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Abstract 
Sampling issue is an important problem in image based 
rendering. In this paper, we propose an adaptive sampling 
method to improve the Layered Depth Image framework. 
Different from the existing methods of interpolating or 
splatting neighboring pixels, our method selects a set of 
sampling views based on the scene analysis that can 
guarantee the final rendering quality. Furthermore, in our 
method, the rendering speed is accelerated by the pre-
computed patch lookup table, which simplifies the 
reference view selection process to a simple lookup of a 
hash table. We have implemented our method. The 
experiment study shows the advantage of the method. 
 
Keywords:  image based rendering, layer depth images, 
data sampling, image warping. 
 
1. Introduction 

 
Image based rendering (IBR) is an image synthesis 
framework where rendering is generated from a pre-
sampled set of images of a scene, also called the reference 
images.  The quality of the rendering result is now 
governed by the reference images. Thus, their sampling is 
an important problem. It is desirable that a robust solution 
be formulated to determining the exact set of reference 
images of proper sampling rate required in the rendering. 

Our work is to address the sampling on one IBR 
framework, the Layered Depth Images (LDI). Our goal is 
to enhance the rendering quality and performance by 
adaptive sampling. The idea is to introduce a filtering 
stage after densely over-sampling the real world. In this 
stage, the method effectively computes the required 
reference viewpoints from the dense samples to avoid 
possible loss or redundancy of data. It not only improves 
the quality of the rendering, in terms of getting rid of 
holes and occlusion artifacts, but also enables quick 
generation of images, owing to the tabulation of only the 
necessary sampled imagery.  

We have implemented the adaptive sampling method 
in LDI. In our experiment study, we can demonstrate the 
advantages of the method by using a test model with 

occlusions and a number of non-uniform surfaces. We can 
see that even an object of such complexity, which could 
have otherwise been difficult to render without an 
extremely dense uniform sampling, can be rendered much 
more accurately than using interpolating or splatting 
neighboring pixels. The rendering speed is also faster, 
comparable to using sparse sampling. 

The remaining of the paper is organized as follows. 
First, we present the related work. Then, we start to 
describe our method followed by the implementation and 
experiment study. Finally, we conclude the paper with a 
brief discussion of future work. 
 
2. Related work 
 
IBR can be classified into four distinct categories: pixel, 
block, reconstruction and mosaicing based [Kang, 1997]. 
They vary largely in the knowledge of the geometry of the 
scene and the number of samples of the scene.  

Our work follows an IBR framework based on the 
LDI [Shade et al., 1998]. We briefly describe the various 
techniques employed to address the sampling problem. 
While some of these techniques look at remedying the 
damage caused by the problem like splatting the holes 
during rendering, others attempt to find the best next view 
to sample, assuming the first sample is ideal. All these 
techniques aim to exploit the geometrical knowledge to 
improve the photo-realism of the synthetically generated 
scene. 

Splatting is a technique, which aims to remedy the 
effects of the sampling problem. The layered depth image, 
which is created from uniformly sampled images, is splat 
into the output image by estimating the projected area of 
the warped pixels [Shade et al., 1998]. This estimation is 
computed differentially based on the distance between the 
sampled surface point and the LDI camera, the field of 
view of the camera, the dimensions of the LDI and the 
angle between the surface normal at the sampled surface 
point and the line of sight to the LDI camera. 

As splatting is a post-sampling step, care has to be 
taken that it does not slow down the rendering engine. 
However, our method generates a lookup table during pre-
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computing. In rendering, the reference view selection 
process is reduced to a rapid lookup of a hash table. 

Furthermore, in [Shade et al., 1998], the reference 
images may be undersampled. The LDIs hence created are 
not substantial in quality. The splatting technique covers 
up most of the holes but with possibly incorrect data. It 
also accounts for much of computation time. Our method 
takes care of the completeness of the reference set of 
images required for rendering. The proper selection of 
reference images eliminates the need of splatting to ensure 
the quality of real time rendering.  

The LDI Tree employed by [Chang et al., 1999] is a 
technique that adaptively selects an LDI from the LDI 
cluster for each pixel. However, since nothing is done to 
prevent gaps in rendering, the sets of samples at each 
resolution may be inadequate. In our method, we tackle 
the issue of gaps by sampling from not just one sampling 
circle, but a set of concentric sampling circles. The issue 
of gaps of the synthetic view is solved. 

Another technique samples all visible surfaces, an 
attempt is made to record a series of images that, 
collectively, capture all visible surfaces of the object. One 
such heuristic is to segment the object to exemplify 
hierarchical visibility [Stuerzlinger, 1998]. The scene is 
assumed to be a set of surface polygons organized in a 
hierarchy. The hierarchical visibility method subdivides 
the scene hierarchy depending on the relative visibility of 
objects. Yet another heuristic is to cover all possible 
surfaces, masking reference images as each surface is 
considered [Fleshman et al., 1999]. In this approach, the 
set of scene polygons visible from a viewing zone is 
approximated and then a greedy algorithm is employed to 
select a small number of camera positions that together 
cover every polygon in the geometric model.  

The best next view problem [Pito 1999] is to select the 
next view for the sampling system to take, given some 
already acquired views of the object.  Two criterions are 
often considered in solving this problem. The visibility 
criterion attempts to maximize the number of surfaces not 
seen thus far, by adding the next image to the sampled set, 
while the quality criterion aims to improve the quality of 
the surfaces sampled. The quality criterion prioritizes an 
image, which samples a decent number of surfaces, 
covering most areas of these surfaces, over an image, 
which samples a lot of surfaces but obliquely. 

The best next view method relies heavily on the set of 
steps taken previously as the greedy algorithm. A wrong 
choice by the heuristic at one stage would imply an 
inefficient solution. Also, since the quality criterion 
encourages the inclusion of reference images until a 
particular threshold is reached, there is no check on the 
redundancy whilst sampling. The selection of an image 
owing to some visibility criterion only means that it has 
the most number of surfaces not seen thus far. It does not 
dictate that the surfaces are not present in this image. On 

the contrary, in our method, we consider the whole scene 
before deciphering which samples to use for rendering. 
This eliminates the problem of incorrect intermediate 
steps of a greedy algorithm. Since the overlap between the 
patches is minimal and most of it is eliminated during 
patch merging, the issue of redundancy is almost non-
existent. The process of finding the critical sampling arcs 
ensures that the sample data collected for the stage of 
rendering is minimal. 
 
3. Our work 
 
In this section, we give an overview of our work in the 
LDI framework. Then, we describe the major techniques 
in detail. 
 
3.1 Overview 
 
The original LDI framework is essentially classified into 
three main phases: scene sampling, scene geometry and 
photometry extraction and scene re-sampling as shown in 
Figure 1. Our work is on the four pre-computation stages 
as depicted in Figure 2 as flow chart. We briefly go 
through each of them as follows: 
 
(1) Patch categorization and polygonization (subsection 

3.2) 
 

Based on the range and color image samplings of a 
scene, the normal vector of each point of the objects is 
estimated. Then, from the sampling points, this step 
attempts to identify the uniform patches, defined by 
certain constraints. They are polygonized to rectangles.  
 
(2) Contour formation (subsection 3.3) 
 

The output of the previous stage, i.e., the rectangular 
patches, is used to identify unique 2D-contours along the 
vertical axis. It detects the parts that can be approximated 
as planes and subsequently summarizes them as a 2D-
contour. Details will be discussed in subsection 3.3. 
 
(3) Identifying visibility and sampling regions 

(subsection 3.4) 
 
In this step, we find the visibility and sampling regions for 
each of the contours. Visibility region for a particular 
edge in a 2D-contour is defined as that region from which 
the whole edge is visible, if there is no occlusion. 

A sampling region for a particular edge is defined as 
the region where it is appropriate to sample that particular 
edge, ensuring that all of the data visible on the edge is 
captured. A sampling region is determined by formulae 
dependent on the size of the edge, the camera calibrations 
and the sampling camera trajectory. 
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Figure 1. LDI system flow 
 
 

 
Figure 2. The flow chart of the proposed method 

 
(4) Patch lookup table for reference view selection 

(subsection 3.4) 

This step generates the patch lookup table for selection of 
reference views in rendering. The whole sampled object is 
categorized into uniquely defined sampled regions or 
rectangularised patches. We have associated each of these 
sampled regions with a particular view point. In 
rendering, the set of reference images needed to generate 
the required synthetic view can be obtained, if the 
sampled regions for that view point are known.  
 
3.2 Patch Categorization and polygonization 

 
This step starts from the point cloud to understand the 
geometry of the scene and proceeds to adaptively sample 
the object. 

Before going any further with the procedure of patch 
categorization, we explain the concept of a patch, in the 
context of data sampling. A patch is regarded as any 
uniform surface on the object (a surface without uneven 
bumps), which can wholly fit into the field of view of the 
camera under consideration. 

The purpose of defining a patch is to be able to 
summarize the geometry of the object in a 2D plane, so as 
to get a representation sketch of the uniform sections of 
the object.  An intuitive way of thinking about adaptive 
sampling is that more/less samples are needed for non-
uniform/uniform areas of the object.  

The normal at each point of the object surface serves as 
the key parameter to categorize the patch.  The normal nC 
at the corresponding object point in the camera reference 
frame is computed from the x, y, z coordinates of the 
range map. It is approximated by averaging the 8 normals 
that correspond to the surrounding 8 neighboring 
triangular surfaces around the given pixel.  The 
corresponding normal nw in the world coordinates is 
computed by: 
  
nw

 = (C-1)T nc,     (1) 
  
where C is the transformation matrix from the camera 
(from which the range map is obtained) to the world 
coordinates. 

We now define a patch as a surface where every point 
of the surface satisfies the following constraints:  

 
(1) The normals between any two neighboring points of a 

patch, in the spherical co-ordinate system do not 
differ by a preset δnϕ and δnθ. 

(2) The normals between the extreme two points of a 
patch, in the spherical co-ordinate system do not 
differ by more than a preset ∆nϕ and ∆nθ. 

(3) The z values of any two neighboring points of a patch 
do not differ by more than a preset δz. This ensures 
that areas on two objects with closely equal normal 
values are not grouped as a patch. 

Image Samples 
(with Surface Normals) 

Patch Categorization 
and Polygonization 

Contour Formation 

Filtered Image Patch 
Samples 

Identifying Visibility 
and Sampling regions 

Hash Table for  
Reference Views Selection 

Image Samples 
(Color, range maps) 
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surface normal) 

Incremental Warping 
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Generation 

LDI Generation 

Rendering 
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Sampling 
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Scene Re-
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(4) The sizes of a patch in the screen coordinate system 
both horizontally and vertically should not exceed the 
maximum size that the field of view θ of the camera 
permits at that z value.  

 
The size of a patch is computed in this way: Take a 

top view and denote the size of the patch in any scan line 
whose first and last points of this edge are Smax and Smin. 
Suppose the orthogonal bisector of the edge intersects the 
sampling circle at a point, and let the distance from the 
midpoint of the edge to this point be denoted as D. The 
maximum size d of the patch (Figure 3), constrained by 
the filed of view, is: 
 

d = 2D tan (θ/2)    (2) 
 

The same criteria apply for the vertical extent, with the 
corresponding angle ϕ. Given the point cloud and these 
constraints, the patches are obtained and the whole point 
cloud is categorized. 

 

 
Figure 3. Patch size constraint (top view) 

 
The patch derived so far is still non-uniform in shape 

in a 2D plane. We need to subdivide them so that they can 
be summarized in one dimension as a line. We choose the 
rectangle to represent the sampled regions for the fact that 
it can be reduced to a line along a scanning direction. 

The patch polygonization step subdivides the patches 
into rectangles. Finally, all the patches are approximated 
by rectangular components.  

Note that storing the entire sampled point cloud in a 
heap may not be feasible, owing to the highly dense 
sampling. We consider one reference image at a time. 
After the rectangular patches are formed, they are checked 
for overlaps with patches found from previous reference 
images in order to merge them. Merging the patches is 
done by a global image registration technique [Stockman 
et al., 1982]. Care should be taken to make sure that the 
patch, as it is being merged, still satisfies the patch 
constraints, over the border and as a whole. 
 
3.3 Contour formation, sampling and visibility graphs 

 

A scan line traversal is now performed to the patches. 
At the end of this process, we can associate a set of 
patches with each scan line. For each set, we can derive a 
contour in the plane defined by the viewpoint and the scan 
line (Figure 4). We list the pseudo code of the contour 
formation algorithm applied to the rectangular patches in 
Table 1. 

 
procedure FormContours (patch [ ] ) 

for k←0 to patch.size-1  
//find patch demarcations in the vertical direction 

demarcations.add(patch[k].min_y) 
demarcations.add(patch[k].max_y) 

 
sort(demarcations)       //in ascending order 
 
for j←0 to demarcations.size-1 

for k←0 to patch.size-1 
if patch[k].min_y == demarcations[j] 
//new  patch starts at this demarcation 

temp.add(patch[k])  
else if patch[k].max_y = demarcations[j]  
//old patch ends at demarcation 

temp.remove(patch[k]) 
    

if j = 0 
prev_demarcation = -1000 

else 
prev_demarcation = demarcation[j-1] 

  
// form a contour with the patches in temp,  
// and applicable for y from prev_demarcation  
// to the current 
createContour (temp, prev_demarcation, 

demarcations[j])  
end procedure 
 

Table 1. Contour formation algorithm. 
 
 

 
Figure 4. From a group of rectangle patches associated 

with one scan line to a 2D contour 
 

Now the sampling problem is reduced to adequately 
sampling all the edges in each of these contours. In this 
context we define the sampling arc. For any contour, we 
sample the edges from the circumference of a circle, lying 
on the plane of the contour, with its center at the object’s 

Smin

Smax

θ 
D 

d 
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origin and a radius which defines how close we can get to 
the object during camera walkthrough. We call this the 
sampling circle. We can have multiple concentric 
sampling circles for various resolutions. 

For any edge, a sampling arc is defined as the arc of 
the sampling circle, such that from any point on the arc, 
the edge under consideration has maximum visibility. 
Intuitively, when we project a scene to a viewing plane, 
the number of pixels does not necessarily have a one-to-
one mapping with the number of actual points in the 
world coordinate system. The sampling arc of any edge is 
the arc from which the sampling rate is the same as that of 
the orthogonal view.  

Figure 5 depicts a contour, the object’s sampling circle 
and the sampling arc of a particular edge labeled “e1” of 
the contour. 

 

 
 

Figure 5. Illustration of sampling arc and sampling circle 
 
We now describe how to find the sampling arc given 

an edge and a sampling circle. Suppose we choose a 
Cartesian st-coordinate system for the sampling circle 
with the center of the circle placed at its origin and the s-
axis parallel to the edge. First, let us look at how the edge 
depth z, varies with respect to the camera motion, as 
depicted in Figure 6. We define the edge depth, as the 
distance between the midpoint of the edge and the camera 
position placed on the sampling circle. A prime sampling 
point (so,to), is the point of intersection of the edge’s 
orthogonal bisector and the sampling circle. For any given 
edge, its prime depth, zo, is its distance to (so,to). The edge 
depth function Fz, which is the edge depth as a function of 
the sampling point, can be formulated as: 

⎩
⎨
⎧

∆∆−∆
=∆=∆

== − otherwisestzs
tandsifz

tsFz Z ),/(cos(tan/
00,

)','('
0

1
0

      (3) 
where ∆s=s’-s0 and ∆t=t’-t0. 

Our aim is to find a sampling arc, such that the same 
pixel resolution as seen from (so,to) can be obtained for all 
points within the sampling arc. We observe from Figure 6 
that as we move away from (so,to), the number of points 
on the edge projected to a pixel on the view plane will 
reduce. The critical arc is derived in this way: from (so,to), 
we locate the most left and right points on the arc so that 
the sampling rates are the same as that from (so,to). From 
Figure 6, we can see that the more right/left a segment on 
the edge, the more reduction of its size on the image 
plane.  

 

 
Figure 6. Illustration of deriving the sampling arc 

 
Hence, the problem of finding the sampling arc 

becomes finding the points on the sampling circle where 
the two critical segments occupy two pixels. There are 
two camera dependent parameters: the pixel size ∆p 
corresponding to edge segment ∆pw and the camera focal 
length f, the distance between the camera and the view 
plane.  dR0 is the length of the right critical fragment when 
seen from the prime sampling point.  We can now define a 
right and left pixel occupancy functions FWR and FWL, 
which are the number of pixels occupied by their 
respective critical segments.  The sampling arc is thus 
determined by the set (s’,t’) such that FWR (s’, t’)  > 1 and 
FWL (s’, t’) > 1. 

Having established how to find the sampling arc, 
given any edge, we shall now look at how we use these 
sampling arcs to sketch the sampling graph and hence find 
the points to sample from. For all of the edges in the 
contour, the sampling arcs are transformed from their st-
coordinate system to the world coordinate system. Figure 
7 (a) depicts the sampling graph sketched by the sampling 
arcs obtained for all the edges. We number the various arc 
regions formed on the circumference of the sampling 
circle, as depicted in Figure 7 (b).  

Sampling Circle 

Contour 

Sampling Arc 

e1 

Sampling 
Circle 

Edge d dR0

(s’,t’) (s0,t0) 

z0

z’

f

∆p
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Figure 7. Sampling graph 

 
Next, we tabulate every arc segment against its 

associated edges in the contour, as in Table 2. A directed 
graph is sketched with each of these arc segments as 
nodes.  Node-A directed to Node-B in the graph indicates 
that the edges associated with the arc segment represented 
by Node-A, is a subset of the edges associated with the 
arc segment represented by Node-B. Figure 8 depicts the 
directed graph plotted for the example in Figure 7.  

 
Arc segment Associated edges 
1 r 
2 r,b 
3 b 
4 b,c 
5 c 
6 c,o 
7 o 
8 o,p 
9 p 
10 p,g 
11 g 

Table 2. Tabulation of arc segments and their 
associated edges 

 
The set of critical arc segments is the set of minimum 

number of arc segments required to cover all the edges of 
the contour. This is determined by considering the set of 

arc segments represented by the leaf nodes in the directed 
graph. We perform a greedy algorithm on this set of arc 
segments, by selecting one arc segment at a time, to 
maximize the number of edges covered thus far. The 
result of this step is the set of critical arc segments, which 
in the case of the example depicted in Figure 8, is {2, 6, 
and 10}. 

 
Figure 8. Directed graph of the arc segments 

 
We now have a set of critical arc segments and the list 

of edges that can be sampled from each of the critical arc 
segments. The set of adequate samples for the contour are 
obtained by sampling from selected points on these 
critical arc segments, trying to maximize the number of 
edges sampled in a single sample, ensuring that all the 
edges of the contour are covered. A greedy algorithm, in 
pseudo code depicted in Table 3, is devised on a set of 
edges to be covered by critical arc segments. We first find 
that sampling point (position and direction) on the arc 
segment, in which the maximum number of edges can be 
sampled.  The criticalarcs is an array of all critical arc 
segments. The criticalarcs object contains the array of 
edges that can be sampled. The edgescovered is a temp 
array which keeps track of the edges that can be sampled 
from the given point. The solution is a set of edges and 
point (position and direction) from which these edges are 
sampled using the greedy algorithm. If we find a larger set 
of edges that can be covered from the sampling point, the 
algorithm replaces the previous solution with this one. 
Typically, a contour of n edges will result in n/3 to n 
adequate samples. 
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6procedure MakeSampleSet (criticalarcs [ ]) 

for k ← 0 to criticalarcs.size-1      //for all critical arcs 
while criticalarcs[k].edges.size > 0 

             //as long as some edge is yet to be sampled 
for j ← criticalarcs[k].beginpt to criticalarcs[k].endpt 

for i ← 0 to 180 
for a ← 0 to criticalarcs[k].edges.size-1      
    calculate(pixel_occupancy for      

                             criticalarcs[k].edges[a]) 
     // z’and d/2 change with angle i and edge 

if pixel_occupancy satisfactory 
    edgescovered.add(criticalarcs[k].edges[a])  

 //this edge can be sampled from here 
    if edgescovered.length > max     
       //if this is the most optimum solution thus far 
     solution.remove(edgescovered) 
     solution.add(j, i, edgescovered)  
       //point and angle to sample the edge set 
    max = edgescovered.size 

criticalarcs[k].remove(solution.edgescovered) 
            //these edges are sampled 

return solution 
end procedure 
 

Table 3. The algorithm to derive the sample set 
 

3.4 Visibility region and visibility graph 
 

This subsection generates the patch lookup table for 
selection of reference views in rendering. The whole 
sampled object is categorized into uniquely defined 
sampled regions or rectangularised patches. We have 
associated each of these sampled regions with a particular 
view point. In rendering, the set of reference images 
needed to generate the required synthetic view can be 
obtained, if the sampled regions for that view point are 
known.  

Towards this aim, we define potential visibility region 
of an edge as the region in the plane of the edge, where at 
least some part of the edge is visible. As an edge can be 
seen from any region in front of it, the potential visibility 
region for an edge is as depicted in Figure 9. A visibility 
graph for a contour is defined as the graph sketching the 
potential visibility regions of all the constituent edges of 
the contour, highlighting the overlap of various visibility 
regions. 

We see from Figure 9 (a) that a number of potential 
visibility regions are formed, given any contour, with each 
region having a clearly defined set of visible edges. Note 
that a region formed by the overlap of visibility regions of 
two edges, defines the region from which both the edges 
are visible, e.g. edges c, r and b are potentially visible in 
visibility region 7. 

 

Figure 9. T

It might be worthwhi
the visibility graph, we ne
regions inside the samplin
sampling circle sets the 
example, a visibility reg
Figure 9 (b) whose two
points (r,θi1), (r,θi2), (R,
points in a cylindrical co
the center of the circle. T
lookup table generated for

 
Radii index 
(length unit 
   in mm ) 

Angl
(degr
(θo1, 

1000, 2000 (40,1
1000, 2000 (215,

Table 4. Patch loo

1 

8

9

10

11

13

14
15 

2

c

  
p

 
(a) 

 

 
(b) 

 
he visibili

 
le to note
ed not wo
g circle, a
boundary 
ion is hi

 arcs are 
θo1), (R,θo
ordinate s
able 4 de
 the visibi

e index 
ees) 
θo2) 
50) 
345) 
kup table 

2 

4 

7

b r

 
5
ty graph

 that, w
rry abou
s by the
for wal
ghlighte
defined

2) high
ystem. 
picts its
lity grap

Angle 
(degree
(θi1, θi2
(45,135
(220,35
(y = 10

7 
3

1

1

 

 

 

hile sketching 
t the visibility 

 definition, the 
kthrough. For 
d in blue in 
 by four end 
lighted as red 
Its origin is at 
 sample patch 
h.  

index 
s) 
) 

edg
e 

) p 
0) b 
 to 18) 

6



This table can be used to lookup the patches that can 
be seen from any point (y’, r’, θ’) in rendering, where y’ 
is the scan line and (r’, θ’) are the cylindrical coordinates 
at that plane. The visibility arcs on the inner and outer 
bounding circles define a visibility region for an edge. All 
of the sampling regions depicted in Figure 9 (a) are 
formed by the overlapping of these regions. In cylindrical 
coordinates, if the visibility arcs for edge e are defined as 
(r, θi1), (r, θi2), (R, θo1), (R, θo2), a point (r’, θ’), during 
walkthrough would be able to see all edges, whose index 
satisfy the constraints of Table 5. 

 

(1) r<r’<R, 
(2) θ’∈[θo1, θo2],  
(3) let θoc be closer to θ’, then 

if |θo1 - θo2| ≤180, h’≥h 
if |θo1 - θo2|≥180, either int(θ’/90) ≠ int(θo1/90) and   
                                 int(θ’/90) ≠ int(θo2/90) or h’< h, 

 
where h=R.sin(tan-1(r.sin(|θic-θoc|)/(R-r.cos(|θic-θoc|)))),  
          h’=R.sin(tan-1(r’.sin(|θ’-θoc|)/(R-r’.cos(|θ’ - θoc|)))). 
 

Table 5. The constraints for visibility graph 
 

For example, a point (r’, θ’) in figure 9 (b), marked in 
pink, where r’ = 1500 and θ’ = 217 degrees, is found to be 
in the visibility region of edge b, by satisfying the 
following constraints. 

(1) 1000<1500<2000 
(2) 217 ∈ (215,345) 
(3) (345-215) < 180 and (h’=309) > (h =173) 
 
We have several patch lookup tables (one for each 

contour), and given any view point in cylindrical 
coordinates during the walkthrough, the table can be used 
along with the constraints in table 5, to lookup the 
edges/patches that can be seen from it. The radii index is 
stored, in case we have more concentric sampling circles 
for different resolutions (like the LDI Tree). 
 
3.5 Rendering engine 
 
Our rendering engine generally follows that of [Shade et 
al, 1998].  It is broadly a composition of identifying the 
user position in the 3D space, selecting the reference 
images required to render the synthetic view at the view 
point, and finally generating the synthetic view from the 
reference images.  We also adopt the re-projection of the 
pixel from the reference patches to the LDI and the 
incremental warping to avoid redundant calculations when 
generating the re-projected pixels in the scanlines.  
However, in our method, as the visibility graphs has been 
derived from the 2D contours, during pre-computation, 
the process of reference view selection now becomes a 

mere look up of the patch lookup table, based on the 
user’s coordinates, to elicit the patches visible from those 
co-ordinates. 
 
4. Implementation 
 
In this section, we shall go over the various components 
used for the system implementation. We describe some of 
the issues dealt with, during the system implementation. 
 
4.1 Hardware Components 
 
The Range Scanner used in our sampling process is the 
Minolta Vivid 900, which samples both a color map and a 
range map at the same time for any given viewpoint. 

We rotate the object instead of a much heavier range 
scanner. A mannequin object was chosen and the diffuse 
lighting environment was set up. A mount is built and 
placed over the turntable to hold the object to be sampled. 
This apparatus has two degrees of freedom; rotation about 
a vertical axis with precision of ±0.2 degrees and vertical 
translation with a precision of ±0.2 cm. Figure 10 
illustrates this apparatus and the setup used for sampling. 

 
Figure 10. Set-up for sampling 

 
We also considered the occlusion. The mannequin was 

placed behind two vertical rods which catered for most of 
the occluded regions. The existence of several non-
uniform surfaces on the mannequin was also noticeable. 
Figure 11 illustrates a few snapshots of this object. 
 
4.2 Software Components 
 
The program was developed in Open GL, with C++ using 
Microsoft Visual C++ development environment. The 
object was scanned by the Range scanner, and the scanner 
software output format was converted to a simpler color 
map and depth map format. The color map was 
represented as Portable Pixel Map images (.ppm files), 
while the range map was represented using text files (.txt 
files). A one to one correspondence could be found 

Knob to adjust the 
height 

Vertical 
motion

Turntable 

Adjustable 
mount 

Range 
camera 

Object 

Camera 
stand 
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between the (r,g,b) pixels in the color map and the 
(x,y,z,flag) surfels of the range map. 

The camera, often taken for granted in most rendering 
systems, constitutes one of the key components of the 
rendering engine. We represent the camera as a 4x4 
transformation matrix, such that given a camera placed at 
a view point c1 and given its representation as matrix C1, 
any point in the global co-ordinate system could be re-
projected into the camera’s view plane by a simple matrix 
multiplication between the point co-ordinates and the 
camera matrix C1. 
 
4.3 Other issues 
 
In this subsection, we shall look at some of the issues 
involved in the system implementation. They are the 
range map, surface normals, and uniform dense sampling. 

Each range image file has a three-line header giving 
the number of rows and columns in the image followed by 
four image sections. The first is the so-called 'flag' image, 
where a pixel value of 1 means the corresponding (x, y, z) 
values at that pixel are valid, and vise versa.  Following 
the flag image are the image of X-coordinates, the image 
of Y-coordinates, and the image of Z-coordinates in 
floating point.  The X and Y images are required only 
when calculating the normals. The Z-values are the 
range/depth under consideration. A very high value was 
used for the depth, in cases where the pixels do not 
correspond to the object but to some background. 

There is one consideration that ought to be discussed 
in approximating the surface normals as discussed in 
section 3.2. The 8 neighboring points may not exist or 
even if they do, they may not lie on the same surface. We 
have addressed the special cases. For example, when the 
direction of a normal vector differs a lot from the rest of 
the normals, imply that they are the normals for an edge 
or for a different surface. In such a case, we discard those 
points and do not involve them in calculating the normal. 

We place the object over a turntable, as depicted in 
Figure 10, to ensure an accurate rotational motion to 0.2-
degree precision. The mount underneath the object helps 
the object to move up and down to an accuracy of 0.2cm. 
Together, these two motions simulate the positioning of 
the camera anywhere on a cylindrical surface surrounding 
the object. We can sample the object densely, as the 
redundant data will be filtered out.  

For the sample implementation, we used the MIDDLE 
Lens and sampled along only one sampling circle. We can 
sample along various concentric sampling circles, to 
ensure that a proper circle is always available during 
rendering.  Samples taken with a TELE Lens along a 
sampling circle close to the object, and with a WIDE Lens 
along a sampling circle far from the object, are added to 
the existing sample set, to further enhance the rendered 
output and frame rate. 

5. Results 
 
In this section, we will analyze and discuss the results and 
improvements of the proposed system. We shall also 
compare and discuss the results with those of other 
systems. 

The results observed from the sample implementation 
are promising. As can be seen from Figure 11, the quality 
of the rendered output is comparable to current systems 
using splatting. No holes are observed, and unlike 
splatting, the rendered output is completely a result of the 
original sampled data, and not of any interpolation or 
synthetic approximations. 

The rendering speed can be qualified as quite fast, as a 
real time walkthrough shows no signs of processing lag. 
Such a high speed would have been impossible, if all of 
the data initially sampled were to be retained for rendering 
the synthetic views during walkthrough. With our method, 
we retained the adequate data to ensure the high quality of 
the rendered output, and disposed the redundant data, to 
ensure the real time rendering speed noticed in the camera 
walkthrough. 

 

  
(a)   (b) 

Figure 11. Synthetic Views generated by our system 
 

Table 6 shows the frame rate observed with our 
improved system during walkthrough and other statistics 
of the system. 
System 
Configuration: 

CPU: Pentium-4, 1.6 GHz system 
RAM: 256 MB 
  

Input Data: Adaptively filtered set of patches from 
the sampled set of reference images of 
296x222 resolution, sampled along a 
circle around the object, at regular 
intervals of 2.82ο
Size: 97.3 Mb 

Frame Rate: 10.7 fps 
 

Patch loading 
time: 

Proportional to the size of a patch. 
Typical Patch size: 2 Kb 
Time to load a patch: 0.71 
milliseconds  

Table 6. Statistical information for our system 
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Now we compare the results obtained from our system 
with a sample implementation of the original LDI system 
[Shade et al., 1998], with uniform sparse sampling (with 
and without splatting) and uniform dense sampling. 

With a uniform sparse sampling and reference images 
taken along a circular orbit around the object at regular 
intervals of 19.74 degree the following results were 
obtained. 
     It is observed that our result (Figure 11) is better than 
the results of sparsely sampled, both non-splatted and 
splatted systems (Figure 12).  The renderings of the non-
splatted system (Figure 12 (a) and (b)), if magnified a few 
times their present sizes, will reveal the holes along the 
vertical green rods and between the two lungs for the 
uniform sparse sampling without splatting.  In the case of 
the splatted system (Figure 12 (c) and (d)), both the 
systems have no holes. However, the rendering results of 
the splatted system are not based on the original samples. 
Some textures on the object when viewed closely are not 
continuous. 

 

  
(a)   (b) 

  
(c)   (d) 

Figure 12. (a) and (b) Synthetic Views generated by 
the sparsely sampled LDI system, without splatting; (c) 

and (d) synthetic Views generated by the sparsely 
sampled LDI system, with splatting  

 
The speed of our system is comparable to the sparsely 

sampled non-splatted system, while it is better than the 
splatted version (see Table 7).  

 

System 
Configuration: 

CPU: Pentium-4, 1.6 GHz system 
RAM: 256 MB 
  

Input Data: Reference images of 296x222 
resolution, sampled along a circle 
around the object, at regular 
intervals of 19.74ο
 
Size: 40.6 Mb 
 

Frame Rate: 12.2 fps 
 

Image loading 
time: 

Proportional to the size of an image. 
Reference Image size: 2.25 Mb 
Time to load an image: 0.8 seconds 

(a) 
 

System 
Configuration: 

CPU: Pentium-4, 1.6 GHz system 
RAM: 256 MB 
  

Input Data: Reference images of 296x222 
resolution, sampled along a circle 
around the object, at regular 
intervals of 19.74ο
 
Size: 40.6 Mb 
 

Frame Rate: 7.1 fps 
 

Image loading 
time: 

Proportional to the size of an image. 
Reference Image size: 2.25 Mb 
Time to load an image: 0.8 seconds 

(b) 
Table 7. Statistical information for the sparsely 

sampled LDI system: (a) without splatting; (b) with 
splatting 

 
Now, we compare our system with the highly dense 

uniform sampling with reference images taken along a 
circular orbit around the object, at regular intervals of 
2.82 degrees, the results obtained are as depicted in Figure 
13. 

 

  
(a)   (b) 
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Figure 13. Synthetic Views generated by the densely 
sampled LDI system 

 
It is observed that the quality of the rendered views of 

our system is comparable to that of the dense sampled 
system, despite the fact that the dense sampled system has 
a lot more input data at its disposal. 

The speed of our system is much faster than the dense 
sampled system. Table 8 illustrates the statistical 
information observed with the uniform dense sampled 
system. 

 
System 
Configuration: 

CPU: Pentium-4, 1.6 GHz system 
RAM: 256 MB 
  

Input Data: Reference images of 296x222 
resolution, sampled along a circle 
around the object, at regular 
intervals of 2.82ο
 
Size: 286 Mb 
 

Frame Rate: 1.3 fps 
 

Image loading 
time: 

Proportional to the size of an image. 
Reference Image size: 2.25 Mb 
Time to load an image: 0.8 seconds 

 
Table 8. Statistical information for the densely sampled 

LDI system 
 
 

Table 9 summarizes the statistical difference among all 
the systems. A video sequence of the walkthrough can be 
found in http://www.comp.nus.edu.sg/~tehhc/sldi.html. 

 
 
Sample Implementation of 

Original LDI System  
[Shade et al., 1998] 

Attributes Our 
Improved 
System 

Sparsely 
Sampled 

(no 
splatting) 

Sparsely 
Sampled  

(with 
splatting) 

Densely 
Sampled 

Input 
Data Size 
 

97.3 Mb 40.6 Mb 40.6 Mb 286 Mb 

Renderin
g Speed / 
Frame 
Rate 
 

Fast  
10.7 fps 

Fast 
12.2 fps 

Average 
7.1 fps 

Slow 
1.3 fps 

Reference 
View 

Pre-
computed 

Closest Reference Images 
during walkthrough 

Selection 
 

Patch 
Lookup 
Table  

Splatting 
 

No  No  Yes No  

Holes 
 

No  Yes Mostly 
No 

No  

Quality 
 

Good  Poor Average Good  

Table 9. Comparison of the different systems 
 
6. Conclusion and future work 
 
Sampling issue is an important problem in IBR. In this 
paper, we proposed a method to improve the LDI, by 
adaptively sampling a scene, to avoid various 
computations during rendering. The quality of the output 
is enhanced, owing to the fact that the synthetic view is 
not generated by interpolating or splatting neighboring 
pixels, but with original sampled data. In addition to the 
improvisation of the quality during rendering, the 
rendering speed is enhanced by the pre-computed patch 
lookup table, which simplifies the reference view 
selection process to a simple lookup of a hash table. 

To evaluate our method, we demonstrated the 
advantages of this approach by considering an object with 
occlusions, and quite a number of non-uniform surfaces. It 
was established that even an object of such complexity, 
which could have otherwise been difficult to render 
without an extremely dense uniform sampling, was 
rendered much more accurately than a splatted synthetic 
image. The rendering speed was comparable to sparse 
sampling, and better than the splatted system. 

For the future work, we will include the reflectance 
properties of the materials and lighting effects.  
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