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Abstract 
Animation of a customized human face is to develop techniques to have a new face model to speak the same sentences 
with the similar expression as the face in an existing facial animation sequence. In this paper, we propose a rapid 
modeling method. In this method, two orthogonal photos of a human face are used as input. Based on these two 
photos, a generic animation-ready face model will be adapted for both the geometry and muscle model underneath. 
We formulate it as a non-linear optimization problem and apply the Levenberg-Marquardt method for the solution. 
The result is a new animation-ready model. Applying the previous motion specification to this model, we can animate 
the customized face. We have implemented the method. The results are good. 
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1. Introduction  
Modeling and animation of the human face is interesting and challenging. There is no landscape that 
we know as well as the human face. The human facial features are the most intimately scrutinized 
features in existence. Every detail of the nose, eyes, and mouth, regularity in proportion, variation from 
one individual to the next, are matters about which we are all authorities. We can recognize a face from 
vast universe of similar faces and are able to detect very subtle changes in facial expression. 

Modeling and animation of the human face have important application in many areas. Essentially, 
the face is the part of the body we use to recognize individuals. Our faces play an important role in our 
intellectual communication. In recent years, there has been considerable number of work and research 
done on the topic. Modeling and animation of realistic human face for an individual has wide 
applications in games industry, film industry, teleconferencing, and virtual reality.  

Animation of a customized human face is to develop techniques to have a new face model to speak 
the same sentences with the similar expression as the face in an existing facial animation sequence. A 
more general area is motion reuse, where the goal is to adjust the existing animation to a new model, 
e.g., applying a dance sequence of a tall man to a young boy. 

In this paper, we propose a rapid modeling method for animation of a customized human face. In 
this method, two orthogonal photos of a human face are used as input. Based on these two photos, a set 
of feature points are manually selected, and the generic animation-ready face model will be adapted for 
both the geometry and muscle model underneath. We formulate it as a non-linear optimization problem 
and apply the Levenberg-Marquardt method for the solution. We can get the result instantly. The result 
is a new animation-ready model. Applying the previous motion specification to this model, we can 
animate the customized face. We have implemented the method. The results are good. 

2. Related Work and the SimpleFace Model 
Much work has already been done in the area of facial reconstruction [Park75, Plat81, Wate87, Kuri91, 
Kalr94, Lee95, Essa96, Lee97, Guen98, Pigh98, Golt99, Noh01]. An excellent summary of the tools 
and techniques used in facial reconstruction and animation can be found in [Park96]. However, these 
research works emphasize photo realistic quality that requires extensive input, a large number of 
sample points, and intensive user interaction. Except for [Lee95 and Lee97], most of the resulting face 
models consist of only the facemask, i.e., the face geometry and texture information, not animation-
ready. Our method is similar to [Lee97] in the general framework. However, there are three differences: 
(1) we formulate the reconstruction as a non-linear optimization problem and solve it using the 
Levenberg-Marquardt method while [Lee97] formulates as structured snake and solves it by the 
Dirichlet Free Form Deformation (DFFD), (2) we can adapted the muscle models and the facemask 
together using the same way while [Lee97] does not discuss it, and (3) our method starts from the 
Simple2.0, a generic animation-ready face model free available on Internet [Wate98]. 

The SimpleFace is based on skin-muscle model in polygonal representation, implemented in C 
with OpenGL. In Figure 1, the hierarchy of the model is illustrated. 



 

  

 
 
 
 
 
 
 
 
 
 

Figure 1. The hierarchy of SimpleFace 

The facial model has three main parts: the facemask, muscles and the eyes. The facemask 
describes the geometrical feature of the face. It is a triangular mesh with the face texture. There are 256 
vertices in half of the face. The eyes are modeled as two half spheres. They have parameters as position, 
radius, with an eye texture image. The muscles represent the real muscles lying under the facemask. 
There are 18 muscles modeled. Each muscle has two end vertices, and some internal parameters: name, 
zone of influence, and contraction. Figure 2 shows the rendering of the model in wireframe, where the 
muscle is shown as the red color segment and the active one in yellow.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. The rendering of the SimpleFace 

Animation is achieved as follows for the SimpleFace. The key factor is the muscle model. Each 
muscle can take effect on the vertices in the facemask within its influence zone. When it contracts or 
extended, it will move the influenced vertices of the facemask. Waters proposed three basic types of 
muscle model: linear muscles, sphincter muscles, and sheet muscles. Only the linear muscles are 
implemented. 

As shown in Figure 3, each linear muscle has two end vertices – v1 for the head, and v2 for the tail. 
The zones of influences of the muscle is defined by two radius Rs and Rf, and an angle a1. A 
contraction value k represents the contraction state of the muscle, measuring of how hard a muscle is 
pulling or pushing the vertex in its influence zones. 
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Figure 3. The linear muscle zones of influences 

For each vertex p in the influence zones of the muscle, the new position p’ under the effect of the 
muscle is given by 
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By observing Equation (1), under the effect of the muscle, p always moves to new location p’ 

along the direction pv1 by a distance of a k r, which are both controlled by the contraction value k, 
distance and orientation of p with respect to the muscle. 

As the muscle always pull (or push) the vertex in its influence zones towards (or against) the face 
vertex, it is thus called a linear muscle. By having ability to control the change of face mesh using these 
muscles, we can generate different expressions. A facial expression can be defined by a set of muscle 
contraction values. If two different persons have exactly the same facial expression, each pair of the 
corresponding muscles on the two faces have the same contraction value.  

3 Our Work 
The problem we address is a rapid face modeling for animation of a customized face. Our approach is 
to adapt the SimpleFace from two orthogonal photos. The input consists of (1) the SimpleFace, and (2) 
two orthogonal photos of a human face. By applying our method, a customized animation-ready face 
model can be adapted from the SimpleFace. 

There are three assumptions for our implementation: (1) the two input images are orthogonal 
projection (with scaling) in –Z (front) and –X (left) directions, respectively, (2) some details of the head 
are omitted, including ears, teeth, tongue, and hair, and (3) at least the coordinates of the two vertices in 
the customized face are known. 

The customized facial model will have the same structure as the generic model, and what to be 
changed are: (1) coordinates of each vertex in vertex set V, (2) coordinates of head and tail vertices in 
muscle set M, (3) face texture, eye texture, and (4) eye radius and positions. 

The major problem here is to deform the model. That is, for a vertex in generic model v0(x0, y0, z0), 
find its corresponding coordinate in the customized model v(x, y, z), so that the projected image of the 
new model will be matched to the input photos. The information we can have is the projected 2D image 
coordinate of v in the front (portrait) and side (profile) image (x1, y1) and (z2, y2). This information can 
be obtained by manual labeling the projection of point v in the two images. Intuitively, if we know the 
two projection, we can immediately get back v(x, y, z) using (x1, y1) and (z2, y2). However, there are as 
many as 256 vertices in a half face, it is tedious and imprecise if we manually label them one by one. 
The solution is to select a group of feature points among all the vertices, label them and get their 



 

  

customized 3D coordinates, then determine the coordinates of the rest of the vertices using these 
feature points. Now, we describe it in detail. 

3.1 Model Deformation 
The first step is the global scaling. Since human faces vary in the ratio of height (y-direction) over 
width (x-direction), but the depth (z-direction) does not vary much, before we deform each vertex 
locally, we can do a global scaling to justify the ratio on height over width on the whole model. 
Suppose the height and width of the face in generic model is h0 and w0, in the front image we can find 
the new height and width h and w. Then for each vertex v0(x0, y0, z0) in face mask and muscle, its scaled 
coordinates is given by Equation (3) 

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

=

.0

,0
0

0

,0

zz

y
w
h

w
hy

xx

     (3) 

The scaled model will be used for pre-determining the coordinates of two vertices in the 
customized face, and recovering the projection. In the following parts, we use “generic model” to refer 
the scaled model, rather than the original SimpleFace. 

The second step is to adapt the feature vertices using the input front and side view images. It is 
illustrated in Figure 4. 
  
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Using the front and side view images to adapt the feature points 

To get the 3D coordinates from its projected 2D coordinates in the two front and side images, we 
need to recover the front and side projections. Since the front and side projections are orthogonal, as 
shown in Figure 4, a vertex P’(x’, y’, z’) and its’ two 2D coordinates (x1, y1) and (z2, y2) will have the 
relation as in Equation 4. 

x1 = c1x’+tx1, 
y1 = c1y’+ty1,          (4) 
z2 = c2z’+tz2, 
y2 = c2y’+ty2, 

      
where c1 is the scaling factor for the front image, tx1 and ty1 are translation along x and y direction; c2 is 
the scaling factor for the side image, and tz2 and ty2 are translation along z and y direction. To solve for 
these 6 unknowns, we need at least 2 points in the customized model with known coordinates, which 
could give us 8 equations. This is why we make the third assumption when we define the problem at 
the beginning of Section 2. For simplicity, we can just choose 2 points and assume that they have the 
same coordinates as in the generic model. 

3.2 Feature Point Selection and Model Fitting for Facemask and Muscle Model 
Once we have recover the projection, for a point P, we can label it in the front and side image, thus 
obtaining (x1, y1) and (z2, y2), then from Equation 4 we can compute the coordinate of P(x’, y’, z’) by 
Equation 5: 
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To deform all the vertices in the whole facemask, one naïve way is to manually label the projected 
points in front and side image and use Equation 5 to get the deformed 3D coordinate for every vertex. 
But apparently there are two problems with this method: (1) there are 256 vertices in the half facemask, 
too many to be labeled, and (2) more importantly, not all vertices are easy to locate. Some of the 
vertices appear to be able to project to different locations in the image, even invisible in the images. 

Thus we come out with the idea of selecting only a group of vertices from vertex set as “feature 
points”. These feature points should: 

(1) catch most features of the individual face, 
(2) be easy to locate and label on the image, and 
(3) focus on most crucial parts of the face: lips, nose, eyes. 
Figure 5 shows the 22 feature points we choose among all the 256 vertices of the half facemask.  

  
Figure 5. Feature points highlighted in green color 

We label these feature points to get the real coordinates of them in the customized model. The 
coordinates of rest can then be approximated using a fitting method. We first define “vector 
displacement”. The vector displacement from vector u to vector v can be defined by 
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where we denote the normalized vector of u as u~ , and normalized vector of v as v~ . 

Now for a feature point Q0 in generic model, we already know its customized position Q. We want 
to find for a non-feature point P0, its customized position P. We now let 
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as shown in Figure 6. Now, d(u,v) becomes the “error” of P in the deformed model. It has the following 
properties: (1) when orientation change increases, d increases, and (2) when Q0 is nearer to P0 in the 
generic model, d is bigger. 
 
 



 

  

 
 
 
 
 
 
 
 

 

 

Figure 6. Determining P from feature point Q  

Intuitively, in the deformed model, Q will force P to have the same orientation as it is in the 
generic model: the nearer to Q0 in the generic model, the stronger influence will be on P in the new 
model. 

Now instead of using a single Q, we use all the feature points we selected (Figure 7). 
 

 

 

 

 

 

 

 

 

Figure 7. Determine a non-feature (green) point using feature points (red) 

We can sum all the vector displacements obtained from P to each point in the generic and 
deformed model and try to minimize it. Assuming we have a set of feature points Feature with k 
elements, 
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As we can see in Equation 8, each term of the sum is a vector displacement described in Equation 

6 and 7, in each term the only unknowns are the coordinates of P in the deformed model: xp, yp and zp, 
and each term is positive. Therefore, we can view the sum as k functions about xp, yp and zp. 
Minimizing the sum becomes a non-linear least square problem, which can be solved using Levenberg-
Marquardt method [Chen80, Pres93], to find the most fitting (xp, yp, zp) which minimize the sum. 
Applying this method to each non-feature point, we can have all the deformed coordinates of the 
vertices in the facemask. 

Now, we discuss the adaptation for the muscle model.  For the vertices in the muscles, we apply 
the similar technique. This time for each muscle end vertex P in the generic model, we make use of the 
vertex set VertexSet of the facemask we have just deformed to play the role as feature points, i.e. we are 
going to minimize 
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using the Levenberg-Marquardt method again. We can obtain the best-fit muscle end vertices in the 
deformed facial model. Thus, we adapt the muscle model and facemask together in the same way. 
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3.3 Texturing Mapping 
After deforming the generic facemask into our customized one, we can apply texturing mapping for 
photo-realistic rendering. For each vertex in the facemask, we can use the front and side projections we 
have used before and project the facemask back to the 2D images: 
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Then (x1, y1) (z2, y2) are used as the texture coordinates of the vertices in the front and side images. 
Each polygon can be rendered using either the front part of the front image or part of the side image. In 
our implementation, we render those polygon lies within the outer corners of two eyes using the front 
images, and the rest with side images.  

3.4 Other Refinements 
There are also some refinements we need to do in customizing the generic model, and most of them are 
done manually in the current implementation.  

First, the input images sometimes cannot be directly used as texture images. We need to adjust the 
brightness of the two images such that when we use both of them on the face there will not be much 
difference of the brightness. It is necessary for using both images in texture mapping.  We also need to 
remove some unwanted edge and noise in the images. 

Second, we also have to produce the texture image for the eyes. This image is simply extracted 
from the front image by using some image-processing tool. The radius and position of the eyes is also 
adjusted manually. 

4. Results 
Figure 8 shows the front and side images. Figure 9 shows the textured view of the generic model and 
the customized model. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Input face images, front (portrait) and side (profile) views. 

Feature points highlighted in green color  

 
 
 
 
 



 

  

 
Figure 9. The generic face and the result of the customized face 

The customized model preserves the animation capability of the generic model, i.e., animation-
ready. In the generic model, there is a set of expression defined using muscle contraction values. Now 
we apply the same values in the customized model, and we get the same expressions on the customized 
model (Figure 10). A video demo can be found in http://www.comp.nus.edu.sg/~zhangkai/urop/ 
demo.avi. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Different expressions in generic and customized model 
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5. Conclusion and Future Work 
In this paper, we propose and implemented a method for animating a customized face. A generic face 
model, which can be animated, is customized using two photos of a new face. The major techniques we 
employed are: model deformation of facemask and muscles, texture mapping, and some refinements. In 
order to deform the model, we need to recover the projection of the two photos, and then compute the 
positions of feature points using the projections. The positions of the rest of the points are determined 
using the vector displacement. 

There are several possible improvements for the future work: for easier use, we can apply more 
sophisticated image-processing techniques to detect the feature points automatically such as [Lin00]. 
Another way is to have a better generic face model: we can add more types of muscles such as the 
sphincter and sheet muscles defined in [Wate87]. 
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