
An Adaptive Sampling Method for Layered Depth Image

Ravinder Namboori, Hung Chuan Teh, Zhiyong Huang
Department of Computer Science

School of Computing
National University of Singapore

Singapore 117543
{namboori, tehhc, huangzy}@comp.nus.edu.sg

Abstract
Sampling issue is an important problem in image based
rendering. In this paper, we propose an adaptive sampling
method to improve the Layered Depth Image framework.
Different from the existing methods of interpolating or
splatting neighboring pixels, our method selects a set of
sampling views based on the scene analysis that can
guarantee the final rendering quality. Furthermore, in our
method, the rendering speed is accelerated by the pre-
computed patch lookup table, which simplifies the
reference view selection process to a simple lookup of a
hash table. We have implemented our method. The
experiment study shows the advantage of the method.

Keywords: image based rendering, layer depth images,
data sampling, image warping.

1. Introduction

Image based rendering (IBR) is an image synthesis
framework where rendering is generated from a pre-
sampled set of images of a scene, also called the reference
images. The quality of the rendering result is now
governed by the reference images. Thus, their sampling is
an important problem. It is desirable that a robust solution
be formulated to determining the exact set of reference
images of proper sampling rate required in the rendering.

Our work is to address the sampling on one IBR
framework, the Layered Depth Images (LDI). Our goal is
to enhance the rendering quality and performance by
adaptive sampling. The idea is to introduce a filtering
stage after densely over-sampling the real world. In this
stage, the method effectively computes the required
reference viewpoints from the dense samples to avoid
possible loss or redundancy of data. It not only improves
the quality of the rendering, in terms of getting rid of
holes and occlusion artifacts, but also enables quick
generation of images, owing to the tabulation of only the
necessary sampled imagery.

We have implemented the adaptive sampling method
in LDI. In our experiment study, we can demonstrate the
advantages of the method by using a test model with

occlusions and a number of non-uniform surfaces. We can
see that even an object of such complexity, which could
have otherwise been difficult to render without an
extremely dense uniform sampling, can be rendered much
more accurately than using interpolating or splatting
neighboring pixels. The rendering speed is also faster,
comparable to using sparse sampling.

The remaining of the paper is organized as follows.
First, we present the related work. Then, we start to
describe our method followed by the implementation and
experiment study. Finally, we conclude the paper with a
brief discussion of future work.

2. Related work

IBR can be classified into four distinct categories: pixel,
block, reconstruction and mosaicing based [Kang, 1997].
They vary largely in the knowledge of the geometry of the
scene and the number of samples of the scene.

Our work follows an IBR framework based on the
LDI [Shade et al., 1998]. We briefly describe the various
techniques employed to address the sampling problem.
While some of these techniques look at remedying the
damage caused by the problem like splatting the holes
during rendering, others attempt to find the best next view
to sample, assuming the first sample is ideal. All these
techniques aim to exploit the geometrical knowledge to
improve the photo-realism of the synthetically generated
scene.

Splatting is a technique, which aims to remedy the
effects of the sampling problem. The layered depth image,
which is created from uniformly sampled images, is splat
into the output image by estimating the projected area of
the warped pixels [Shade et al., 1998]. This estimation is
computed differentially based on the distance between the
sampled surface point and the LDI camera, the field of
view of the camera, the dimensions of the LDI and the
angle between the surface normal at the sampled surface
point and the line of sight to the LDI camera.

As splatting is a post-sampling step, care has to be
taken that it does not slow down the rendering engine.
However, our method generates a lookup table during pre-

 1

computing. In rendering, the reference view selection
process is reduced to a rapid lookup of a hash table.

Furthermore, in [Shade et al., 1998], the reference
images may be undersampled. The LDIs hence created are
not substantial in quality. The splatting technique covers
up most of the holes but with possibly incorrect data. It
also accounts for much of computation time. Our method
takes care of the completeness of the reference set of
images required for rendering. The proper selection of
reference images eliminates the need of splatting to ensure
the quality of real time rendering.

The LDI Tree employed by [Chang et al., 1999] is a
technique that adaptively selects an LDI from the LDI
cluster for each pixel. However, since nothing is done to
prevent gaps in rendering, the sets of samples at each
resolution may be inadequate. In our method, we tackle
the issue of gaps by sampling from not just one sampling
circle, but a set of concentric sampling circles. The issue
of gaps of the synthetic view is solved.

Another technique samples all visible surfaces, an
attempt is made to record a series of images that,
collectively, capture all visible surfaces of the object. One
such heuristic is to segment the object to exemplify
hierarchical visibility [Stuerzlinger, 1998]. The scene is
assumed to be a set of surface polygons organized in a
hierarchy. The hierarchical visibility method subdivides
the scene hierarchy depending on the relative visibility of
objects. Yet another heuristic is to cover all possible
surfaces, masking reference images as each surface is
considered [Fleshman et al., 1999]. In this approach, the
set of scene polygons visible from a viewing zone is
approximated and then a greedy algorithm is employed to
select a small number of camera positions that together
cover every polygon in the geometric model.

The best next view problem [Pito 1999] is to select the
next view for the sampling system to take, given some
already acquired views of the object. Two criterions are
often considered in solving this problem. The visibility
criterion attempts to maximize the number of surfaces not
seen thus far, by adding the next image to the sampled set,
while the quality criterion aims to improve the quality of
the surfaces sampled. The quality criterion prioritizes an
image, which samples a decent number of surfaces,
covering most areas of these surfaces, over an image,
which samples a lot of surfaces but obliquely.

The best next view method relies heavily on the set of
steps taken previously as the greedy algorithm. A wrong
choice by the heuristic at one stage would imply an
inefficient solution. Also, since the quality criterion
encourages the inclusion of reference images until a
particular threshold is reached, there is no check on the
redundancy whilst sampling. The selection of an image
owing to some visibility criterion only means that it has
the most number of surfaces not seen thus far. It does not
dictate that the surfaces are not present in this image. On

the contrary, in our method, we consider the whole scene
before deciphering which samples to use for rendering.
This eliminates the problem of incorrect intermediate
steps of a greedy algorithm. Since the overlap between the
patches is minimal and most of it is eliminated during
patch merging, the issue of redundancy is almost non-
existent. The process of finding the critical sampling arcs
ensures that the sample data collected for the stage of
rendering is minimal.

3. Our work

In this section, we give an overview of our work in the
LDI framework. Then, we describe the major techniques
in detail.

3.1 Overview

The original LDI framework is essentially classified into
three main phases: scene sampling, scene geometry and
photometry extraction and scene re-sampling as shown in
Figure 1. Our work is on the four pre-computation stages
as depicted in Figure 2 as flow chart. We briefly go
through each of them as follows:

(1) Patch categorization and polygonization (subsection

3.2)

Based on the range and color image samplings of a
scene, the normal vector of each point of the objects is
estimated. Then, from the sampling points, this step
attempts to identify the uniform patches, defined by
certain constraints. They are polygonized to rectangles.

(2) Contour formation (subsection 3.3)

The output of the previous stage, i.e., the rectangular
patches, is used to identify unique 2D-contours along the
vertical axis. It detects the parts that can be approximated
as planes and subsequently summarizes them as a 2D-
contour. Details will be discussed in subsection 3.3.

(3) Identifying visibility and sampling regions

(subsection 3.4)

In this step, we find the visibility and sampling regions for
each of the contours. Visibility region for a particular
edge in a 2D-contour is defined as that region from which
the whole edge is visible, if there is no occlusion.

A sampling region for a particular edge is defined as
the region where it is appropriate to sample that particular
edge, ensuring that all of the data visible on the edge is
captured. A sampling region is determined by formulae
dependent on the size of the edge, the camera calibrations
and the sampling camera trajectory.

 2

Figure 1. LDI system flow

Figure 2. The flow chart of the proposed method

(4) Patch lookup table for reference view selection

(subsection 3.4)

This step generates the patch lookup table for selection of
reference views in rendering. The whole sampled object is
categorized into uniquely defined sampled regions or
rectangularised patches. We have associated each of these
sampled regions with a particular view point. In
rendering, the set of reference images needed to generate
the required synthetic view can be obtained, if the
sampled regions for that view point are known.

3.2 Patch Categorization and polygonization

This step starts from the point cloud to understand the
geometry of the scene and proceeds to adaptively sample
the object.

Before going any further with the procedure of patch
categorization, we explain the concept of a patch, in the
context of data sampling. A patch is regarded as any
uniform surface on the object (a surface without uneven
bumps), which can wholly fit into the field of view of the
camera under consideration.

The purpose of defining a patch is to be able to
summarize the geometry of the object in a 2D plane, so as
to get a representation sketch of the uniform sections of
the object. An intuitive way of thinking about adaptive
sampling is that more/less samples are needed for non-
uniform/uniform areas of the object.

The normal at each point of the object surface serves as
the key parameter to categorize the patch. The normal nC
at the corresponding object point in the camera reference
frame is computed from the x, y, z coordinates of the
range map. It is approximated by averaging the 8 normals
that correspond to the surrounding 8 neighboring
triangular surfaces around the given pixel. The
corresponding normal nw in the world coordinates is
computed by:

nw

 = (C-1)T nc, (1)

where C is the transformation matrix from the camera
(from which the range map is obtained) to the world
coordinates.

We now define a patch as a surface where every point
of the surface satisfies the following constraints:

(1) The normals between any two neighboring points of a

patch, in the spherical co-ordinate system do not
differ by a preset δnϕ and δnθ.

(2) The normals between the extreme two points of a
patch, in the spherical co-ordinate system do not
differ by more than a preset ∆nϕ and ∆nθ.

(3) The z values of any two neighboring points of a patch
do not differ by more than a preset δz. This ensures
that areas on two objects with closely equal normal
values are not grouped as a patch.

Image Samples
(with Surface Normals)

Patch Categorization
and Polygonization

Contour Formation

Filtered Image Patch
Samples

Identifying Visibility
and Sampling regions

Hash Table for
Reference Views Selection

Image Samples
(Color, range maps)

Image Samples (with
surface normal)

Incremental Warping

Reference Views
Generation

LDI Generation

Rendering

Scene
Sampling

Scene
Geometry and

Photometry
Extraction

Scene Re-
sampling

 3

(4) The sizes of a patch in the screen coordinate system
both horizontally and vertically should not exceed the
maximum size that the field of view θ of the camera
permits at that z value.

The size of a patch is computed in this way: Take a

top view and denote the size of the patch in any scan line
whose first and last points of this edge are Smax and Smin.
Suppose the orthogonal bisector of the edge intersects the
sampling circle at a point, and let the distance from the
midpoint of the edge to this point be denoted as D. The
maximum size d of the patch (Figure 3), constrained by
the filed of view, is:

d = 2D tan (θ/2) (2)

The same criteria apply for the vertical extent, with the
corresponding angle ϕ. Given the point cloud and these
constraints, the patches are obtained and the whole point
cloud is categorized.

Figure 3. Patch size constraint (top view)

The patch derived so far is still non-uniform in shape

in a 2D plane. We need to subdivide them so that they can
be summarized in one dimension as a line. We choose the
rectangle to represent the sampled regions for the fact that
it can be reduced to a line along a scanning direction.

The patch polygonization step subdivides the patches
into rectangles. Finally, all the patches are approximated
by rectangular components.

Note that storing the entire sampled point cloud in a
heap may not be feasible, owing to the highly dense
sampling. We consider one reference image at a time.
After the rectangular patches are formed, they are checked
for overlaps with patches found from previous reference
images in order to merge them. Merging the patches is
done by a global image registration technique [Stockman
et al., 1982]. Care should be taken to make sure that the
patch, as it is being merged, still satisfies the patch
constraints, over the border and as a whole.

3.3 Contour formation, sampling and visibility graphs

A scan line traversal is now performed to the patches.
At the end of this process, we can associate a set of
patches with each scan line. For each set, we can derive a
contour in the plane defined by the viewpoint and the scan
line (Figure 4). We list the pseudo code of the contour
formation algorithm applied to the rectangular patches in
Table 1.

procedure FormContours (patch [])

for k←0 to patch.size-1
//find patch demarcations in the vertical direction

demarcations.add(patch[k].min_y)
demarcations.add(patch[k].max_y)

sort(demarcations) //in ascending order

for j←0 to demarcations.size-1

for k←0 to patch.size-1
if patch[k].min_y == demarcations[j]
//new patch starts at this demarcation

temp.add(patch[k])
else if patch[k].max_y = demarcations[j]
//old patch ends at demarcation

temp.remove(patch[k])

if j = 0
prev_demarcation = -1000

else
prev_demarcation = demarcation[j-1]

// form a contour with the patches in temp,
// and applicable for y from prev_demarcation
// to the current
createContour (temp, prev_demarcation,

demarcations[j])
end procedure

Table 1. Contour formation algorithm.

Figure 4. From a group of rectangle patches associated

with one scan line to a 2D contour

Now the sampling problem is reduced to adequately
sampling all the edges in each of these contours. In this
context we define the sampling arc. For any contour, we
sample the edges from the circumference of a circle, lying
on the plane of the contour, with its center at the object’s

Smin

Smax

θ
D

d

 4

origin and a radius which defines how close we can get to
the object during camera walkthrough. We call this the
sampling circle. We can have multiple concentric
sampling circles for various resolutions.

For any edge, a sampling arc is defined as the arc of
the sampling circle, such that from any point on the arc,
the edge under consideration has maximum visibility.
Intuitively, when we project a scene to a viewing plane,
the number of pixels does not necessarily have a one-to-
one mapping with the number of actual points in the
world coordinate system. The sampling arc of any edge is
the arc from which the sampling rate is the same as that of
the orthogonal view.

Figure 5 depicts a contour, the object’s sampling circle
and the sampling arc of a particular edge labeled “e1” of
the contour.

Figure 5. Illustration of sampling arc and sampling circle

We now describe how to find the sampling arc given

an edge and a sampling circle. Suppose we choose a
Cartesian st-coordinate system for the sampling circle
with the center of the circle placed at its origin and the s-
axis parallel to the edge. First, let us look at how the edge
depth z, varies with respect to the camera motion, as
depicted in Figure 6. We define the edge depth, as the
distance between the midpoint of the edge and the camera
position placed on the sampling circle. A prime sampling
point (so,to), is the point of intersection of the edge’s
orthogonal bisector and the sampling circle. For any given
edge, its prime depth, zo, is its distance to (so,to). The edge
depth function Fz, which is the edge depth as a function of
the sampling point, can be formulated as:

⎩
⎨
⎧

∆∆−∆
=∆=∆

== − otherwisestzs
tandsifz

tsFz Z),/(cos(tan/
00,

)','('
0

1
0

 (3)
where ∆s=s’-s0 and ∆t=t’-t0.

Our aim is to find a sampling arc, such that the same
pixel resolution as seen from (so,to) can be obtained for all
points within the sampling arc. We observe from Figure 6
that as we move away from (so,to), the number of points
on the edge projected to a pixel on the view plane will
reduce. The critical arc is derived in this way: from (so,to),
we locate the most left and right points on the arc so that
the sampling rates are the same as that from (so,to). From
Figure 6, we can see that the more right/left a segment on
the edge, the more reduction of its size on the image
plane.

Figure 6. Illustration of deriving the sampling arc

Hence, the problem of finding the sampling arc

becomes finding the points on the sampling circle where
the two critical segments occupy two pixels. There are
two camera dependent parameters: the pixel size ∆p
corresponding to edge segment ∆pw and the camera focal
length f, the distance between the camera and the view
plane. dR0 is the length of the right critical fragment when
seen from the prime sampling point. We can now define a
right and left pixel occupancy functions FWR and FWL,
which are the number of pixels occupied by their
respective critical segments. The sampling arc is thus
determined by the set (s’,t’) such that FWR (s’, t’) > 1 and
FWL (s’, t’) > 1.

Having established how to find the sampling arc,
given any edge, we shall now look at how we use these
sampling arcs to sketch the sampling graph and hence find
the points to sample from. For all of the edges in the
contour, the sampling arcs are transformed from their st-
coordinate system to the world coordinate system. Figure
7 (a) depicts the sampling graph sketched by the sampling
arcs obtained for all the edges. We number the various arc
regions formed on the circumference of the sampling
circle, as depicted in Figure 7 (b).

Sampling Circle

Contour

Sampling Arc

e1

Sampling
Circle

Edge d dR0

(s’,t’) (s0,t0)

z0

z’

f

∆p

 5

Figure 7. Sampling graph

Next, we tabulate every arc segment against its

associated edges in the contour, as in Table 2. A directed
graph is sketched with each of these arc segments as
nodes. Node-A directed to Node-B in the graph indicates
that the edges associated with the arc segment represented
by Node-A, is a subset of the edges associated with the
arc segment represented by Node-B. Figure 8 depicts the
directed graph plotted for the example in Figure 7.

Arc segment Associated edges
1 r
2 r,b
3 b
4 b,c
5 c
6 c,o
7 o
8 o,p
9 p
10 p,g
11 g

Table 2. Tabulation of arc segments and their
associated edges

The set of critical arc segments is the set of minimum

number of arc segments required to cover all the edges of
the contour. This is determined by considering the set of

arc segments represented by the leaf nodes in the directed
graph. We perform a greedy algorithm on this set of arc
segments, by selecting one arc segment at a time, to
maximize the number of edges covered thus far. The
result of this step is the set of critical arc segments, which
in the case of the example depicted in Figure 8, is {2, 6,
and 10}.

Figure 8. Directed graph of the arc segments

We now have a set of critical arc segments and the list

of edges that can be sampled from each of the critical arc
segments. The set of adequate samples for the contour are
obtained by sampling from selected points on these
critical arc segments, trying to maximize the number of
edges sampled in a single sample, ensuring that all the
edges of the contour are covered. A greedy algorithm, in
pseudo code depicted in Table 3, is devised on a set of
edges to be covered by critical arc segments. We first find
that sampling point (position and direction) on the arc
segment, in which the maximum number of edges can be
sampled. The criticalarcs is an array of all critical arc
segments. The criticalarcs object contains the array of
edges that can be sampled. The edgescovered is a temp
array which keeps track of the edges that can be sampled
from the given point. The solution is a set of edges and
point (position and direction) from which these edges are
sampled using the greedy algorithm. If we find a larger set
of edges that can be covered from the sampling point, the
algorithm replaces the previous solution with this one.
Typically, a contour of n edges will result in n/3 to n
adequate samples.

(a)

b
g

p

o

c

r

1
2

3

4

5

6

7 8
9

10

11

(b)

1

3

5

9

7

11

2

6

4

8

10

 6

6procedure MakeSampleSet (criticalarcs [])

for k ← 0 to criticalarcs.size-1 //for all critical arcs
while criticalarcs[k].edges.size > 0

 //as long as some edge is yet to be sampled
for j ← criticalarcs[k].beginpt to criticalarcs[k].endpt

for i ← 0 to 180
for a ← 0 to criticalarcs[k].edges.size-1
 calculate(pixel_occupancy for

 criticalarcs[k].edges[a])
 // z’and d/2 change with angle i and edge

if pixel_occupancy satisfactory
 edgescovered.add(criticalarcs[k].edges[a])

 //this edge can be sampled from here
 if edgescovered.length > max
 //if this is the most optimum solution thus far
 solution.remove(edgescovered)
 solution.add(j, i, edgescovered)
 //point and angle to sample the edge set
 max = edgescovered.size

criticalarcs[k].remove(solution.edgescovered)
 //these edges are sampled

return solution
end procedure

Table 3. The algorithm to derive the sample set

3.4 Visibility region and visibility graph

This subsection generates the patch lookup table for
selection of reference views in rendering. The whole
sampled object is categorized into uniquely defined
sampled regions or rectangularised patches. We have
associated each of these sampled regions with a particular
view point. In rendering, the set of reference images
needed to generate the required synthetic view can be
obtained, if the sampled regions for that view point are
known.

Towards this aim, we define potential visibility region
of an edge as the region in the plane of the edge, where at
least some part of the edge is visible. As an edge can be
seen from any region in front of it, the potential visibility
region for an edge is as depicted in Figure 9. A visibility
graph for a contour is defined as the graph sketching the
potential visibility regions of all the constituent edges of
the contour, highlighting the overlap of various visibility
regions.

We see from Figure 9 (a) that a number of potential
visibility regions are formed, given any contour, with each
region having a clearly defined set of visible edges. Note
that a region formed by the overlap of visibility regions of
two edges, defines the region from which both the edges
are visible, e.g. edges c, r and b are potentially visible in
visibility region 7.

Figure 9. T

It might be worthwhi
the visibility graph, we ne
regions inside the samplin
sampling circle sets the
example, a visibility reg
Figure 9 (b) whose two
points (r,θi1), (r,θi2), (R,
points in a cylindrical co
the center of the circle. T
lookup table generated for

Radii index
(length unit
 in mm)

Angl
(degr
(θo1,

1000, 2000 (40,1
1000, 2000 (215,

Table 4. Patch loo

1

8

9

10

11

13

14
15

2

c

p

(a)

(b)

he visibili

le to note
ed not wo
g circle, a
boundary
ion is hi

 arcs are
θo1), (R,θo
ordinate s
able 4 de
 the visibi

e index
ees)
θo2)
50)
345)
kup table

2

4

7

b r

5
ty graph

 that, w
rry abou
s by the
for wal
ghlighte
defined

2) high
ystem.
picts its
lity grap

Angle
(degree
(θi1, θi2
(45,135
(220,35
(y = 10

7
3

1

1

hile sketching
t the visibility

 definition, the
kthrough. For
d in blue in
 by four end
lighted as red
Its origin is at
 sample patch
h.

index
s)
)

edg
e

) p
0) b
 to 18)

6

This table can be used to lookup the patches that can
be seen from any point (y’, r’, θ’) in rendering, where y’
is the scan line and (r’, θ’) are the cylindrical coordinates
at that plane. The visibility arcs on the inner and outer
bounding circles define a visibility region for an edge. All
of the sampling regions depicted in Figure 9 (a) are
formed by the overlapping of these regions. In cylindrical
coordinates, if the visibility arcs for edge e are defined as
(r, θi1), (r, θi2), (R, θo1), (R, θo2), a point (r’, θ’), during
walkthrough would be able to see all edges, whose index
satisfy the constraints of Table 5.

(1) r<r’<R,
(2) θ’∈[θo1, θo2],
(3) let θoc be closer to θ’, then

if |θo1 - θo2| ≤180, h’≥h
if |θo1 - θo2|≥180, either int(θ’/90) ≠ int(θo1/90) and
 int(θ’/90) ≠ int(θo2/90) or h’< h,

where h=R.sin(tan-1(r.sin(|θic-θoc|)/(R-r.cos(|θic-θoc|)))),
 h’=R.sin(tan-1(r’.sin(|θ’-θoc|)/(R-r’.cos(|θ’ - θoc|)))).

Table 5. The constraints for visibility graph

For example, a point (r’, θ’) in figure 9 (b), marked in
pink, where r’ = 1500 and θ’ = 217 degrees, is found to be
in the visibility region of edge b, by satisfying the
following constraints.

(1) 1000<1500<2000
(2) 217 ∈ (215,345)
(3) (345-215) < 180 and (h’=309) > (h =173)

We have several patch lookup tables (one for each

contour), and given any view point in cylindrical
coordinates during the walkthrough, the table can be used
along with the constraints in table 5, to lookup the
edges/patches that can be seen from it. The radii index is
stored, in case we have more concentric sampling circles
for different resolutions (like the LDI Tree).

3.5 Rendering engine

Our rendering engine generally follows that of [Shade et
al, 1998]. It is broadly a composition of identifying the
user position in the 3D space, selecting the reference
images required to render the synthetic view at the view
point, and finally generating the synthetic view from the
reference images. We also adopt the re-projection of the
pixel from the reference patches to the LDI and the
incremental warping to avoid redundant calculations when
generating the re-projected pixels in the scanlines.
However, in our method, as the visibility graphs has been
derived from the 2D contours, during pre-computation,
the process of reference view selection now becomes a

mere look up of the patch lookup table, based on the
user’s coordinates, to elicit the patches visible from those
co-ordinates.

4. Implementation

In this section, we shall go over the various components
used for the system implementation. We describe some of
the issues dealt with, during the system implementation.

4.1 Hardware Components

The Range Scanner used in our sampling process is the
Minolta Vivid 900, which samples both a color map and a
range map at the same time for any given viewpoint.

We rotate the object instead of a much heavier range
scanner. A mannequin object was chosen and the diffuse
lighting environment was set up. A mount is built and
placed over the turntable to hold the object to be sampled.
This apparatus has two degrees of freedom; rotation about
a vertical axis with precision of ±0.2 degrees and vertical
translation with a precision of ±0.2 cm. Figure 10
illustrates this apparatus and the setup used for sampling.

Figure 10. Set-up for sampling

We also considered the occlusion. The mannequin was

placed behind two vertical rods which catered for most of
the occluded regions. The existence of several non-
uniform surfaces on the mannequin was also noticeable.
Figure 11 illustrates a few snapshots of this object.

4.2 Software Components

The program was developed in Open GL, with C++ using
Microsoft Visual C++ development environment. The
object was scanned by the Range scanner, and the scanner
software output format was converted to a simpler color
map and depth map format. The color map was
represented as Portable Pixel Map images (.ppm files),
while the range map was represented using text files (.txt
files). A one to one correspondence could be found

Knob to adjust the
height

Vertical
motion

Turntable

Adjustable
mount

Range
camera

Object

Camera
stand

 8

between the (r,g,b) pixels in the color map and the
(x,y,z,flag) surfels of the range map.

The camera, often taken for granted in most rendering
systems, constitutes one of the key components of the
rendering engine. We represent the camera as a 4x4
transformation matrix, such that given a camera placed at
a view point c1 and given its representation as matrix C1,
any point in the global co-ordinate system could be re-
projected into the camera’s view plane by a simple matrix
multiplication between the point co-ordinates and the
camera matrix C1.

4.3 Other issues

In this subsection, we shall look at some of the issues
involved in the system implementation. They are the
range map, surface normals, and uniform dense sampling.

Each range image file has a three-line header giving
the number of rows and columns in the image followed by
four image sections. The first is the so-called 'flag' image,
where a pixel value of 1 means the corresponding (x, y, z)
values at that pixel are valid, and vise versa. Following
the flag image are the image of X-coordinates, the image
of Y-coordinates, and the image of Z-coordinates in
floating point. The X and Y images are required only
when calculating the normals. The Z-values are the
range/depth under consideration. A very high value was
used for the depth, in cases where the pixels do not
correspond to the object but to some background.

There is one consideration that ought to be discussed
in approximating the surface normals as discussed in
section 3.2. The 8 neighboring points may not exist or
even if they do, they may not lie on the same surface. We
have addressed the special cases. For example, when the
direction of a normal vector differs a lot from the rest of
the normals, imply that they are the normals for an edge
or for a different surface. In such a case, we discard those
points and do not involve them in calculating the normal.

We place the object over a turntable, as depicted in
Figure 10, to ensure an accurate rotational motion to 0.2-
degree precision. The mount underneath the object helps
the object to move up and down to an accuracy of 0.2cm.
Together, these two motions simulate the positioning of
the camera anywhere on a cylindrical surface surrounding
the object. We can sample the object densely, as the
redundant data will be filtered out.

For the sample implementation, we used the MIDDLE
Lens and sampled along only one sampling circle. We can
sample along various concentric sampling circles, to
ensure that a proper circle is always available during
rendering. Samples taken with a TELE Lens along a
sampling circle close to the object, and with a WIDE Lens
along a sampling circle far from the object, are added to
the existing sample set, to further enhance the rendered
output and frame rate.

5. Results

In this section, we will analyze and discuss the results and
improvements of the proposed system. We shall also
compare and discuss the results with those of other
systems.

The results observed from the sample implementation
are promising. As can be seen from Figure 11, the quality
of the rendered output is comparable to current systems
using splatting. No holes are observed, and unlike
splatting, the rendered output is completely a result of the
original sampled data, and not of any interpolation or
synthetic approximations.

The rendering speed can be qualified as quite fast, as a
real time walkthrough shows no signs of processing lag.
Such a high speed would have been impossible, if all of
the data initially sampled were to be retained for rendering
the synthetic views during walkthrough. With our method,
we retained the adequate data to ensure the high quality of
the rendered output, and disposed the redundant data, to
ensure the real time rendering speed noticed in the camera
walkthrough.

(a) (b)

Figure 11. Synthetic Views generated by our system

Table 6 shows the frame rate observed with our
improved system during walkthrough and other statistics
of the system.
System
Configuration:

CPU: Pentium-4, 1.6 GHz system
RAM: 256 MB

Input Data: Adaptively filtered set of patches from
the sampled set of reference images of
296x222 resolution, sampled along a
circle around the object, at regular
intervals of 2.82ο
Size: 97.3 Mb

Frame Rate: 10.7 fps

Patch loading
time:

Proportional to the size of a patch.
Typical Patch size: 2 Kb
Time to load a patch: 0.71
milliseconds

Table 6. Statistical information for our system

 9

Now we compare the results obtained from our system
with a sample implementation of the original LDI system
[Shade et al., 1998], with uniform sparse sampling (with
and without splatting) and uniform dense sampling.

With a uniform sparse sampling and reference images
taken along a circular orbit around the object at regular
intervals of 19.74 degree the following results were
obtained.
 It is observed that our result (Figure 11) is better than
the results of sparsely sampled, both non-splatted and
splatted systems (Figure 12). The renderings of the non-
splatted system (Figure 12 (a) and (b)), if magnified a few
times their present sizes, will reveal the holes along the
vertical green rods and between the two lungs for the
uniform sparse sampling without splatting. In the case of
the splatted system (Figure 12 (c) and (d)), both the
systems have no holes. However, the rendering results of
the splatted system are not based on the original samples.
Some textures on the object when viewed closely are not
continuous.

(a) (b)

(c) (d)

Figure 12. (a) and (b) Synthetic Views generated by
the sparsely sampled LDI system, without splatting; (c)

and (d) synthetic Views generated by the sparsely
sampled LDI system, with splatting

The speed of our system is comparable to the sparsely

sampled non-splatted system, while it is better than the
splatted version (see Table 7).

System
Configuration:

CPU: Pentium-4, 1.6 GHz system
RAM: 256 MB

Input Data: Reference images of 296x222
resolution, sampled along a circle
around the object, at regular
intervals of 19.74ο

Size: 40.6 Mb

Frame Rate: 12.2 fps

Image loading
time:

Proportional to the size of an image.
Reference Image size: 2.25 Mb
Time to load an image: 0.8 seconds

(a)

System
Configuration:

CPU: Pentium-4, 1.6 GHz system
RAM: 256 MB

Input Data: Reference images of 296x222
resolution, sampled along a circle
around the object, at regular
intervals of 19.74ο

Size: 40.6 Mb

Frame Rate: 7.1 fps

Image loading
time:

Proportional to the size of an image.
Reference Image size: 2.25 Mb
Time to load an image: 0.8 seconds

(b)
Table 7. Statistical information for the sparsely

sampled LDI system: (a) without splatting; (b) with
splatting

Now, we compare our system with the highly dense

uniform sampling with reference images taken along a
circular orbit around the object, at regular intervals of
2.82 degrees, the results obtained are as depicted in Figure
13.

(a) (b)

 10

Figure 13. Synthetic Views generated by the densely
sampled LDI system

It is observed that the quality of the rendered views of

our system is comparable to that of the dense sampled
system, despite the fact that the dense sampled system has
a lot more input data at its disposal.

The speed of our system is much faster than the dense
sampled system. Table 8 illustrates the statistical
information observed with the uniform dense sampled
system.

System
Configuration:

CPU: Pentium-4, 1.6 GHz system
RAM: 256 MB

Input Data: Reference images of 296x222
resolution, sampled along a circle
around the object, at regular
intervals of 2.82ο

Size: 286 Mb

Frame Rate: 1.3 fps

Image loading
time:

Proportional to the size of an image.
Reference Image size: 2.25 Mb
Time to load an image: 0.8 seconds

Table 8. Statistical information for the densely sampled

LDI system

Table 9 summarizes the statistical difference among all
the systems. A video sequence of the walkthrough can be
found in http://www.comp.nus.edu.sg/~tehhc/sldi.html.

Sample Implementation of

Original LDI System
[Shade et al., 1998]

Attributes Our
Improved
System

Sparsely
Sampled

(no
splatting)

Sparsely
Sampled

(with
splatting)

Densely
Sampled

Input
Data Size

97.3 Mb 40.6 Mb 40.6 Mb 286 Mb

Renderin
g Speed /
Frame
Rate

Fast
10.7 fps

Fast
12.2 fps

Average
7.1 fps

Slow
1.3 fps

Reference
View

Pre-
computed

Closest Reference Images
during walkthrough

Selection

Patch
Lookup
Table

Splatting

No No Yes No

Holes

No Yes Mostly
No

No

Quality

Good Poor Average Good

Table 9. Comparison of the different systems

6. Conclusion and future work

Sampling issue is an important problem in IBR. In this
paper, we proposed a method to improve the LDI, by
adaptively sampling a scene, to avoid various
computations during rendering. The quality of the output
is enhanced, owing to the fact that the synthetic view is
not generated by interpolating or splatting neighboring
pixels, but with original sampled data. In addition to the
improvisation of the quality during rendering, the
rendering speed is enhanced by the pre-computed patch
lookup table, which simplifies the reference view
selection process to a simple lookup of a hash table.

To evaluate our method, we demonstrated the
advantages of this approach by considering an object with
occlusions, and quite a number of non-uniform surfaces. It
was established that even an object of such complexity,
which could have otherwise been difficult to render
without an extremely dense uniform sampling, was
rendered much more accurately than a splatted synthetic
image. The rendering speed was comparable to sparse
sampling, and better than the splatted system.

For the future work, we will include the reflectance
properties of the materials and lighting effects.

7. References

[Chang et al., 1999] Chun-Fa Chang, Gary Bishop and

Anselmo Lastra. LDI Tree: A hierarchical
representation for image-based rendering. Proceedings
of the SIGGRAPH 1999 annual conference on
Computer graphics, 1999, pp. 291 – 298.

[Fleshman et al., 1999] Shachar Fleishman, Daniel
Cohen-Or and Dani Lischinski. Automatic camera
placement for image-based modeling. Proceedings of
the Pacific Graphics ’99, 1999.

[Kang, 1997] Sing Bing Kang. A survey of image-based
rendering techniques. Cambridge Technical Report
Series, August 1997.

[Pito 1999] R. Pito. A solution to the next best view
problem for automated surface acquisition. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 21(10):1016--1030, 1999.

 11

http://www.comp.nus.edu.sg/~tehhc/sldi.html

[Shade et al., 1998] Jonathan Shade, Steven Gortler, Li-
wei He and Richard Szeliski. Layered depth images.
Proceedings of the 25th annual conference on
Computer Graphics, 1998, pp. 231 - 242.

[Stockman et al., 1982] G.C. Stockman, S. Kopstein and
S. Benett. Matching images to models for registration
and object detection via clustering, IEEE Trans Pattern
analysis and Machine intelligence 4, 1982, pp 229-
241.

[Stuerzlinger, 1998] Wolfgang Stuerzlinger. Imaging all
visible surfaces. Computer Science Technical Report
TR98-010, Mar 1998.

 12

	An Adaptive Sampling Method for Layered Depth Image

