboring segments for HMM and KHMM, while we
use is 900 ms with 50ms overlap in the case of SVM. For
the purpose of comparison, common spatial patterns (CSP)
features are employed in all classification methods. For
more details about the preprocessing and feature extraction
please refer to [10]. Additionally, both HMM and KHMM
consist of 3 states for capturing the structure of EEG data.
The kernel function used in SVM and KHMM is the RBF
kernel [3]. The classification result, shown in Fig 1, are
averages over these 20 folds. We compare our proposed
algorithm with other two classification approaches, SVM
and HMM. In this dataset, our proposed approach gives
the highest classification accuracy of 88%, compared to the
SVM (78%) and HMM (84%). The low classification accu-
racy of SVM may be due to the fact that it does not explic-
itly take the temporal dynamic of the signals into account.

6 Conclusion

We presented here a kernel based hidden Markov model for
classifying multi-class sequential data. The model is capa-
ble of both exploring the temporal dynamic of the signals
and maximizing the margins between classes in an efficient
way, by taking advantage of the rich language of Markov
model and the kernel techniques. Our results on motor im-
agery classification have shown that HMM can exploit the
nature of sequential signals and significantly outperform
other non-structural methods on the EEG signals, which
carry a lot of information on physiological changes. On
the other hand, the proposed approach learns the models
by using a nonlinear discriminative procedure based on a
maximum margin criterion, providing a strong generaliza-
tion mechanism. The good experimental results attest to
the excellent performance of the proposed model for EEG
signal classification and brain computer interfaces.

In this paper, the experiment was performed on a 100-

trials data set for evaluating the performance of our ap-
proach. We anticipate more experimental works on EEG
signal classification. In addition, a comparative study on
the date set of different sizes will be performed to evaluate
the generalization performance of the algorithm. We will
also extend the approach to other interesting classification
problems in brain computer interfaces.
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