
The VLDB Journal (2006) 15(2): 99–120
DOI 10.1007/s00778-004-0145-1

REGULAR PAPER

Chong Leng Goh · Yanfeng Shu · Zhiyong Huang ·
Beng Chin Ooi

Dynamic buffer management with extensible
replacement policies

Received: 4 December 2002 / Accepted: 10 January 2004 / Published online: 22 July 2005
c© Springer-Verlag 2004

Abstract The objective of extensible DBMSs is to ease the
construction of specialized DBMSs for nontraditional ap-
plications. Although much work has been done in provid-
ing various levels of extensibility (e.g., extensibility of data
types and operators, query language extensibility, and query
optimizer extensibility), there has been very limited research
in providing extensibility at the buffer management level.
Supporting extensibility at the buffer management level is
important as it can contribute significantly to overall system
performance.

This paper addresses the problem of supporting extensi-
bility of buffer replacement policies. The main contribution
is the proposal of a framework for modeling buffer replace-
ment policies. This work is novel in two aspects. First, by
providing a uniform and generic specification of buffer re-
placement policies, the proposed framework unifies existing
work in this area. Second, our work introduces a new level
of extensibility. None of the existing extensible DBMSs, to
our knowledge, provides extensibility at the buffer manage-
ment level. The proposed framework provides a basis for
the construction of an extensible buffer manager as part of
a 100% Java-based storage manager. We conducted an ex-
tensive performance study to investigate the performance of
the proposed framework. The experimental results demon-
strate that the proposed framework is indeed feasible for
existing DBMSs and improves system performance signif-
icantly without costing significant overhead.

Keywords Buffer management · Replacement strategies ·
Extensible DBMS

Edited by M. Kersten

1 Introduction

Today’s new and emerging applications such as scientific
and statistical database systems, multimedia database sys-

C. L. Goh(B) Y. Shu · Z. Huang · B. C. Ooi
Department of Computer Science, National University of Singapore,
Singapore 117543, Singapore

tems, and geographical information systems require support
for large complex objects and various types of data: infer-
ence rules, procedural data, spatial and temporal data, im-
age, voice, and textual data. Moreover, each of these appli-
cation areas also requires its own specific set of operations.
Lack of support for the requirements of such applications
in DBMSs has motivated several research efforts to widen
the applicability of database technology to such new kinds
of data-intensive applications. This has led to the advent of
extensible DBMSs [34, 41, 45].

Extensible DBMSs are primarily designed to meet the
following two objectives [6]:
1. They should provide support for the addition of new fea-

tures or domain-specific extensions so that the system
can be customized to support specialized data manage-
ment and modeling requirements efficiently.

2. They should ease the problem of tracking developments
in technology by simplifying the integration of new al-
gorithms and new kinds of storage devices into existing
DBMSs.
Since the mid-1980s the database research community

has directed considerable effort toward the design and im-
plementation of extensible DBMSs. Examples of such sys-
tems include EXODUS at the University of Wisconsin-
Madison [5], GENESIS at the University of Austin-Texas
[1], POSTGRES at the University of California-Berkeley
[44], and Starburst at IBM’s Almaden Research Center [21].

DBMS extensibility technology is a confluence of tech-
nologies in both databases as well as software engineering.
A central issue in extensible DBMS research concerns how
DBMSs should be built. Much of the research is focused
on producing clean specifications of database components
as well as their reusability and extensibility [49]. Existing
extensible DBMS prototypes can be broadly classified
into three types based on their approaches to providing
extensibility.

– The first approach is to build an extensible complete end-
user DBMS to handle all new application areas. This ap-
proach is based on a fixed architecture that accommodates

100 C. L. Goh et al.

a wide range of features. POSTGRES and Starburst are
examples of systems that employ this approach.

– The second approach, known as the toolkit approach, is
to construct a DBMS generator that enables rapid cus-
tomization of application-specific DBMSs. This approach
is based on an open architecture that automatically gener-
ates a DBMS with the desired features by putting various
library modules together. Examples of toolkit-based sys-
tems include DBMSs such as GENESIS and EXODUS.

– The third approach, known as component DBMS [13],
is to extend DBMSs by adding or replacing compo-
nents with different functionality. This approach requires
a well-defined architecture that supports extension at cer-
tain places in the system.

To extend a DBMS component, the first approach en-
tails making modifications to the component. Note that the
type of extensions required depends on the interface of the
component. For example, a procedural interface would re-
quire the addition of new code, while a rule-based interface
would involve modification of the rules to incorporate the
new capability into the existing system. For the second ap-
proach, customizing a component involves modifying and
“recompiling” the component’s specification to produce a
new component. The third approach allows various imple-
mentations of a component and allows replacement or inclu-
sion of components. For any approach, a generic and well-
designed component interface/specification is critical to its
extensibility as well as the ease of carrying out the desired
extensions. In this paper, we shall assume the second ap-
proach, although the issue we address here can be taken as a
single component of a component database.

Apart from the underlying architectural differences, ex-
tensible DBMSs also differ in their degree of extensibility.
The levels of extensibility supported in various extensible
DBMSs include extensions in data types as well as opera-
tors [32, 36, 37, 43, 48], query language extensions [30, 38],
query optimizer extensions [16, 19, 22, 33], and storage and
access method extensions [31].

Extensible DBMSs must be extensible at all levels since
extensions made at a particular level of a DBMS usually re-
quire extension support at other levels [30]. For example,
to introduce a new data type into an existing DBMS, the
following DBMS components need to be extended: query
parser, query optimizer, access method component, and stor-
age manager. A more extensible system is likely to exploit
a given application domain better, thereby providing a finer-
grained control of the system’s performance.

An important challenge in extensible DBMSs is the ef-
fective support of extensibility [6] without incurring too high
a performance overhead. An important area that has received
little attention in extensible DBMS research is the support
for extensibility at the buffer management level. The buffer
manager component plays a critical role in the performance
of DBMSs by caching part of the database in main memory
to minimize disk I/O. An important task of a buffer manager
is buffer replacement, which determines how buffer pages
are replaced when a page fault occurs. The goal is to manage

the replacement of buffer pages efficiently to avoid unneces-
sary page faults. Using an appropriate buffering scheme to
exploit a certain access pattern can have significant impact
on the overall performance of a DBMS [42].

Conventional buffer managers, however, are built with
only a single, fixed buffer replacement policy, which is usu-
ally the LRU replacement policy or a variant of it. Since
there is no single universal replacement policy that can guar-
antee good performance for all applications, optimization at
the buffer management level cannot be fully exploited. In
existing extensible DBMSs, the buffer manager is also de-
signed as a fixed component. For example, in EXODUS [5],
the storage system (which includes the buffer manager) is a
nonextensible component as it is a part of the kernel of the
system. The buffer manager only supports two replacement
policies, the LRU and MRU policies [15], and it is difficult to
extend the buffer manager’s repertoire of replacement poli-
cies as the code for the supported policies are all hardwired
into the system. However, by supporting buffer replacement
extensibility, replacement policies can be customized to pro-
vide more efficient buffering.

Supporting extensibility at the buffer management level
(specifically, replacement policy extensibility) has the fol-
lowing advantages:

– With buffer replacement extensibility, it becomes possi-
ble to custom-tailor a “smart” buffer replacement pol-
icy that can manage buffer replacements intelligently
by exploiting the reference behavior of new access
methods. Furthermore, the emergence of more complex
applications also provides more opportunities for exploit-
ing domain-specific semantics to improve system perfor-
mance.

– Providing extensibility at such a low level can contribute
significantly to the system performance since disk I/O re-
mains a critical performance bottleneck, in spite of the
advances in disk hardware technology.

– Supporting buffer level extensibility facilitates the eval-
uation and fine-tuning of new buffer replacement poli-
cies for domain-specific operators, algorithms, and
applications.

In this paper, we address the problem of efficiently sup-
porting buffer replacement extensibility, i.e., enabling cus-
tomization of buffer replacement policies. A fundamental
issue in achieving buffer replacement extensibility is the de-
sign of a generic interface to specify buffer replacement poli-
cies. The goal of this paper is to provide a framework for
specifying buffer replacement policies that will serve as the
basis for the construction of an extensible buffer manager.
The novel contributions of this work are as follows:

– By providing a uniform and generic specification of
buffer replacement policies, the proposed framework uni-
fies work in this area. Using this framework, we can spec-
ify existing buffer replacement policies as well as new re-
placement policies in a standardized way.

– By characterizing a replacement policy into a two-step
process (selection of buffer group followed by selection

Dynamic buffer management with extensible replacement policies 101

Table 1 Classification of existing work

Classification Examples

Traditional buffer management LRU policy, CLOCK policy.

Query-oriented buffer management Hotset algorithm [39, 40], DBMIN algorithm [9, 10], LIRS [25], LRU-K [26, 35].

Real-time buffer management Priority-LRU algorithm [7], Priority-DBMIN algorithm [7], Priority-Hints algorithm [24], Dynamic
buffer allocation scheme [28].

Hint-based buffer management WiSS replacement policy [11], Starburst replacement policy [27].

of buffer page), the framework provides a cleaner separa-
tion of concerns, resulting in a clearer conceptualization
and modeling of replacement policies.

– This framework is an essential first step toward realiz-
ing buffer replacement extensibility. Based on this frame-
work, we have proposed a component-generator-based
approach to achieve buffer replacement extensibility. The
introduction of extensibility at the buffer management
level is novel in that none of the extensible DBMSs, to
our knowledge, support extensibility at this level. As ex-
plained earlier, supporting extensibility at such a level can
have a significant impact on the overall DBMS perfor-
mance.

This paper is a major extension of [3], where we briefly in-
troduced the framework and demonstrated its feasibility. In
this paper, we provide a detailed description of the frame-
work, definition of various popular replacement strategies
using the framework, and thorough experimental studies.

The remainder of this paper is organized as follows.
Section 2 presents a survey of existing buffer replacement
policies. Section 3 introduces our framework for modeling
buffer replacement policies. This framework consists of two
components: a hierarchical buffer pool model (discussed in
Sect. 3) and a priority scheme, which is presented in Sect. 4.
Section 5 combines the two models of the previous two sec-
tions and presents the overall framework. Section 6 reports
our performance study. Finally, we conclude in Sect. 7.

2 Survey of DBMS buffer replacement policies

This section presents a survey of DBMS buffer replacement
policies in order to present the motivation behind the pro-
posed framework. Moreover, these existing buffer replace-
ment policies are also used as examples in the subsequent
sections of this paper to illustrate the modeling abstractions
using the proposed framework.

Early DBMSs either used a buffer management algo-
rithm adapted from virtual memory systems or relied on
the buffer management capabilities of the underlying operat-
ing system. A discussion of the traditional replacement poli-
cies as well as some new variants (e.g., generalized CLOCK
and least reference density algorithms) can be found in [14].
However, many DBMSs of today bypass the buffering ser-
vice of their underlying operating systems by implementing
their own buffer managers. This is primarily due to two main
reasons [42]:

– Operating systems do not support the controlled flushing
of buffer pages, which is a requirement of the write-ahead-
log protocol used for DBMS recovery.

– The standard global LRU page replacement policy used in
operating systems does not offer efficient support for the
page reference patterns of DBMSs.

Traditional OS page replacement policies attempt to pre-
dict future reference behavior by using past usage statistics.
However, in relational DBMSs, the access plan for a query is
generated by the query optimizer. Hence, information about
the query reference pattern is known a priori and can be ex-
ploited. In fact, work on buffer management has progressed
from the design of replacement policies that are based on
stochastic measures to the design of more sophisticated ap-
proaches that integrate additional domain knowledge (e.g.,
page reference patterns and external domain hints) to obtain
more intelligent buffering schemes.

Table 1 shows a classification of existing buffer replace-
ment policies. Note that, except for the first category (tra-
ditional approaches), each of the other three categories ex-
ploits query semantics in order to improve management of
the buffer pages. An overview of these three categories of
buffer replacement algorithms will be given in subsequent
subsections.

Note that a page in the buffer pool can be in one of two
states: fixed or unfixed. When a client (e.g., access method)
makes a request for access to a page, the buffer manager re-
turns a handle to the buffer page that is holding the requested
page (i.e., that buffer page is said to be fixed). The buffer
page is said to be unfixed when the client notifies the buffer
manager that it does not need that page. We note that only
an unfixed page can be selected for replacement. In the case
where no unfixed pages are available, some transactions may
have to be rolled back in order to make some unfixed pages
available for use.

2.1 Query-based buffer management

Unlike conventional stochastic approaches, the query-based
approaches exploit knowledge about the reference patterns
of queries to further optimize the utilization of buffer pages
and minimize buffer faults. The buffer manager in DB2 [46],
in a limited way, adopts this approach. Pages in the buffer
are classified into two groups: those that are sequentially
accessed and those that are randomly accessed; the page
replacement policy selects pages from the former group in
preference to those in the latter group.

102 C. L. Goh et al.

Two such approaches are the hotset algorithm [39, 40]
and the DBMIN algorithm [9, 10]. In the hotset model
[39, 40], each query is allocated an effective number of
buffer pages, known as the query’s hotset. The calculation
of a query’s hotset size is performed during query optimiza-
tion by analyzing the query’s buffer fault behavior as a func-
tion of the buffer size. A new query is not admitted if the
available free buffers cannot satisfy its hotset requirement
because if scheduled, it might incur too many unnecessary
page faults. Each query’s allocation is managed locally us-
ing the LRU replacement policy.

Like Denning’s working set model [12] for virtual mem-
ory operating systems, the hotset model tries to determine an
optimal buffer allocation. The buffer pool is organized into
a number of buffer groups, where each query is allocated a
buffer group no larger than its hotset size. Each buffer group
is managed locally using the LRU replacement policy. When
a page request from a query is not found in the buffer pool,
the least recently referenced unfixed buffer page, which is
not shared, is selected from the query’s local buffer group
for replacement. If no such page is available, the algorithm
will either attempt to obtain a page from the free list (which
is also managed locally using LRU) or steal an unfixed page
from another buffer group. The stealing of buffer pages can
cause a buffer group to become deficient, i.e., its actual num-
ber of buffer pages is less than the hotset size of its associ-
ated query. The stealing of buffer pages should preferably
be from an already deficient buffer group so as to minimize
the number of deficient buffer groups. When a query termi-
nates, its allocated pages are distributed to deficient buffer
groups, one at a time; any remaining pages are returned to
the free list. To overcome the limitation of LRU, the LRU-K
[35] replacement policy has been proposed to collect and
use longer historical information. It makes its replacement
decision based on the time of the kth-to-last reference to
the buffer page. More recently, a buffer replacement strat-
egy called Low Interreference Recency Set (LIRS) [25] was
proposed. Based on the assumption that there exists stability
on the interreference recency of a buffer page over a certain
time period, it uses the LIRS stack, an extension of the LRU
stack, to capture the working set, and uses the LIR buffer set
to hold its portion most deserved to be in the cache.

Chou [9, 10] proposed the query locality set model
(QLSM), which is based on the hotset model, but sepa-
rates the modeling of the query reference behavior from any
particular buffer replacement algorithm. Unlike the hotset
model, the QLSM works on a finer grain of decomposition
by determining the hotset size on a file-instance basis rather
than on a query basis; a separate buffer allocation is deter-
mined for each file instance referenced in a query. More-
over, in contrast to the hotset model, which is based on the
LRU policy, the QLSM determines an optimal replacement
policy for each buffer allocation based on the reference pat-
tern exhibited by the usage of its associated file instance.
The QLSM determines the optimal hotset size and replace-
ment policy for each file instance based on a classification of
page reference patterns exhibited by common database op-

erations and access methods. The buffer management algo-
rithm based on the QLSM is called the DBMIN algorithm.

2.2 Real-time-based buffer management

Recent interest in real-time DBMSs has motivated the study
of special buffer management algorithms for such systems
that take into account the priority levels or deadlines of
transactions [7, 23, 24]. In [7], two priority-based buffer
management algorithms, which allow higher priority trans-
actions to preempt buffer pages from lower priority transac-
tions, were proposed: Priority-LRU algorithm and Priority-
DBMIN algorithm, which are extensions of the LRU and
DBMIN algorithms, respectively. The priority-based ap-
proach was further developed in [24], where a new algo-
rithm, the Priority-Hints algorithm, was proposed.

The Priority-LRU algorithm [7] is a prioritized version
of the LRU policy. The buffer pool is organized into n buffer
groups (here n is the number of priority levels) and a global
free list. Each buffer group is managed locally using the
LRU policy and comprises pages owned by transactions with
the same priority. The key idea of the Priority-LRU replace-
ment scheme is that the least recently unfixed page of the
lowest priority should be chosen as the replacement victim.
However, to prevent the most recently accessed pages from
being replaced, a threshold parameter (a timestamp value)
is used to vary the relative importance between recency and
priority in replacement decisions. Therefore, if the free list
is empty when a page fault occurs, the search for a replace-
ment starts at the lowest priority group and checks whether
the least recently unfixed page in the group falls within
the threshold value (i.e., the difference between the global
timestamp and candidate’s timestamp is less than the thresh-
old value). If it does, the search is repeated at the next higher
priority group until either a victim is found or the search is
exhausted. If all the replacement candidates fall within the
threshold value, the lowest priority candidate is chosen as
the default victim.

Like the DBMIN algorithm, the Priority-DBMIN [7] al-
gorithm also allocates buffer pages on a file-instance basis,
with each buffer group being managed locally by a suit-
able replacement policy. If a page is accessed by more than
one concurrent transaction, the transaction with the high-
est priority among the sharing transactions is the owner
of the shared page. The selection of a replacement page
in the Priority-DBMIN algorithm is determined locally by
each group’s assigned replacement policy. This is in con-
trast to the global replacement policy of the Priority-LRU
algorithm. The difference between the Priority-DBMIN al-
gorithm and the DBMIN algorithm lies in their transaction
admission policies. In the Priority-DBMIN algorithm, the
arrival of a higher priority transaction can preempt the un-
fixed pages owned by transactions of lower priority.

The Priority-Hints algorithm [24] not only incorporates
the priority levels of transactions, but also makes use of
hints provided by the DBMS access methods to classify the

Dynamic buffer management with extensible replacement policies 103

buffer pages into “favored” pages if they are likely to be re-
referenced, and “normal” pages otherwise. The buffer man-
ager receives a page hint with every page request, and “nor-
mal” pages are considered for replacement before “favored”
pages. The buffer pool is organized into transaction sets,
where each set consists of pages owned by a transaction.
Pages shared by more than one transaction are owned by the
transaction with the highest transaction priority among the
sharing transactions. Transaction sets are ordered based on
transaction priority and recency of arrival; the latter crite-
rion is used to break ties for transaction sets having the same
priority. The buffer pages in each transaction group are par-
titioned into two groups: a group of fixed pages and a group
of unfixed favored pages; unfixed normal pages are returned
to a global free list. The free list is managed using the LRU
policy, while the unfixed favored pages in each transaction
set are managed locally using the MRU policy.

When a buffer fault occurs and the free list is empty, the
buffer manager searches the transaction sets in inverse pri-
ority order, starting from the lowest priority transaction, to
look for an unfixed favored page. If it finds a transaction set
of priority lower than that of the requesting transaction with
a nonempty set of unfixed favored pages, it will select the
most recently unfixed favored page from it as the replace-
ment victim. Otherwise, it will select the most recently un-
fixed favored page from the requesting transaction itself for
replacement.

For video-on-demand applications, a dynamic buffer al-
location scheme [28] using the the predict-and-enforce strat-
egy was proposed to address the inherent difficulty of the dy-
namic buffer allocation: the size of the buffer currently being
allocated is dependent on the number and sizes of the buffers
to be allocated in the next service period. This is to admit as
many concurrent users as possible while maintaining good
quality of service.

2.3 Hint-based buffer management

Buffer management algorithms that accept hints from layers
above the buffer manager (e.g., access methods and query
optimizer) have also been proposed. The Priority-Hints al-
gorithm [24] presented in the previous subsection also falls
into this category. The advantage of using hints is that it can
provide a more flexible and tighter control over buffer re-
placement.

The Wisconsin Storage System (WiSS) [11] is a flexible
data storage system designed for very high performance. Its
buffer manager uses the LRU replacement policy in combi-
nation with hints from the system on which pages are im-
portant. The hint specified for a page can be low, mid, or
high, depending upon its likelihood of being rereferenced.
Low hints are assigned to randomly or sequentially accessed
pages, mid hints are specified for anchor pages of overflow
chains encountered on a sequential scan, and high hints are
assigned to B-tree root pages and system directory pages.
The page with the lowest hint and the oldest timestamp (i.e.,

the least recently used page among the least important buffer
pages) is selected for replacement. The object manager of O2
[47] is based on WiSS.

The Starburst DBMS, an extensible relational database
system, uses a global allocation and replacement policy [27].
The buffer manager uses a variant of the CLOCK replace-
ment policy and a simple hint mechanism. When a page is
unfixed, it receives a hint from the query evaluation system,
indicating whether the page is “LOVED” or “HATED.” A
page is marked as “LOVED” if it is likely to be reused later;
otherwise, it is marked as “HATED” and immediately joins
the free buffer list if it is not dirtied. The least recently un-
fixed “LOVED” page is selected for replacement. It is a sim-
pler, as well as a more restrictive, version of the WiSS hint
mechanism.

3 A framework for buffer replacement policies

In this section, we propose a uniform framework for model-
ing buffer replacement policies. Such a framework provides
the basis for the construction of an extensible buffer man-
ager that supports extensibility of buffer replacement poli-
cies. Buffer replacement policies can be characterized by
two main features:

– The structure of the pool of buffer pages, which is or-
ganized as groups of pages based on one or more at-
tributes of the pages and/or some external hints (e.g.,
fixed/unfixed, query owner, transaction priority, and hint
level).

– A criterion to select a victim page from among the buffer
groups and buffer pages. This selection can be viewed as
consisting of two steps: the first step involves selecting a
buffer group, while the second step relates to choosing the
victim page from the selected buffer group.

Our proposed framework consists of two components corre-
sponding to these two features: a hierarchical model of the
buffer pool and a priority scheme that generalizes the repre-
sentation of replacement criteria. Examples of replacement
policies surveyed in Sect. 2 are used to illustrate modeling
with the proposed framework.

A summary of the notations used in the rest of this paper
is shown in Table 2. In addition, we use the notational con-
vention ti to denote the i th component of an n-component
tuple t , where i = 1, . . . , n. We shall simply refer to t1 as t .
Given an object o, we use o.a to denote an attribute a of the
object o.

3.1 Hierarchical buffer pool model

In a multitasking DBMS, applications not only exhibit
different resource consumption patterns but also require
specific priority and performance objectives [17]. One tun-
ing knob that can achieve performance objectives is mem-
ory allocation [4], which partitions buffer space between

104 C. L. Goh et al.

Table 2 Notations used in framework

Notation Meaning

AP Abstract selection policy type defined as a four-tuple AP = (P, β ′, γ ′, δ).
B Hierarchical buffer pool model defined as a two-tuple B = (N ,E).

B Bit string domain where each bi (i = 1, . . . , k) in bk, . . . , b1 ∈ B represents a bit.

C Local/global control information data type defined as a composition of atomic data types, i.e.,
C = ∏n

i=1 Di.

c Local/global control information where c ∈ C.

comp Function that computes the 1’s complement of a bit string.

Di Atomic data type (e.g., integer, boolean).

E Set of buffer group type relationships where E ⊆ N × N .

GP Global selection policy type defined as a five-tuple GP = (B,C, µ,SA,MA).

LP Local selection policy type defined as a six-tuple LP = (P,C, α, β, γ, δ).

MA Function that maps an abstract buffer group type to an abstract selection policy type.

ML Function that maps a local buffer group type to a nonempty subset of local selection policy types.

N Set of buffer group types where N = NA ∪ NL.

NA Set of abstract buffer group types.

NL Set of local buffer group types.

N Natural number domain.

Og Buffer group type, Og ∈ N .

Op Buffer page type.

P Priority type defined as a composition of atomic data types, i.e., P = ∏n
i=1 Di.

R Buffer replacement policy type defined as a three-tuple R = (GP,SL,ML).

SA Set of abstract selection policy types.

SL Set of local selection policy types.

α Initialization function that initializes the local control information.

β Priority assignment function that initializes the priority value of a buffer page.

β ′ Priority assignment function that initializes the priority value of a buffer group.

γ Priority update function that updates the priority value of a reaccessed buffer page.

γ ′ Priority update function that updates the priority value of an accessed buffer group.

δ Priority evaluation function that interprets the priority value of a buffer page or group.

µ Global control information update function that updates the global control information when a page fault
occurs.

competing applications into buffer pools. Different buffer
replacement strategies can then be used for individual ap-
plications. However, unnecessary buffer partitioning suffers
from the dual disadvantages of reducing the effective avail-
able buffer space and also that of incurring the overhead
of managing page movement between buffer pools, thereby
emphasizing the need for effective tuning strategies.

The organization of the buffer pool can be modeled as
a hierarchical structure with the buffer pool being succes-
sively decomposed into layers of smaller buffer groups such
that each group represents a collection of buffer pages that
share some common properties (e.g., pages of the same type
such as free buffer pages or pages owned by the same trans-
action). This hierarchical organization can be represented
by a rooted tree with the root node representing the entire
buffer pool; each leaf node represents a local buffer group
that consists of a subset of buffer pages and each internal

node represents an abstract buffer group comprising some
other abstract or local buffer groups (represented by its child
nodes). Unlike a local buffer group, an abstract buffer group
is “abstract” in the sense that it consists of buffer subgroups
instead of buffer pages.

Two examples of hierarchical buffer pool organization
are shown in Fig. 1, with the circular nodes representing ab-
stract buffer groups and the square nodes representing local
buffer groups.

Figure 1a depicts the buffer pool organization for the hot-
set buffer management algorithm. The buffer pool is par-
titioned into a free buffer group that consists of the free
buffer pages and a number of query buffer groups. Each
query buffer group, which represents buffer pages owned by
a query, is further partitioned into a group of unfixed buffer
pages and a group of fixed buffer pages. Another example of
hierarchical buffer organization is shown in Fig. 1b for the

Dynamic buffer management with extensible replacement policies 105

free
buffer
group

buffer
pool

query
buffer
group

query
buffer
group

.

unfixed
query
buffer
group

fixed
query
buffer
group

unfixed
query
buffer
group

fixed
query
buffer
group

(a)

(b)

buffer
pool

free
buffer
group

priority
buffer
group

. transaction
buffer
group

transaction
buffer
grouptransaction

buffer
group

transaction
buffer
group

priority
buffer
group

.

.

unfixed
transaction
buffer
group

fixed
transaction
buffer
group

unfixed
transaction
buffer
group

fixed
transaction
buffer
group

fixed
transaction
buffer
group

fixed
transaction
buffer
group

unfixed
transaction
buffer
group

unfixed
transaction
buffer
group

Fig. 1 Examples of buffer pool organization

priority-hints algorithm. The buffer pool is partitioned into
a free buffer group that comprises the free buffer pages and
a number of priority buffer groups, each of which represents
buffer pages owned by transactions with the same transac-
tion priority level. Each priority buffer group is further par-
titioned into a number of transaction buffer groups, each of
which represents buffer pages owned by the same transac-
tion. As in the case of the query buffer groups in the hotset
algorithm, each transaction buffer group consists of a buffer
group of fixed pages and a buffer group of unfixed pages.

The hierarchical organization of a buffer pool is, there-
fore, characterized by the types of buffer groups (each buffer
group is an instance of some buffer group type) and the con-
tainment relationships among these buffer group types. A hi-
erarchical buffer pool model for a buffer management policy
can be represented by a rooted tree,

B = (N , E)

where N is a finite set of buffer group types and E ⊆ N ×N
is a finite set of buffer group type relationships such that
(Ni , N j) ∈ E iff N j ∈ Ni , that is, each buffer group of type
N j is contained in some buffer group of type Ni . A buffer
group type, Ni ∈ N , is termed as a local buffer group type
if �N j ∈ N such that (Ni , N j) ∈ E (i.e., Ni is a leaf node of
the tree B); otherwise it is termed as an abstract buffer group
type. Therefore, N = NA ∪ NL and NA ∩ NL = ∅, where

Global
Selection
Policy

Buffer
pool

Local
Selection
Policy

Replacement
buffer page

Local buffer
 group

Buffer Replacement Policy

Fig. 2 A two-step model for buffer replacement policies

NA and NL denote the set of abstract and local buffer group
types, respectively. Each instance of a local (abstract) buffer
group type is a local (abstract) buffer group. Local buffer
groups consist of buffer pages, while abstract buffer groups
comprise instances of abstract or local buffer group types.

Since fixed buffer pages are not involved in the
replacement page selection, we can simplify the model-
ing of their buffer pool organizations by not modeling
the fixed buffer group types. Consider again the ex-
amples in Fig. 1. For the hotset buffer management
algorithm, N = {Nbuffer, Nfree, Nquery-unfixed} and
E = {(Nbuffer, Nfree), (Nbuffer, Nquery-unfixed)}, where
Nbuffer, Nfree, and Nquery-unfixed denote the buffer pool
type, the free buffer group type, and the unfixed
buffer group type, respectively. For the priority-hints
algorithm, N = {Nbuffer, Nfree, Npriority, Ntrans-unfixed}
and E = {(Nbuffer, Nfree), (Nbuffer, Npriority), (Npriority,
Ntrans-unfixed)}, where Nbuffer, Nfree, Npriority, and
Ntrans-unfixed denote the buffer pool type, the free buffer
group type, the priority buffer group type, and the unfixed
buffer group type, respectively.

3.2 A model for buffer replacement policies

By modeling the buffer pool organization as a hierarchy of
local and abstract buffer groups, we can generalize buffer re-
placement policies into a two-step model. In this model, the
buffer pool is associated with a global selection policy, and
each local buffer group is associated with a local selection
policy. A global selection policy controls the selection of a
local buffer group from the buffer pool, while a local selec-
tion policy controls the selection of a buffer page from its
associated local buffer group.

Figure 2 shows a schematic diagram of the two-step
model for replacement policies. The decomposition of a re-
placement policy into two levels of selection has several
advantages. First, it provides a cleaner separation of con-
cerns and thus enables a clearer and more comprehensive
classification of existing replacement policies. Replacement
policies, such as LRU and LFU, are more appropriately
classified as local selection policies since these policies con-
trol the selection of a page from a group of buffer pages.
On the other hand, the more sophisticated buffer replace-
ment policies, such as the hotset algorithm and the priority-
hints algorithm, involve both global as well as local selec-
tion policies. For example, in the hotset algorithm, there are
basically three types of buffer pages for selection (unfixed

106 C. L. Goh et al.

pages owned by the faulting-query,1 free buffer pages and
unfixed pages owned by other queries), which are partitioned
into a number of local buffer groups. Thus, two levels of se-
lection are necessary to select a replacement page: a higher-
level selection using the global selection policy first selects a
local buffer group; this is followed by a lower-level selection
of a buffer page using the local selection policy associated
with the selected local buffer group.

Second, the modular separation of a replacement pol-
icy into two orthogonal components supports more flexibil-
ity, reusability, and extensibility as new replacement policies
can be designed by different combinations of existing or new
local and global selection policies. In fact, viewed from this
framework, both the DBMIN algorithm and the hotset algo-
rithm are similar in that they have the same global selection
policy, but they differ in that while the hotset algorithm uses
only one fixed local selection policy, the DBMIN algorithm
advocates the usage of different local selection policies.

4 Priority scheme

This section presents the second component of our proposed
framework. This component is a simple and yet flexible pri-
ority scheme for modeling both global as well as local selec-
tion policies.

Local selection policies are essentially scheduling poli-
cies that prioritize buffer pages for replacement based on
certain selection criteria such as LFU and LRU. Similarly,
global selection policies are also distinguished by the selec-
tion criteria used to select buffer groups for replacement.
By treating various selection criteria as different priority
schemes, we have a general and flexible abstraction to model
selection policies.

The basic idea of our proposed priority scheme is as fol-
lows. The selection policy associated with each buffer group
assigns priority values to the objects in the buffer group such
that whenever the policy makes a selection, it always selects
the object with the lowest priority value.2 Associated with
each local (global) selection policy is some information, des-
ignated as local (global) control information, which the pol-
icy uses in the assignment, modification, and evaluation of
priority values.

Based on the priority values of buffer groups and buffer
pages, a replacement buffer page is selected as follows: the
global selection policy first selects from among the various
local buffer groups, the one with the lowest priority; the
local selection policy associated with the selected local
buffer group then selects from it the buffer page with the
lowest priority as the replacement page. Thus, using this
scheme different selection policies can be modeled by ap-
propriate specifications of priority and control information

1 A faulting-query (-transaction) refers to the query (transaction)
that causes the page fault.

2 For a local selection policy, the objects in the associated buffer
group refer to buffer pages, while for a global selection policy the ob-
jects in the associated buffer group refer to some other buffer groups.

types in conjunction with functions to initialize, update, and
evaluate the priority values and control information. In our
priority scheme, priority values are assigned to two types
of objects: buffer groups and buffer pages. We shall use Og
and Op to denote a buffer group type and a buffer page type,
respectively.

4.1 Modeling of local selection policy types

A local selection policy controls the assignment, modifica-
tion, and evaluation of priority values for buffer pages con-
tained in a local buffer group. The local selection policy
associated with a local buffer group initializes the priority
value of a new buffer page when it is fetched into the buffer
group and updates its priority value when the buffer page is
reaccessed. To select a replacement page from a local buffer
group, the associated local selection policy evaluates the pri-
ority values of all the pages contained in the group and picks
the page with the lowest priority.

We shall use op to denote a buffer page and c to denote
the local control information associated with a local selec-
tion policy. The priority of a buffer page op is denoted by
op.priority.

A local selection policy type is modeled by a six-tuple

LP = (P, C, α, β, γ, δ).

P = ∏n
i=1 Di, n ≥ 1 defines the priority type associated

with LP , where each Di denotes an atomic data type (e.g.,
integer type, boolean type). The priority values assigned by
local selection policies of type LP to buffer pages are of
type P .

C = ∏m
i=1 Di, m ≥ 0 defines the local control informa-

tion data type associated with LP . The local control infor-
mation c, which is associated with a local selection policy of
type LP , is a tuple of type C and is used in the assignment,
update, and evaluation of priority values.

α: C → C is an initialization function that initializes the
local control information associated with a local selection
policy of type LP .

β: Op × C → Op × C is a priority assignment function
that assigns an initial priority value to a page fetched into the
local buffer group associated with a local selection policy
of type LP . The parameter in β is a tuple (op, c) where op
refers to the new buffer page.

γ : Op × C → Op × C is a priority update function that
updates the priority value of a reaccessed buffer page in the
local buffer group associated with a local selection policy
of type LP . The parameter in γ is a tuple (op, c), where op
refers to the reaccessed buffer page.

δ: Op × C → B is a priority evaluation function that
interprets a buffer page’s priority value by encoding it into
a bit string such that a higher priority value has a larger bit
string value. The parameter in δ is a tuple (op, c), where op
refers to the buffer page to be evaluated. The encoding func-
tion satisfies the following property:

∀op, o′
p ∈ Op, δ(op, c) ≥ δ(o′

p, c)

Dynamic buffer management with extensible replacement policies 107

iff op has a higher priority than o′
p or the same priority as

o′
p. This encoding function is used to select the buffer page

with the lowest priority for replacement. Thus, the buffer
page op is selected for replacement by a local selection pol-
icy of type LP if δ(op, c) ≤ δ(o′

p, c) for each buffer page o′
p

in the local buffer group.
Relating to object-oriented concepts, a local selection

policy type LP is like a class definition where each class
instance (local selection policy) has an instance variable of
type C (local control information). All instances of the same
class share a set of four methods — α, β, γ , and δ. For ex-
ample, α is an object initialization method that initializes the
instance variable for each new instance of the class.

4.1.1 Examples of local selection policy type modeling

In this section, we illustrate the modeling of local selection
policy types with the following examples: LRU, LRD, and
WiSS local selection policy types. For each example, we first
describe how it is modeled before presenting its specifica-
tion.

Least recently used policy type (LRU). Figure 3 depicts the
modeling of the LRU local selection policy type. An LRU
policy replaces the least recently used page. Hence, the pri-
ority of a buffer page can be represented by a logical time-
stamp value such that a more recently used page has a larger
timestamp value that represents a higher priority. Hence, the
replacement page is the page with the smallest timestamp
value (lowest priority value). The local control information,
c, is also a logical timestamp count that stores the timestamp
value of the most recently accessed page. This value is ini-
tialized by the initialization function, αLRU, to zero before
it is used for updating priority values. When a new page is
fetched into the buffer group or when a page in the buffer
group is reaccessed, the local control timestamp count is first
incremented by one and then assigned as the new priority
value of the buffer page. Thus, the priority update function,
γLRU, is the same as the priority assignment function, βLRU.
Since a page with a larger timestamp value has a higher pri-
ority, the priority evaluation function, δLRU, simply returns a
buffer page’s timestamp value as its priority value.

Least referenced density policy type (LRD). In [14], Effels-
berg and Haerder proposed the least reference density re-
placement (LRD) policy, which is an improvement over the
least frequently used (LFU) policy. In the LFU policy, each
buffer page Pi is associated with a reference counter RC(i),
which is initialized to zero and incremented by one after
each reference. The least frequently used page (i.e., the page
with the lowest reference count) is selected for replacement.
The drawback of this approach is that a page that is heav-
ily referenced for a short period will not be replaced even if
it is never referenced again. Instead of using just the refer-
ence frequency (i.e., the absolute number of references), the
LRD policy improves on the LFU policy by considering the
relative frequency over a reference interval.

The LRD policy incorporates the age of a page in its re-
placement criteria. The age of a page Pi is defined as the
number of elapsed references (to all buffer pages) since the
first reference to Pi. The age of a page is measured in units
of logical references and is determined as follows. Let GRC
(global reference count) be the total number of logical refer-
ences. For each buffer page Pi, the time of its first reference
is FC(i). Thus the reference interval of the age of a page Pi
is GRC-FC(i). The reference density of a page Pi is denoted
by RD(i). The formula for RD(i) is as follows:

RD(i) = RC(i)

(GRC − FC(i))
where GRC-FC(i) ≥ 1.

The LRD policy replaces the page with the least reference
density.

Thus the priority of a buffer page Pi comprises two com-
ponents – FC(i) and RC(i). The local control information
consists of the GRC. Pages with a lower reference density
(RD(i)) have lower priority. The modeling of the LRD local
selection policy type is depicted in Fig. 4.

WiSS replacement policy type (WRP). The WiSS replace-
ment policy selects the least recently used page among
pages with the lowest hint for replacement. The priority
of a buffer page can be represented by a composite data
value consisting of a hint value (which can be low, mid, or
high) and a timestamp value. The local control information
is of the same type as the page priority with its timestamp
component being initialized and updated similarly as in an
LRU policy. Note that as the hint value of a buffer page is
determined by the system, it is assigned via the local control
information updated by the system. The hint value of a
buffer page does not change when the page is reaccessed,
only its timestamp value is updated as in the LRU policy.
Figure 5 shows the modeling of the WiSS local selection
policy type. The priority evaluation function, δWRP, encodes
the respective priority values of buffer pages such that a
page with a lower hint value has a lower priority (encoded
by bk+2bk+1), and among buffer pages with the same hint
value, those with smaller timestamp values have lower
priorities (encoded by bk, . . . , b1).

4.2 Modeling of global selection policy types

The function of a global selection policy is to select a local
buffer group when a page fault occurs so that the replace-
ment page can be selected from it. Here we propose a simple
and consistent way of modeling global selection policies.

By modeling the buffer pool as a hierarchical graph, the
selection of a local buffer group can be viewed as finding a
path from the root node (buffer pool group) to a leaf node
(local buffer group). This path is found incrementally by the
following sequence of selections: Starting at the root node,
one of the child nodes of the root node is selected; if the se-
lected node is a leaf node, then a local buffer group is found
and the selection process terminates; otherwise, the selection

108 C. L. Goh et al.

Fig. 3 Modeling of LRU local selection policy type

process is repeated by selecting one of the child nodes of the
selected internal node (abstract buffer group), and so on un-
til a leaf node is selected. The local buffer group selection
process is illustrated in Fig. 6.

Like the selection of a buffer page from a local buffer
group, the selection of a buffer group from an abstract buffer
group can be modeled using the proposed priority scheme.
Each abstract buffer group is associated with a selection pol-
icy, referred to as abstract selection policy, which assigns
and updates priority values for buffer groups contained in
the abstract buffer group such that a selection from the ab-
stract buffer group always picks the buffer group with the
lowest priority value.

A global selection policy is thus characterized by a set
of abstract selection policies, each of which is associated
with an abstract buffer group. The selection of a local buffer
group by the global selection policy can be expressed as a
composition of a sequence of abstract buffer group selec-
tions. A global selection policy is also associated with some
control information, designated as global control informa-
tion, which is used in the evaluation of priority values of
buffer groups. The global control information consists of in-
formation related to the faulting-transaction/query and is up-
dated when a page fault occurs prior to the local buffer group
selection.

A global selection policy type is modeled by a five-tuple

GP = (B, C, µ,SA,MA).

B = (N , E) is the buffer pool model (as explained in
Sect. 3.1).

C = ∏m
i=1 Di, m ≥ 1 defines the global control infor-

mation data type. The global control information c, which is
associated with a policy of type GP , is a tuple of type C.

µ: C → C is an update function that updates the global
control information with details of the faulting-transaction/
query when a page fault occurs.

SA = {AP1, . . . ,APk} is a finite set of abstract selec-
tion policy types.

MA: NA → SA is a surjective function that maps
an abstract buffer group type to an abstract selection pol-
icy type. Thus, each abstract buffer group of type Ni ∈
NA is associated with an abstract selection policy of type
APj ∈ SA.

An abstract selection policy controls the assignment,
modification, and evaluation of priority values for buffer
groups contained in an abstract buffer group. The abstract
selection policy associated with an abstract buffer group ini-
tializes the priority value of a new buffer group created in the
abstract buffer group and updates its priority value when the
buffer group is accessed. A local buffer group is said to be
accessed when a buffer page is added or removed from it; an
abstract buffer group is said to be accessed when any of the
buffer groups contained in it is accessed. To select a buffer
group from an abstract buffer group, the associated abstract
selection policy evaluates the priority values of all the buffer

Dynamic buffer management with extensible replacement policies 109

Fig. 4 Modeling of LRD local selection policy type

groups contained in the abstract buffer group and picks the
group with the lowest priority.

An abstract selection policy type is modeled by a four-
tuple

AP = (P, β ′, γ ′, δ).

P = ∏q
i=1 Di, q ≥ 1 defines the priority type associated

with AP , where each Di is an atomic data type. An abstract
selection policy of type AP assigns priority values of type
P to buffer groups.

β ′: Og → Og is a priority assignment function that as-
signs an initial priority value to a new buffer group that is
added to an abstract buffer group associated with an abstract
selection policy of type AP . The parameter in β ′ refers to
the new buffer group.

γ ′: Og → Og is a priority update function that updates
the priority value of an accessed buffer group contained in
an abstract buffer group associated with an abstract selection
policy of type AP . The parameter in γ ′ refers to an accessed
buffer group

δ:Og×C → B is a priority evaluation function similar to
that in a local selection policy type, except that it is used in
the evaluation of priority values of buffer groups, and the pa-
rameter in δ is a tuple (og, c), where og and c refer to a buffer
group and the global control information, respectively.

5 Modeling of buffer replacement policy types

By combining the modeling of the buffer pool (Sect. 3.1),
the local selection policy types (Sect. 4.1), and the global

110 C. L. Goh et al.

Fig. 5 Modeling of WiSS local selection policy type

selection policy types (Sect. 4.2), a buffer replacement pol-
icy type is modeled as follows:

R = (GP,SL,ML),

where GP = (B, C, µ,SA,MA) is a global selection policy
type, SL = {LP1, . . . ,LPq} is a finite set of local selec-
tion policy types, and ML: NL → 2SL is a function that
maps a local buffer group type to a nonempty subset of lo-
cal selection policy types. Note that while MA maps an ab-
stract buffer group type to an abstract selection policy type,
ML maps a local buffer group type to a subset of local se-
lection policy types. Moreover, the set of abstract selection
policy mappings that forms the global selection policy is de-
termined at compile time, while the mapping of a local selec-

tion policy to a local buffer group can be determined at run
time depending on the page access pattern. For example, in
the EXODUS storage manager [15], each local buffer group
can be managed by either an LRU or an MRU replacement
policy.

Hence, using the proposed framework, the specification
for a buffer replacement policy type essentially consists of a
collection of types (buffer group types, local selection pol-
icy types, and abstract selection policy types) and mappings
among the types (among buffer group types and between
buffer group types and selection policy types).

5.1 Examples of buffer replacement policy type modeling

In this section, we illustrate the modeling of two buffer re-
placement policy types, namely, the hotset buffer manage-
ment algorithm and the priority-hints algorithm. For each
buffer management algorithm, we first explain its buffer
page replacement criteria in terms of its hierarchical buffer
pool organization, and then we present the details of the
modeling using the proposed framework.

5.1.1 Hotset algorithm

The buffer pool organization for the hotset algorithm, as ex-
plained in Sect. 3.1, is depicted in Fig. 7.

Based on the hierarchical organization shown in Fig. 7,
we can explain the replacement criteria in the hotset al-
gorithm as follows. The global selection policy selects the
query buffer group owned by the faulting query (an in-
stance of Nquery-unfixed) if it is nonempty; otherwise, it se-
lects the free buffer group (the only instance of Nfree) if it is
nonempty. However, if the free buffer group is also empty,
the global policy selects the query buffer group owned by
the most deficient query. Since the hotset algorithm is based
on the LRU policy, the replacement buffer page is the least
recently accessed page in the selected local buffer group.
The overall modeling of the hotset algorithm is presented in
Fig. 8.

For the global selection policy to identify the query
buffer group owned by the faulting transaction, we define
the global control information type, C, and the global control
information update function, µ, such that the global control
information, c, is updated with the query identifier of the
faulting query when a page fault occurs. This information
is used by the abstract selection policy associated with the
buffer group (instance of AP1) in its selection of a local
buffer group.

Figure 9 shows the modeling of the abstract selection
policy type AP1. The abstract selection policy (instance of
AP1) associated with the buffer pool group (instance of
Nbuffer) selects either a free buffer group (instance of Nfree)
or a query buffer group (instance of Nquery-unfixed) based on
the following information (definition of P1):

1. The type of the buffer group, whether it is a free or a
query buffer group.

Dynamic buffer management with extensible replacement policies 111

Fig. 6 Selection of local buffer group

Nbuffer

Nfree Nquery-unfixed

Fig. 7 Hierarchical buffer pool model for hotset algorithm

2. The query owner, which is represented by a query iden-
tifier; the purpose is to identify the faulting query buffer
group by comparing with the global control information.

3. The locality set size of the buffer group.
4. The current allocated size of the buffer group; both the

locality and the allocated size are used to determine the
query’s deficiency.

Thus, the priority values assigned to the free buffer group
and the query buffer groups contained in the buffer pool
group are composite values consisting of these four com-
ponents.

To encode the selection criteria for the local buffer
group, we define the priority evaluation function, δ1, such
that

1. Nonempty buffer groups have lower priority than empty
buffer groups (encoded by bk+3).

2. Among the nonempty buffer groups, the buffer group
owned by the faulting query has lower priority than
the other buffer groups (encoded by bk+2), and the free
buffer group has lower priority than other query buffer
groups owned by the nonfaulting queries (encoded by
bk+1).

Fig. 8 Overall modeling of hotset algorithm

3. Among the query buffer groups owned by the nonfault-
ing queries, those owned by the more deficient queries
have lower priority (encoded by bk, . . . , b1).

112 C. L. Goh et al.

Fig. 9 Abstract selection policy type of hotset algorithm

5.1.2 Priority-hints algorithm

The buffer pool organization for the priority-hints algorithm,
as explained in Sect. 3.1, is depicted in Fig. 10.

The replacement criteria in the priority-hints algorithm
can be explained using the hierarchical buffer organization
in Fig. 10 as follows. The free buffer group (instance of
Nfree) is selected as the replacement local buffer group if it is
nonempty; otherwise, the selection of the local buffer group
involves two levels of selection: the global selection policy
first selects a priority buffer group (instance of Npriority) from

Nbuffer

Nfree

Npriority

Ntrans-unfixed

Fig. 10 Hierarchical buffer pool model for priority-hints algorithm

the buffer pool and then selects a transaction buffer group
(instance of Ntrans-unfixed) from among the transaction buffer
groups contained in the selected priority buffer group. In
the first selection, the policy selects the nonempty priority
buffer group with the lowest transaction priority level that is
not equal to or greater than the priority level of the faulting
transaction. If no such group exists, the priority buffer group
with a transaction priority level equal to that of the fault-
ing transaction is selected. In the second selection, if the se-
lected priority buffer group has the same priority level as the
faulting transaction, the transaction buffer group owned by
the faulting transaction is selected; otherwise, the nonempty
transaction buffer group owned by the “oldest” transaction
is selected.3

The selection criteria for the replacement buffer page
depends upon the local buffer group from which it is se-
lected. If the selected local buffer group is the free buffer
group, the least recently accessed page is selected for
replacement; otherwise, the most recently accessed page
is selected from the selected transaction buffer group.
Figure 11 depicts the overall modeling of the priority-hints
algorithm.

For the global selection policy to select a local buffer
group, the following information concerning the faulting
transaction must be included in the global control informa-
tion:

1. The transaction identifier of the faulting transaction and
2. The transaction priority level of the faulting transaction.

C and µ are defined such that the global control information,
c, is updated with this information when a page fault occurs.

The global selection policy type is defined in
terms of two abstract selection policy types, AP1 and
AP2, which are associated with the buffer group types
Nbuffer and Npriority, respectively. Figure 12 shows the mod-
eling of the abstract selection policy type AP1. The abstract
selection policy (instance of AP1) associated with the buffer
pool group (instance of Nbuffer) selects either the free buffer
group (instance of Nfree) or a priority buffer group (instance

3 The age of a transaction is measured by its admission time. Hence,
the oldest transaction refers to the transaction that had been admitted
the earliest among the set of existing transactions.

Dynamic buffer management with extensible replacement policies 113

Fig. 11 Overall modeling of priority-hints algorithm

of Npriority) based on the following information (definition
of P1):

1. The type of the buffer group, whether it is a free or pri-
ority buffer group;

2. The transaction priority level of a priority buffer group;
and

3. The state of the buffer group, i.e., whether the buffer
group is empty.4

Thus, the priority values of the free buffer group and the
priority buffer groups are of type P1.

To encode the selection criteria of the abstract selection
policy type AP1, the priority evaluation function, δ1, is de-
fined such that

1. Nonempty buffer groups have lower priority (encoded by
bm+3).

2. Among the nonempty buffer groups, the free buffer
groups have lower priority than the priority buffer groups
(encoded by bm+2).

4 A buffer group is empty if the size of the buffer group is zero.
The size of a local buffer group is equal to the number of buffer pages
contained in it. The size of an abstract buffer group is equal to the sum
of the respective sizes of all the buffer groups contained in it.

3. Among the priority buffer groups, those that have trans-
action priority level lower than or equal to the faulting
transaction have lower priority (encoded by bm+1).

4. Among priority buffer groups with transaction priority
level lower than or equal to the faulting transaction, those
with a lower transaction priority level have lower priority
(encoded by bm, . . . , b1).

The modeling of the abstract selection policy type AP2
is depicted in Fig. 13. The abstract selection policy (instance
of AP2) associated with each priority buffer group (instance
of Npriority) selects a transaction buffer group (instance of
Ntrans-unfixed) based on the following information (definition
of P2):

1. The transaction owner, which is represented by a trans-
action identifier; this is to enable identification of the
faulting transaction buffer group by comparing with the
global control information;

2. The admission time of the owner transaction; and
3. The state of the buffer group, i.e., whether the buffer

group is empty.

Transaction buffer groups are assigned priority values of
type P2.

114 C. L. Goh et al.

Fig. 12 Abstract selection policy type AP1 of priority-hints
algorithm

To encode the selection criteria of the abstract selection
policy type AP2, the priority evaluation function, δ2, is de-
fined such that

1. The transaction buffer group owned by the faulting trans-
action has lower priority than other transaction buffer
groups (encoded by bn+2). Note that this only applies
when the selected priority buffer group has a transaction
priority level equal to that of the faulting transaction.

2. Nonempty transaction buffer groups have lower priority
(encoded by bn+1).

3. Transaction buffer groups that are owned by older trans-
actions have lower priority (encoded by bn, . . . , b1).

6 Performance study

This section reports the performance study associated with
the proposed extensible buffer management framework.
First, the issues concerning the implementation of the pro-
posed framework are discussed. Then, the experimental re-
sults associated with the LRU-K replacement policy are pre-
sented. Finally, the role of the proposed scheme in improv-
ing the performance of indexes is investigated.

6.1 Implementation issues

The extensible buffer manager has been implemented as
a component in StorM [18]. Moreover, we have coded a
number of buffer replacement strategies using our proposed
framework. In order to verify the effectiveness of the imple-
mented buffer manager, we have implemented the LRU-K
[35] strategy using the proposed framework and run the ex-
periments that have been described in [35]. Furthermore,
we have conducted an experiment to identify the amount
of overhead incurred when using the framework. This has
been done by implementing one copy of the LRU-2 replace-
ment policy using the framework and another copy of the
same policy without using the framework. The two copies
are given the same set of buffer page requests as input, and
the CPU time incurred by each copy is recorded for compar-
ison purposes.

A buffer pool comprises two components: an array of
buffer slots (or frames) and a replacement policy. A buffer
slot, in turn, consists of a priority value, a dirty bit, a page
identifier (identifier of the page on the disk), and a main
memory copy of the page. A buffer pool, its frames, and the
pages are all instances of predefined StorM Java classes. The
priority associated with a slot reflects the priority of the page
that it currently contains and is an object instance of a sub-
class of a generic abstract class for slot priorities. Although
in theory all priorities can be implemented (encoded) as a
single number, we found it more convenient to use a more
adequate data structure by refining and implementing a sub-
class of the generic abstract class. Similarly, the replacement
policy is an abstract class that needs to be refined and im-
plemented by inheritance to arrive at a tailored replacement

Dynamic buffer management with extensible replacement policies 115

Fig. 13 Abstract selection policy type AP2 of priority-hints algorithm

policy. Once the new replacement policy is modeled as a
subclass of the priority scheme class, a buffer pool object is
associated with one instance of the new replacement policy.

A replacement policy implementation defines the data
structure holding the set of global priorities to be taken
into account (as in LRU-K or LFU) as well as the data
structure maintaining a global counter providing the log-
ical timestamps. These two data structures are persistent

since they may have to be maintained across transactions
and restored in the case of system failures. There is only
a negligible overhead if they are not used for a given
replacement policy that uses local priorities only (e.g.,
LRU).

In addition to these two data structures, the refinement
of a concrete replacement policy class comprises the imple-
mentation of five methods:

116 C. L. Goh et al.

– The initialization method, which initializes the global data
structure when the buffer pool is created or reset.

– The priority-assignment method, which assigns the local
priority to a slot and updates the global priority of the page
when the page is fetched from the disk into the slot.

– The priority-update method, which updates the local and
the global priorities when a logical reference is made to
the page present in the buffer.

– The priority-comparison method, which defines the prior-
ity order between two pages in the buffer by comparing
their global and local priorities. This method is private to
the replacement policy.

– The priority-evaluation method, which selects the slot
containing the pages with the smallest priority for replace-
ment. This method uses the priority-comparison method
to determine the page with the minimum priority. By de-
fault, it breaks ties by a random selection in the set of
candidates. If this is undesirable, ties must be resolved in
the priority-comparison method itself. Since most poli-
cies’ evaluation methods are expected to be the same, this
method can be directly inherited from the default method
without any additional programming. In certain rare situ-
ations, when the default approach may not be satisfactory
or efficient, the method can be redefined to override the
default method.

Since most of the generic data structures and methods
are either inherited or reused, the proposed framework re-
quires much less implementation effort than the traditional
way of implementing buffer replacement policies. This al-
lows the programmer to focus on the definition and imple-
mentation of the specific aspects of the replacement pol-
icy to be realized. Imposing a standard framework based on
priorities for the definition of a buffer replacement policy
may be restrictive to the designer as well as the program-
mer. However, a unified framework provides the flexibility
to implement several buffer pools associated with different
replacement policies for the purpose of satisfying the needs
of different sets of objects in diverse applications such as
indices, collections of data, and collections of metadata. In
order to realize this feature, files (the unit for object col-
lections in StorM) are associated with a particular buffer
pool, and hence a particular replacement policy. Several files
may be associated with the same buffer pool, and a file may
be opened in several buffer pools (with possibly different
policies). According to the hierarchical model, local buffer
pools, when created, can be associated with abstract buffer
pools. The default available replacement policy provided for
programmers who wish to ignore such issues is the standard
LRU scheme associated with a single local buffer pool.

6.2 Verification of correctness

In this section, we wish to verify the accuracy of our im-
plementation of LRU-K against the experimental results ob-
tained from [35].

Table 3 Experimental results for the two-pool experiment

LRU-1 LRU-2

Buffer size Stor M [35] StorM [35] AO

100 0.22 0.22 0.449 0.459 0.500
120 0.26 0.26 0.493 0.496 0.501
140 0.29 0.29 0.500 0.502 0.502
160 0.32 0.32 0.502 0.503 0.503
180 0.35 0.34 0.503 0.504 0.504
200 0.37 0.37 0.503 0.505 0.505
250 0.42 0.42 0.505 0.508 0.508
300 0.45 0.45 0.510 0.510 0.510
350 0.48 0.48 0.512 0.513 0.513
400 0.50 0.49 0.513 0.515 0.515
450 0.50 0.50 0.518 0.517 0.518

6.2.1 Two-pool experiment

In this experiment, we studied the codes available
from ftp://ftp.cs.umb.edu/pub/lru-k/lru-k.tar.Z and ran the
experiments as described in [35].

We considered two pools of disk pages, Pool 1 with N1
pages and Pool 2 with N2 pages, where N1 < N2. Alter-
nating references are made to Pool 1 and Pool 2 and then
a page from that pool is randomly selected as the sequence
element. Thus, each page of Pool 1 has a probability of ref-
erence, b1 = 1

2N1
, of occurring as any element of reference

string w, while the corresponding probability for each page
of Pool 2 is b2 = 1

2N2
. The objective of this experiment is to

model the alternating references to index and record pages.
We conducted simulations with disk page pools of N1 = 100
pages and N2 = 10, 000 pages. The buffer hit ratio (ratio
between the number of hits and the number of logical ref-
erences) of the LRU-2 scheme implemented on StorM was
measured and compared with those in [35]. The results are
shown in Table 3. The difference between the results ob-
tained using our StorM implementation and those of [35] is
due to the random nature of the dataset. When the experi-
ments are run on the same dataset, the results obtained are
identical.

We also ran the same experiment for LRU-3, LRU-4,
LRU-6, and LRU-8. The results generally indicate slight im-
provement over LRU-2, with some converging toward AO
(the optimum policy’s hit ratio). However, the improvement
is not drastic. Incidentally, this confirms the superiority of
LRU-2 when the history of access patterns is short and un-
stable.

6.2.2 Random access experiment

In this experiment, we used a synthetic workload with ran-
dom references to a set of pages with a Zipfian distribution
of reference frequencies. As in [35], we generated references
to N = 1000 pages, numbered from 1 to N , with a Zipfian
distribution of reference frequencies. In this experiment, the
probability of referencing a page with page number less than

Dynamic buffer management with extensible replacement policies 117

Table 4 Experimental results for Zipfian distribution of references

LRU-1 LRU-2

Buffer size StorM [35] StorM [35] AO

40 0.53 0.53 0.59 0.61 0.640
60 0.58 0.57 0.63 0.65 0.677
80 0.62 0.61 0.66 0.67 0.705

100 0.64 0.63 0.68 0.68 0.727
120 0.66 0.64 0.70 0.71 0.745
140 0.67 0.67 0.71 0.72 0.761
160 0.70 0.70 0.74 0.74 0.776
180 0.71 0.71 0.75 0.73 0.788
200 0.73 0.72 0.75 0.76 0.825
300 0.79 0.78 0.81 0.80 0.846
500 0.86 0.87 0.87 0.87 0.908

or equal to i was (i/N)log a/log b, where the constants a and
b are between 0 and 1. The relationship between a and b
is that a fraction a of the references accesses a fraction b
of the N pages, and the same relationship holds recursively
within the fraction b of hotter pages and the fraction (1 − b)
of colder pages [35].

Again the buffer hit ratio of LRU-2 modeled using our
framework was obtained and compared with the results in
[35]. Table 4 indicates that the results are similar. We also
ran the same experiment for LRU-3, LRU-4, LRU-6, and
LRU-8. The improvement shown by LRU-K (K > 2) was
found to be more significant as compared to the case of the
two-pool experiment. Moreover, the results depict the con-
verging trend toward the optimum policy’s hit ratio.

6.3 Extensibility vs. overhead

Many commercial systems employ the approach of provid-
ing “configuration” knobs to meet different organizational
needs. This is usually achieved with a well-designed back-
end and a slight overhead as compared to a monolithic spe-
cialized system. The overhead must be small in comparison
with the overall performance and efficiency gain. Likewise
for our case, the extensibility should not cause prohibitive
overhead.

In our implementation of the proposed extensible buffer
manager, we made heavy use of the concepts of object in-
heritance and polymorphism supported by Java. Different
replacement policies (e.g., the LRU Scheme Class) can be
created by inheriting the parent PriorityScheme class and
overriding the parent’s methods. The buffer manager uses
a polymorphism to invoke the correct child methods during
the assignment, update, and evaluation of the priority value
of a buffer slot. While these facilitate ease of programming
and extensibility of the system, the use of a polymorphism
and the need to resolve the methods from their respective
parent classes to the corresponding correct child classes do
incur additional overhead.

To study the effect of inheritance and polymorphism on
the performance of the buffer manager, we also implemented

Table 5 CPU comparison

Without framework With framework
Buffer size Hit ratio (in sec) (in sec)

100 0.4527 1.713 2.074
120 0.4893 1.924 2.164
140 0.498 2.121 2.665
160 0.5003 2.404 2.628
180 0.502 2.711 2.793
200 0.5037 2.888 2.829
250 0.505 3.204 3.268
300 0.508 3.586 3.709
350 0.5103 3.923 4.304
400 0.516 4.310 4.447
500 0.5203 5.002 5.282
600 0.5263 5.883 5.897
700 0.5317 8.438 7.028
800 0.538 18.044 8.673
900 0.5433 40.981 11.887

1,000 0.5473 63.344 16.425
1,200 0.5537 109.859 25.383
1,400 0.5597 207.730 41.776
1,600 0.5613 357.085 80.911
1,800 0.5633 569.117 139.192
2,000 0.5633 844.770 201.619

the monolithic LRU-2 scheme (also in Java) and timed the
execution of both with different buffer pool sizes. The study
was conducted on a SUN Solaris machine with eight CPUs.
The buffer pool size was incremented gradually until no
further significant improvement on the hit ratio could be
observed. Our findings reveal that the extensible buffer man-
ager incurs almost the same amount of overhead as com-
pared to the monolithic LRU-2 scheme. In fact, experimen-
tal results demonstrate that running the buffer manager with
the framework is actually faster than running it without the
framework as the buffer pool size increases. Table 5 illus-
trates the CPU time required to run the LRU-2 replacement
strategy.

In the monolithic LRU-2 implementation, a history ref-
erence hash table (each element in this hash table is a linked
list) has to be kept globally to keep track of the refer-
ence history of each buffer slot. Whenever a buffer slot
is accessed/replaced, this hash table has to be scanned to
obtain/update the priority value of a buffer slot. This scan-
ning process requires CPU time. In contrast, our frame-
work stores the priority values as an array within the
slot itself. Therefore, the priority value of a slot can be
obtained/updated directly.

When the buffer size is small, the number of elements in
the hash table of the monolithic LRU-2 implementation is
small. Consequently, the time required for obtaining the pri-
ority value of a given buffer slot from this hash table is small.
As the buffer size increases, the number of elements in the
hash table also increases. In this situation, the monolithic
LRU-2 implementation requires more time than our exten-
sible framework since accessing an array is faster than ac-
cessing a hash table. Hence, our framework performs more
efficiently as the buffer pool size increases.

118 C. L. Goh et al.

Table 6 Hit ratio of B+-tree queries under different replacement
policies

Buffer size LRU-1 MRU LRD LRU-2 LUU

100 0.266 0.030 0.337 0.450 0.164
200 0.476 0.070 0.529 0.537 0.359
300 0.594 0.109 0.604 0.582 0.433
400 0.659 0.146 0.653 0.614 0.472
500 0.692 0.184 0.687 0.643 0.512
600 0.707 0.222 0.718 0.670 0.555
700 0.719 0.259 0.748 0.695 0.585
800 0.731 0.297 0.779 0.719 0.616
900 0.752 0.334 0.810 0.743 0.645

1000 0.785 0.372 0.834 0.763 0.669

6.4 Improving index performance

Since every DBMS employs indexes in order to facilitate
speedy retrieval of data, issues concerning performance of
the indexes are critical to the overall system performance.
The most widely used indexes for one-dimensional data are
the B-tree [2] and its variants (e.g., the B+-tree), while the
R-tree [20] and its variants are the most popular index struc-
tures for indexing multidimensional data. For databases of
huge size, such indexes are usually too large to reside in
the main memory, and hence a good buffer replacement pol-
icy, which can maximize the hit ratio of index pages, is of
paramount importance. In this section, we demonstrate the
the ease in implementing several different replacement poli-
cies in our extensible buffer manager and show how the flex-
ibility of our proposed framework can be exploited in case
of index structures.

6.4.1 Point queries on a B+-tree

For this experiment, we created a B+-tree using StorM with
a fanout of 52. We randomly generated one million num-
bers in the range of 1–10,000,000 and inserted them into the
B+-tree. The fanout of 52 was derived from the maximum
number of entries that can fit into a physical data page of
StorM. Note that a data page of StorM is set at 4 kbytes. We
randomly generated 100,000 B+-tree point queries based on
the 10–90% rule where 10% of the one million records are
accessed 90% of the time while the remaining records are ac-
cessed 10% of the time. The same set of queries was run on
different replacement policies available in StorM, namely,
LRU, MRU, LRU-2, LRD, and LUU with varying buffer
sizes ranging from 100–1,000. To simulate a “hot” buffer,5

the first 1,000 queries were ignored in the computation. We
obtained the hit ratio needed for each buffer replacement
policy to process all the queries. Table 6 summarizes the re-
sults of this experiment. The replacement policy, which is
best suited to a given query processing pattern, can be de-
duced on the basis of the results obtained.

5 “Hot” buffer refers to a buffer in which all the slots are filled.

The results of this experiment indicate that when the
buffer size is small (less than or equal to 200), LRU-2 is
the clear choice as the replacement policy. However, as the
buffer size increases (above 300), both the LRD and LRU
are better candidates as compared to LRU-2. Hence it is
clear that LRU-2 may not always be the winner in all cases.
This underlines the importance of a framework that is flexi-
ble enough to model different replacement policies to cater
to varying applications’ needs.

6.4.2 Range queries on B+-trees

This experiment examines how knowledge about data struc-
tures can be employed to design novel schemes. We have
used B+-tree range query traces to conduct this experiment.
This is in contrast to the corresponding experiment in [35],
where OLTP traces were used.

When managing index data structures, additional knowl-
edge about the data structure itself and its access patterns
can facilitate in devising replacement policies that are tai-
lored for the buffer pool of the index pages [8, 28, 29, 35].
An interesting yet very simple as well as effective strategy
for B+-tree buffering is to use the level of the page in the tree
to determine the page priority. Pages at higher levels in the
tree have higher priority since they are more likely to be vis-
ited by other queries. For purposes of buffer replacement, a
random choice is made between buffer pages with the same
priority.

For this experiment, we generated 500,000 random num-
bers from 0 to the maximum integer value and inserted them
into a B+-tree. The node size was kept small (with a fanout
of 20) in order to yield a taller tree. Five hundred queries
were randomly generated, each requiring the scanning of
about 10% of the leaf nodes, and their traces of traversal
were put into a file. To simulate the situation of 10 con-
current transactions, we picked 10 queries, and from those
we randomly picked the next node to visit. When a range
query had been executed to completion, we picked the next
query in the list. For the performance evaluation, we dropped
the first 1,000 references in order to allow the algorithms
to reach a quasistable state. Table 7 summarizes the buffer
hit ratio for the respective algorithms, namely, the priority-
based replacement algorithm and the LRU-2 algorithm. We
present the average hit ratio of 5,000 references and 40,000
references, respectively. In real-world applications, multiple
indexes are maintained for each table for different purposes
such as for answering popular queries and generating infre-
quent but expensive reports. These two references (5,000 vs.
40,000) represent contrasting situations: (1) when traversal
of a particular index is infrequent and interleaved with other
index traversals and (2) when traversal of an index is inten-
sive and continuous.

In situation (1), most of the 5,000 references access
mostly the internal nodes of the B+-tree rather than the leaf
nodes. Since the priority-based replacement strategy gives
higher priority to the internal nodes of the B+-tree, it is
likely to achieve a good hit ratio. In contrast, the nature

Dynamic buffer management with extensible replacement policies 119

Table 7 Performance results for range queries on B+-trees

5,000 ref. 40,000 ref.

Buffer size Priority LRU-2 Priority LRU-2

100 0.0390 0.0255 0.0295 0.0301
120 0.0450 0.0305 0.0350 0.0347
140 0.0495 0.0322 0.0384 0.0392
160 0.0555 0.0347 0.0427 0.0433
180 0.0612 0.0355 0.0461 0.0486
200 0.0677 0.0385 0.0522 0.0541
220 0.0732 0.0410 0.0566 0.0590
240 0.0782 0.0417 0.0594 0.0623
260 0.0845 0.0425 0.0628 0.0658
280 0.0908 0.0430 0.0668 0.0695
300 0.0972 0.0437 0.0726 0.0734

Table 8 Hit ratio of R-tree queries under different replacement
policies with buffer size 100

Replacement policies Hit ratio

LRU 0.603
MRU 0.595
LRD 0.595
LRU-2 0.643
LUU 0.625

of such access patterns makes it difficult for the LRU-2 al-
gorithm to detect locality of page references. As observed
in the result of the experiment with 5,000 references, the
priority-based replacement strategy is superior.

In situation (2), most of the references access the leaf
nodes instead of the internal nodes. Since all the leaf nodes
in the B+-tree are chained at the leaf level, the locality of
page references in such access patterns is easily detected by
the LRU-2 algorithm. On the other hand, the priority-based
replacement strategy is likely to incur more “buffer misses”
because the buffer pool is filled with internal nodes. As ob-
served in the result of the experiment with 40,000 references,
the performance of the two buffer strategies are comparable.

6.4.3 Experiment on the R-tree

A similar experiment was also conducted for the R-
tree. In the case of the R-tree, the data stored is a set
of one million rectangles obtained from a real dataset
known as Greece Roads (http://dias.cti.gr/
∼ytheod/research/datasets/spatial.html.
We randomly generated 100,000 containment queries from
the dataset. To simulate “hot” buffer, the first 1,000 queries
were ignored. The buffer size for the R-tree experiment
was set at 100. Table 8 summarizes the results for this
experiment. The experimental results reveal that the LRU-2
replacement policy clearly outperforms the rest.

7 Conclusion

In this paper, we have proposed a framework for modeling
buffer replacement policies. We have illustrated the express-
ibility as well as the flexibility of our proposed framework
by using it to model some of the existing buffer replacement
policies. This framework can provide the basis for realizing
buffer replacement extensibility, which is lacking in existing
extensible DBMSs. Supporting extensibility in this layer of
the system can have a great impact on system performance
since disk I/O still remains a critical performance bottle-
neck. The proposed framework was implemented and a per-
formance study conducted. The results of our performance
study clearly demonstrate that an extensible buffer replace-
ment policy component based on the proposed framework
can be constructed efficiently.

Acknowledgements We would like to thank Anirban Mondal, Chee
Yong Chan, Stephen Bressan, and Kian-Lee Tan for their contributions
and the referees for their suggestions in improving the paper.

References

1. Batory, D.S., Barnett, J.R., Garza, J.F., Smith, K.P., Tsukuda,
K., Twichell, B.C., Wise, T.E.: GENESIS: an extensible database
management system. IEEE Trans. Softw. Eng. 14(11), 1711–1729
(1988)

2. Bayer, R., McCreight, E.: Organization and maintenance of large
ordered indices. Acta Informatica 1(3), 173–189 (1972)

3. Bressan, S., Goh, C.L., Ooi, B.C., Tan, K.L.: A framework for
modeling buffer replacement strategies. In: Proceedings of ACM
CIKM international conference on information and knowledge
management, pp. 62–69 (2000)

4. Brown, K.P., Carey, M.J., Livny, M.: Goal-oriented buffer man-
agement revisited. In: Proceedings of the 1996 ACM-SIGMOD
international conference, pp. 353–364 (1996)

5. Carey, M.J., DeWitt, D.J., Graefe, G., Haight, D.M., Richardson,
J.E., Schuh, D.T., Shekita, E.J., Vandenberg, S.L.: The EXODUS
extensible DBMS project: an overview. In: Zdonik, S., Maier, D.
(eds.) Readings in object-oriented database systems, pp. 474–499.
Morgan Kaufmann, San Francisco (1990)

6. Carey, M.J., Haas, L.M.: Extensible database management sys-
tems. ACM SIGMOD Rec. 19(4), 54–60 (1990)

7. Carey, M.J., Jauhari, R., Livny, M.: Priority in DBMS resource
scheduling. In: Proceedings of 15th international conference on
very large data bases, pp. 397–410. Amsterdam (1989)

8. Chan, C.Y., Ooi, B.C., Lu, H.: Extensible buffer management of
indexes. In: Proceedings of 18th international conference on very
large data bases, pp. 444–454. Vancouver, Canada (1992)

9. Chou, H.-T.: Buffer management of database systems. PhD thesis,
University of Wisconsin-Madison. In: Computer Sciences Techni-
cal Report 597, University of Wisconsin-Madison (1985)

10. Chou, H.-T., DeWitt, D.J.: An evaluation of buffer management
strategies for relational database systems. In: Proceedings of 11th
international conference on very large data bases, pp. 127–141.
Stockholm (1985)

11. Chou, H.-T., DeWitt, D.J., Katz, R.H., Klug, Design, A.C.: Im-
plementation of the Wisconsin storage system. Soft. Pract. Exp.
15(10), 943–962 (1985)

12. Denning, P.J.: The working-set model for program behaviour.
Commun. ACM 11(5), 323–333 (1968)

13. Dittrich, K., Geppert, A.: (eds.) Component Databases. Morgan
Kaufmann, San Francisco (2001)

120 C. L. Goh et al.

14. Effelsberg, W., Haerder, T.: Principles of database buffer manage-
ment. ACM Trans. Database Syst. 9(4), 560–595 (1984)

15. University of Wisconsin-Madison. Using the EXODUS storage
manager, vo1. 3. (1991)

16. Freytag, J.C.: A rule-based view of query optimization. In:
Proceedings of ACM SIGMOD conference, pp. 173–180.
San Francisco (1987)

17. George, B., Haritsa, J.R.: Secure buffering in firm real-time
database systems. In: VLDB Conference, pp. 364–475 (1998)

18. Goh, C.L., Bressan, S.: Storm: a 100% Java persistent storage
manager. In: Java and Databases L’objet, vol. 6, Hermes Science
Publications, Paris, pp. 305–316 (2000)

19. Graefe, G., DeWitt, D.J.: The EXODUS optimizer generator. In:
Proceedings of ACM SIGMOD conference, pp. 160–172. San
Francisco (1987)

20. Guttman, A.: R-trees: a dynamic index structure for spatial search-
ing. In: Proceedings of ACM SIGMOD conference, pp. 47–57.
Boston (1984)

21. Haas, L.M., Chang, W., Lohman, G.M., McPherson, J., Wilms,
P.F., Lapis, G., Lindsay, B., Pirahesh, H., Carey, M.J., Shekita, E.:
Starburst mid-flight: as the dust clears. IEEE Trans. Knowl. Data
Eng. 2(1), 143–160 (1990)

22. Haas, L.M., Freytag, J.C., Lohman, G.M., Pirahesh, H.: Extensible
query processing in Starburst. In: Proceedings of ACM SIGMOD
conference, pp. 377–388. Portland, OR (1989)

23. Huang, J., Stankovic, J.A.: Buffer management in real-time
databases. COINS Technical Report 90-65, University of
Massachusetts-Amherst (1990)

24. Jauhari, R., Carey, M.J., Livny, M.: Priority-hints: an algorithm
for priority-based buffer management. In: Proceedings of 16th
international conference on very large data bases, pp. 708–721.
Brisbane, Australia (1990)

25. Jiang, S., Zhang, X.: LIRS: An efficient low inter-reference re-
cency set replacement policy to improve buffer cache perfor-
mance. In: Proceedings of SIGMETRICS, pp. 31–42 (2002)

26. Kim, I., Yeom, H.Y., Lee, J.: Analysis of buffer replacement poli-
cies for www proxy. In: Proceedings of ACM symposium on ap-
plied computing table of contents, pp. 98–103. Atlanta, GA (1998)

27. Lee, M.K.: Interaction between the query processor and buffer
manager of a relational database system. Master’s thesis,
Massachusetts Institute of Technology, 1989. In: Research Re-
port RJ6884 (65710), IBM Research Division, Almaden Research
Center, San Jose, CA (1989)

28. Lee, S.H., Whang, K.Y., Moon, Y.S., Song, I.Y.: Dynamic buffer
allocation in video-on-demand systems. In: Proceedings of ACM
SIGMOD conference, pp. 343–354 (2001)

29. Leutenegger, S.T., Lopez, M.A.: The effect of buffering on the
performance of r-trees. In: ICDE, pp. 164–171 (1998)

30. Lindsay, B., Haas, L.: Extensibility in the Starburst experimental
database system. In: Blaser, A. (eds.), Lecture Notes in Computer
Science 466, pp. 217–248. Berlin Heidelberg New York: Springer
(1990) In: Proceedings of international symposium on database
systems of the 90s, Muggelsee, Berlin (1990)

31. Lindsay, B., McPherson, J., Pirahesh, H.: A data management ex-
tension architecture. In: Proceedings of ACM SIGMOD confer-
ence, pp. 220–226. San Francisco (1987)

32. Linnemann, V., Kuspert, K., Dadam, P., Pistor, P., Erbe, R.,
Kemper, A., Sudkamp, N., Walch, G., Wallrath, M.: Design and
implementation of an extensible database management system
supporting user defined data types and functions. In: Proceedings
of 14th international conference on very large data bases, pp. 294–
305. Los Angeles (1988)

33. Lohman, G.M.: Grammar-like functional rules for representing
query optimization alternatives. In: Proceedings of ACM SIG-
MOD conference, pp. 18–27. Chicago (1988)

34. McLeod, D.: 1988 VLDB panel on future directions in DBMS
research: a brief, informal summary. ACM SIGMOD Rec. 18(1),
27–30 (1989)

35. O’Neil, E.J., O’Neil, P.E., Weikum, G.: The lru-k page replace-
ment algorithm for database disk buffering. In: Proceedings of
ACM SIGMOD conference, pp. 297–306 (1993)

36. Ong, J., Fogg, D., Stonebraker, M.: Implementation of data ab-
straction in the relational database system ingrres. ACM SIGMOD
Rec. 14(1), 1–14 (1984)

37. Osborn, S.L., Heaven, T.E.: The design of a relational database
system with abstract data types for domains. ACM Trans.
Database Syst. 11(3), 357–373 (1986)

38. L. Rowe and Stonebraker, M.: The POSTGRES data model. In:
Proceedings of 13th international conference on very large data
bases, pp. 83–96. Brighton, UK (1987)

39. Sacco, G.M., Schkolnick, M.: A mechanism for managing the
buffer pool in a relational database system using the hot set model.
In: Proceedings of 8th international conference on very large data
bases, pp. 257–262. Mexico City (1982)

40. Sacco, G.M., Schkolnick, M.: Buffer management in relational
database systems. ACM Trans. Database Syst. 11(4), 473–498
(1986)

41. Silberschatz, A., Stonebraker, M., Ullman, J.: Database systems:
achievements and opportunities. ACM SIGMOD Record 19(4),
6–22 (1990) The “Lagunita” report of the NSF invitational work-
shop on the future of database systems research. Palo Alto, CA
(Feb. 22–23, 1990)

42. Stonebraker, M.: Operating system support for database manage-
ment. Commun. ACM 24(7), 412–418 (1981)

43. Stonebraker, M.: Inclusion of new types in relational database sys-
tems. In: Proceedings of 2nd international conference on data en-
gineering, pp. 262–269. Los Angeles (1986)

44. Stonebraker, M., Rowe, L.A., Hirohama, M.: The implementa-
tion of POSTGRES. IEEE Trans. Knowl. Data Eng., pp. 125–142
(1990)

45. Stonebraker, M., Rowe, L.A., Lindsay, B., Gray, J., Carey, M.J.,
Brodie, M., Berstein, P., Beech, D.: Third-generation database sys-
tem manifesto. ACM SIGMOD Rec. 19(3), 31–44 (1990). Com-
mittee for Advanced DBMS Function

46. Teng, J.Z., Gumaer, R.A.: Managing IBM database 2 buffers
to maximize performance. IBM Syst. J. 23(2), 211–218
(1984)

47. Velez, F., Bernard, G., Darnis, V.: The O2 object manager: an
overview. In: Proceedings of 15th international conference on very
large data bases, pp. 357–366. Amsterdam (1989)

48. Wilms, P.F., Schwarz, P.M., Schek, H.-J., Haas, L.M.: Incoporat-
ing data types in an extensible database architecture. In: Beeri, C.,
Schmidt, J.W., Dayal, U. (eds.) Proceedings of 3rd international
conference on data and knowledge bases: improving usability and
responsiveness, pp. 180–192. Jerusalem (1988)

49. Zdonik, S.B., Maier, D.: Relational extensions and extensible
database systems. In: Zdonik, S.B., Maier, D. (eds.) Readings
in object-oriented database systems. Data Management Systems,
pp. 445–449. Morgan Kaufmann, San Francisco (1990)

