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Abstract 

30 digitization devices produce very large sets of 3 0  
points sampled from the suqaces of the objects being 
scanned. A mesh construction procedure needs to be: up- 
plied to derive polygon mesh from the 30  point sets\ As 

ts derived from.. digitization devices based on 
in8 technologies are inhsaenrly 

distributed over regions that may contain surface disconti- 
nuities, existing methods are not suitable ,for polygonizing 
them. This paper describes a novel polygonization algo- 
rithm,for constructing triangle mesh from unorganized 3D 
points. In contrast to existing methods, this a1gorith.m be- 
gins the mesh construction processsrom 3 0  points lying on 
smooth suqaces, and advances the mesh frontier towards 
30 points lying near surjGace discontinuities. I f  30 points 
along the edges and at the corners are sampled, then the 
algorithm will form an edge where two advancing fron- 
tiers meet, and a corner where three or niore.frontiers meet. 
Otherwise, the algorithm constructs approximations of the 
edges and corners. I t  can be shown that thi.y frontier ad- 
vancing algorithm peg0rm.r 2 0  Delaunay triangulation of 
3Dpoints 1.Ying on a plane in 30 space. 

1. Introduction 

3D digitization devices produce very large sets of 3D 
points sampled from the surfaces of the objects being 
scanned. These 3D points are usually not suitable for direct 
use in computer graphics applications. A mesh construc- 
tion procedure needs to be applied to derive polygon mesh 
from the 3D points. Polygon mesh is among the most com- 
mon data structure used for representing objects in com- 
puter graphics. Its popularity stems from the following rea- 
sons: 

1. Simplicity for fast rendering: In virtual reality, 3D 
games, and multimedia applications, 3D objects and 

'This research is supported by NUS ARF R-252-000-051-112 

scenes must be represented as meshes so that graphics 
acceleration hardware can be utilized to generate high 
quality images of the objects and scenes. Furthermore, 
most animation techniques such as facial animation, 
which its popdar in multimedia presentation, are ap- 
plii~abIe only to mesh representations. 

2. Standard for the industry: In the manufacturing indus- 
try, &"st all computer-aided design, engineering, and 
manufacturing (CAD/CAE/CAM) software require 3D 
meshes for finite element analysis ( E M ) ,  aTsembly 
planning, process automation, and manufacturing us- 
ing numerical control (NO.  

3. Popularity in Web applications: In World Wide Web 
(WWW), the inclusion of 3D objects into web pages 
is becoming a major trend. In many Intemet standards 
for 3D contents, e.g., VRh4L2, MPEG-4, and Java3D, 
mesh representation takes the central role. 

As the 3D points, in particular those derived from digi- 
tization devices based on digital imaging technologies, are 
inherently non-uniformly distributed over regions that may 
contain surface discontinuities, existing methods are not 
suitable for polygonizing them. This paper presents novel 
geometry-based approach called,frontier advancingpolygo- 
niiation which has the following properties: 

1. It identifies possible surface discontinuities. This poly- 

2 

gonization algorithm identifies reliable points lying 
on relatively flat surfaces and ambiguous points lying 
near surface discontinuities. Quantitative test results 
show that the method can effectively distinguish reli- 
able points from ambiguous points. 

It is progressive. This algorithm begins the mesh 
construction process from reliable 3D points, and ad- 
vances the mesh frontier towards ambiguous 3D points 
lying near surface discontinuities. If 3D points along 
the edges and at the comers are sampled, then the algo- 
rithm will form an edge where two advancing frontiers 
meet, and a comer where three or more frontiers meet. 
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Otherwise, the algorithm constructs approximations of 
the edges and comers. In addition, it can also construct 
a mesh from non-uniformly distributed 3D points. 

3. It produces a 2D Delaunay triangulation for 3D points 
lying on a plane in 3D space. For 3D points lying on a 
smooth curved surface, the constructed mesh is Delau- 
nay Triangulation of a piecewise planar approximation 
of the curved surface. It should be noted that a standard 
3D Delaunay triangulation that produces 3D polyhe- 
dra$ is not appropriate for our application since the 
3D points always lie on the object's surfaces. Instead, 
the frontier advancing algorithm produces 2D triangles 
that approximate the surfaces of the 3D model. 

2. Related Work 

Many different methods exist for mesh construction from 
3D points. Hoppe et al. formalized the problem as fol- 
lows [ 101: given a set of points in R3 without any informa- 
tion about the structure or organization, construct a polygon 
mesh, possibly with boundary, from the 3D points. They 
proposed a contouring algorithm that extracts the zero set of 
the signed distance function that approximates the surface. 
Curless and Levoy proposed a volume refining framework 
taking the similar idea [3]. The zero set algorithm produces 
an approximating rather than interpolating mesh. Amenta 
et al. proposed the crust algorithm, the first algorithm based 
on the 3D Voronoi diagram with provable guarantees [I]. 
The mesh produced is guaranteed to be topologically cor- 
rect and to converge to the original surface as the sampling 
density incretses. Unlike in an ideal situation, the 3D points 
recovered from an image sequence are constrained by the 
features present in the images. It is difficult for these 3D 
points to meet the dense sampling criterion of the crust al- 
gorithm. Moreover, the crust algorithm docs not solve the 
problem of reconstructing sharp boundaries. 

The n-shape of Edelsbrunner et al. [6, 51 is a parameter- 
ized construction that associates a polyhedral shape with an 
unorganized set of points. Its major idea is that a simplex 
(edge, triangle, or tetrahedron) is included in an a-shape 
if it contains some circumspheres with no interior sample 
points. A 3-D circumsphere is a sphere of radius N whose 
surface touches at least three sample points. The spectrum 
of @-shapes, that is, the cr-shapes for all possible values of 
cy, gives an idea of the overall shape and natural dimension- 
ality of the point set. We observed that the 0-shape cannot 
be directly used for our problem. First, due to non-uniform 
sampling, there is not a unique N for the entire set of 3D 
points. Second, the 3D points cannot be eaqily clustered so 
that each cluster has a constant sampling density. 

The a-shape and crust algorithms make use of Delaunay 
triangulation [2] to construct triangle mesh. Several algo- 

rithms for Delaunay triangulation are well known. Green 
and Sibson devised an incremental algorithm that computes 
the Voronoi diagram [SI, which is the dual of Delaunay tri- 
angulation, of a set of points. Fang and Piegl[7] used a uni- 
form grid to implement their delaunay triangulation. Law- 
son developed an algorithm by flipping diagonals of trian- 
gles [ 1 I] and Guibas, Knuth, and Sharir presented an opti- 
mal implementation of Lawson's method based on random- 
ized algorithm [9]. These algorithms, and most other ran- 
domized incremental algorithms in computational geome- 
try, all work according to the principle of structure main- 
taining [4]: To add the next triangle, the algorithm first finds 
out which part of the current structure ha$ to be changed to 
resolve conflicts with the new triangle. Then, it updates 
the structure locally, removing the conflicting triangles and 
adding the new triangle. So, the initial triangulation result 
of a subset of 3D points may not be retained though it is 
optimal wi1.h respect to the subset.The principle of structure 
maintaining is inefficient and inconvenient for our applica- 
tion. 

Oblonsek and Guid [I21 presented a new three-phase 
method for object reconstruction from 3D scattered points. 
The first phase generates a base approximation of object 
surface. The second phase extracts sharp edges and comers 
which are used as constraints for the reconstruction in the 
last phase. Like our method, this method attempted to re- 
construct sharp edges and comers but i t  adopted a different 
approach. To handle surface discontinuities, our algorithm 
adopts the strategy of constructing the mesh starting at rcla- 
tively smooth and flat surfaces and working progressively 
towards edges and comers. This strategy can be imple- 
mented more elegantly and efficiently by adopting a mesh 
con~truction process that only adds triangles and never re- 
moves triangles. 

3. Frontier Advancing Polygonization 

The frontier advancing polygonization algorithm con- 
sists of two main steps: 

1. Identifying reliable points: 
Reliable points are 3D points that lie on relatively flat 
surfaces. 3D points that lie near surface discontinuities 
or on surfaces with large curvatures are called ambigu- 
ous points. The closer a point is to an edge or a comer, 
the larger is its ambiguity. 

2. Advancing Mesh Frontier: 
A mesh is first constructed around a reliable point. 
Then, 3D points near the frontier of the mesh are 
added, and the process continues in increasing order 
of ambiguity. 
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Figure 1. Identifying reliable points. (a) 3D 
points (dots) distributed over a relatively flat 
surface (line, viewed from the side) have a 
small third eigenvalue, whereas those lying 
on a sharp edge (b) or a surface with a large 
curvature (c) have large third eigenvalues. 
The arrow indicates the direction of the third 
eigenvector. 

4. Identifying Reliable Points 

Reliable points that lie on relatively flat surfaces can be 
identified using Principal Component Analysis (PCA) in a 
manner similar to the method described in [lo]. G' iven a 
set of 3D points, PCA performs eigen-decomposition of the 
covariance matrix of the coordinates of the 3D points. It 
produces three eigenvectors ei with awociated eigenvalues 
Xi, i = 1 , 2 , 3 ,  in decreasing value. The eigenvectors are 
orthogonal to each others and are aligned with the direc- 
tions of maximum variations. For a set of points lying on a 
relatively flat surface, the third eigenvector would point in 
the direction of the surface normal. The third eigenvalue A3 

would be very small (Fig. la), approaching the value 0 when 
the surface approaches a 3D plane. Conversely, for a set of 
points distributed near a surface discontinuity (Fig. Ib) or a 
surface with a large curvature (Fig. IC), A3 would be large 
compared to A l .  Therefore, the ratio of A3 over A1 can be 
used as a measure of the likelihood that a point lies near a 
surface discontinuity. 

4.1. Algorithm 

The following algorithm summarizes the process of 

Al:  Identifying Reliable Points: 
For a point p ,  

identifying reliable and ambiguous points: 

Find the neighbors of p within a sphere of radius T 

centered at p .  
Perform PCA on this set of 3D points. 
Compute ambiguity level = A3/X1. 
I f & / h  < ra. 

p is a reliable point, 
Else, p is an ambiguous point. 

-.  
0.8 0.8 

Figure 2. Graph illustrating the ambiguity 
level of points lying near the peak of a Gaus- 
sian surface. The ambiguity levels decrease 
smoothly from the peak position outward. 

The radius T is varied adaptively to capture about 10 points 
in the sphere so that A3 can be estimated reliably. In this 
way, points located in densely sampled regions will have 
smaller neighborhood size than those in coarsely sampled 
regions. The threshold P a  can be a fixed parameter because 
it  is independent of the sampling density of the 3D points. 
In the current implementation, i t  is fixed at 0.05. 

4.2. Test Results 

Tests were conducted to verify the accuracy of identify- 
ing the reliable points. Three types of synthetic surfaces 
were used in the tests: (1) a Gaussian surface, (2) an edge 
composed of two planes forming an obtuse angle, and (3) a 
comer composed of three orthogonal planes. The first sur- 
face is a smooth curved surface, while the third surface is 
sharper than the second one. 3D points were sample from 
the surfaces at regular intervals, and their ambiguity levels 
were computed. Figures 2 to 4 illustrate 3D plots of the 
ambiguity levels of the points on the three surfaces. Points 
lying on flat parts of the edge and the comer have 0 ambi- 
guity and points lying on the smooth curve have very low 
ambiguity level. These points have ambiguity levels below 
the ambiguity threshold (0.05) and are regarded as reliable 
points. As the points get closer to the edge and the comer, 
their ambiguity level increase. Since the edges less sharp 
then the comer, points on the edges have lower ambiguity 
than the comer point. A comparison of the ambiguity levels 
of the three surfaces is summarized in Fig. 5. These results 
show that the effectiveness of computing ambiguity levels. 

5. Frontier Advancing Polygonization 

After identifying reliable points, an initial mesh is first 
constructed around a randomly chosen reliable point, say, 
c. Essentially, the polygonization algorithm ha? to deter- 
mine which of CIS neighbors should be considered a$ mesh 
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Figure 3. Graph showing the ambiguity level 
of points lying near an obtuse edge. Ambigu- 
ity level peaks at the edge and drops to 0 on 
the flat surfaces. 

Figure 4. Graph illustrating the ambiguity 
level of points lying near a sharp corner. Am- 
biguity level peaks at the corner, drops to 
a lower value along the edges, and further 
drops to 0 on the flat surfaces. 

0.0015 -I distalice 
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Figure 5. Comparison of the ambiguity levels 
of the points on three surfaces. This graph 
plots the ambiguity level with respect to the 
distance from the point with the highest am- 
biguity. For the Gaussian surface, the Gaus- 
sian peak has the largest ambiguity (Fig. 2). 
For the obtuse edge, points along the edge 
are most ambiguous (Fig. 3). For the cor- 
ner data, the corner point is most ambiguous 
(Fig. 4). Points above the ambiguity threshold 
are considered ambiguous. 

Figure 6. The edge E( C, p o )  connecting a sam- 
ple point c with its nearest neighbor po must 
be a Dslaunay edge. Otherwise, other points 
would be nearer than p o  is to C. 

Figure 7. The two Voronoi vertices nearest 
to E ( c , p o )  must fall on the opposite sides of 
E(c ,po ) .  Otherwise, other points would be 
nearer than p o  is to C .  

points, i.e., points to be connected to c to form the mesh 
triangles: 'The basic idea is based on the following observa- 
tions (assuming that the points lie on a plane and are located 
in general positions, i.e., in any local neighborhood, not all 
the points in the neighborhood are co-linear): 

1. The ledge E(c ,po )  connecting a sample point c with 
its nearest neighbor po must be a Delaunay edge and 
its perpendicular bisector L ( c ,  P O )  must contain the 
corresponding Voronoi edge. Otherwise, there must 
be other neighbors pi whose perpendicular bisectors 
L(c,  pi) exclude L(c,  PO) from the Voronoi cell at c 
(Fig. 6). So, the first step in the mesh construction is 
to connect a point with its nearest neighbor. 

2. Given Observation 1, the two Voronoi vertices near- 
est to E ( c , p o )  must fall on the opposite sides of 
E ( c ,  P O ) .  Otherwise, there must again be other neigh- 
bors pi whose perpendicular bisectors L ( c ,  p i )  exclude 
L (  c ,  P O )  from the Voronoi cell at c (Fig. 7). Observa- 
tion 2 is used together with the next observation. 

3. Given a known Delaunay vertex pi and the correspond- 
ing 'Voronoi vertex zli and bisector L ( c , p i ) ,  the next 
Voronoi vertex is given by the intersection be- 
tween the bisectors L ( c ,  pi) and L(c ,  pi+l), and ~ i + i  

is nearer than other intersections are to 0;. Otherwise, 
the bisectors of other sample points would exclude 
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Figure 8. The next Voronoi vertex is given 
by the intersection between the bisectors 
L ( e , p i )  and L ( C . P ~ + ~ )  and is nearer than 
other intersections are to vi. 

L ( e ,  pz+l ) from the Voronoi cell at c (Fig. 8). Obser- 
vations 2 and 3 together state that after determining the 
two Voronoi vertices on the opposite sides of the De- 
launay edge E(c .  p o ) ,  we can determine the remain- 
ing Voronoi vertices (and the corresponding Delaunay 
vertices) by going around c starting from one side of 
E (  c, p o )  and ending on the other side. 

These three observations give an informal proof that the 
frontier advancing algor; thm performs 2D Delaunay Trian- 
gulation of 3D points lying on a plane in 3D space. 

5.1. Algorithm 

The algorithm for constructing a mesh around a sample 
point can now be summarized as follows: 

A2: Constructing A Mesh Around A Point 
Given a point c and its neighbors, 

Set p o  as the nearest neighbor of c. 
Find the point p1 whose bisector 1, (c. P I )  intersects 
L ( c ,  p o )  at the location 
between c and p o .  
Repeat for i 2 1, 

nearest to the mid-point 

Find the pointpi+l whose bisector L ( c , y i + ~ )  
intersects L ( c ,  p i )  at the location V ~ + I  nearest to v i .  

Until p7,  = 1’0. 

Connect the Delaunay vertices p i ,  i = 1 . . . , ? I ,  and c 
to form a mesh. 

The intersections of L ( c , p i )  and L ( c , p i + l )  can be easily 
computed as the intersections of three planes, namely the 
tangent plane at c and the perpendicular planes contain- 
ing L (e ,  p i  ) and L(  e ,  pit ) and perpendicular to the edges 
E(c. pi) and E ( c ,  yi+l), respectively (Figs. 8,9): 

( x - c ) . n  = 0 
(x - m i ) .  iij = 0 (1) 

(x - lllj+l) ’ lli+l = 0 

where x is a variable in 3D space, c is the vector form of 
point c, m; is the mid-point along the edge connecting c 

Figure 9. The intersection of three planes de- 
termine the location of 

Figure 10. Mesh construction. The initial 
mesh (solid lines) is constructed around a re- 
liable point p (black dot). The mesh points 
(gray dots) of p form the frontier of the ini- 
tial mesh. Subsequently, the frontier is ad- 
vanced by extending the mesh (dashed lines) 
and completing the mesh around the frontier 
point (1. 

and J J ~ ,  xi is the unit normal vector of the tangent plane at c, 
and 11, is the unit normal vector from c to p z  . The tangent 
plane’s normal vector 11 is estimated using PCA as the third 
eigenvector e g  of the set of point around c. 

The mesh formed by connecting the Delaunay vertices p I  
to the sample point c constitutes a Delaunay triangulation of 
the points in a plane. Once the initial mesh is constructed, 
the polygonization algorithm advances the mesh frontier by 
extending the mesh around the frontier points (Fig. 10). The 
same algorithm A2 is used to construct the mesh around 
a frontier point except that neighbors that are already in- 
cluded in the mesh are retained and never removed. The 
algorithm just adds triangles to complete the mesh around a 
frontier point. 

Before applying algorithm A2, however, the normal vec- 
tor of the tangent plane at an ambiguous frontier point must 
be re-estimated because the initial estimate given by PCA 
may not be accurate. The normal vector n of an ambiguous 
pointy is computed as a distance-weighted average of the 
normal vectors 11, of reliable neighbors or neighbors whose 
normals have already been re-estimated: 
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The weight (U, is inversely proportional to the distance d, 
between the ambiguous point p and its neighbor y,, i.e., 
U], = d ; ' .  

The frontier advancing polygonization algorithm can 
now be summarized a$ follows: 

A3: Advancing Mesh Frontier 
While there are free reliable points, 

Construct an initial mesh around a randomly sclected 
free reliable point. 
For each reliable frontier points c, 

Complete the mesh around c using algorithm A2. 
For each ambiguous frontier point c in increasing order 
of ambiguity, 

Re-estimate the normal vector of the tangent plane at c. 
Complete the mesh around c using algorithm A2. 

Algorithm A3 constructs the mesh starting from a randomly 
selected free reliable point, i.e., a reliable point that is not 
connected to any mesh. It then advances the mesh fron- 
tier by completing meshes around reliable frontier points. 
This process continues until meshes have been constructed 
around all reliable points, except for reliable points on the 
edges of opened boundaries. At this time, the frontiers 
that can be extended are located only at ambiguous frontier 
points. Next, the algorithm further extends the frontiers by 
completing the meshes around ambiguous frontier points in 
increasing order of ambiguity. If 3D points along the edges 
and at the comers are sampled, the algorithm will form an 
edge at the meeting place of two advancing frontiers, and 
a comer at the place where more than two frontiers meet. 
Otherwise, the frontiers will meet at the most ambiguous 
sample points and produce approximations of cdges and 
corners at these points. This polygonization method thus 
reduces the error in constructing surface discontinuities. 

In each mesh completion step, algorithm A2 is guar- 
anteed to add Delaunay edges to the mesh frontiers if the 
sample points lie on a plane. Otherwise, the edges added 
are not exactly Delaunay edges. However, the closer the 
curved surface is to a plane, the closer are the edges to the 
true Delaunay edges. A smooth curved surface can be ap- 
proximated by a piecewise planar ptches. Therefore, for 3D 
points lying on a curved surface, the algorithm produces a 
Delaunay Triangulation of a piecewise planar approxima- 
tion of the curved surface. 

5.2. Test Results 

Tests were performed to assess the performance of the 
frontier advancing polygonization algorithm on five sets of 
test data. The first and second sets contain 100 random 
points, lying on a plane and on a curve respectively. The 
third set contains 270 random points lying near a corner. 
The fourth set contains the standard data points for a man- 
nequin model which consists of 12772 points. The last set 

Figure 11. (a) The mesh constructed for ran- 
dom points lying on a plane. (b) Darker sur- 
faces are constructed earlier while brighter 
surfaces are constructed later. 

contains the standard data points for a foot model which 
consists of 20021 points. 

Figures 11 and 12 show the results of polygonizing ran- 
dom points; lying on a plane and a smooth curved surface. 
The regularity of the triangles in the figures indicates that 
the algorithm indeed performs a Delaunay triangulation of 
the points. The shaded mesh in Fig. 1 l(b) shows the ad- 
vancement of mesh frontiers from darker regions to lighter 
regions. Figure 13 shows thc result of constructing the 
mesh for random points lying near a comer. The regular- 
ity of the mesh again indicates that Delaunay triangulation 
was pcrformed on the surfaces. Moreover, the edges and 
the comer are correctly constructcd. The shading of the 
mesh triangles reveals the advanccment of mesh frontiers 
and meeting of frontiers at surface discontinuities. 

Polygonization results for standard data points of a man- 
nequin, a foot model and a teapot model are shown in Fig- 
ure 14, 15 and 16 respectively. The shading of the mesh tri- 
angles again reveals the advancemcnt and meeting of fron- 
tiers at surface discontinuities. 

6. Conclusions 

This paper presented a method for polygonizing non- 
uniformly distributed 3D points recovered from image se- 
quences. The polygonization algorithm constructs the mesh 
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Figure 12. (a) Top view of the mesh con- . .  . 

structed for random points lying on a curved 
surface from the top view. (b) A side view of 
the reconstructed mesh. 

Figure 14. Results of polygonizing standard 
data points of a mannequin model. (a) Shad- 
ing of the side of the mannequin model shows 
the advancement of mesh frontier (from dark 
to bright). (b) The front side of the mannequin 
model illustrates that the eyes, nose and 
mouth of the mannequin were constructed 
later due to their high ambiguity. 

Figure 13. Polygonization results of random 
points lying near a corner. The shading of 
the mesh triangles reveals the advancement 
of mesh frontiers and meeting of frontiers at 
surface discontinuities. 

Figure 15. Results of polygonizing standard 
data points of a foot model. (a) Shading of 
the side of the foot model shows the advance- 
ment of mesh frontier (from dark to bright). 
(b) The front side of the foot models illus- 
trates that the toes have higher level of ambi- 
guity and hence were reconstructed last (light 
shade). 
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Figure 16. Results of polygonizing standard 
data points of a teapot model. (a) Shading 
of the top of the teapot model shows the 
advancement of mesh frontier (from dark to 
bright). (b) The side of the teapot model il- 
lustrates that the beginning of handle and 
the spout have higher level of ambiguity and 
hence were reconstructed last (light shade). 

by advancing the mesh frontiers from reliable points lying 
on smooth and relatively flat surfaces to ambiguous points 
distributed near surface discontinuities. 

In contraqt to existing Delaunay triangulation algo- 
rithms, the frontier advancing algorithm only adds triangles 
to the mesh and never removes triangles. For 3D points ly- 
ing on a plane, the algorithm ha9 been proved to produce a 
Delaunay 1,riangulation of the points. For 3D points lying 
on a smooth curved surface, the mesh constructed would 
be a Delaunay triangulation of the projections of the points 
onto a best fitting plane. The algorithm can also detect 
and construct surface discontinuities. If 3D points are sam- 
pled along the edges and at the comers, the algorithm will 
form an edge where two advancing frontiers meet, and a 
comer where three or more frontiers meet. Otherwise, the 
meeting frontiers would still approximate the edges and cor- 
ners. Experimental results show that the method presented 
in this paper is effective for constructing meshes from non- 
uniformly distributed 3D points lying on surfaces with dis- 
continuities. 
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