
Copyright © 2007 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail
permissions@acm.org.
GRAPHITE 2007, Perth, Western Australia, December 1–4, 2007.
© 2007 ACM 978-1-59593-912-8/07/0012 $5.00

A GPU-based Method for Real-time Simulation of Eastern Painting

The Kiet Lu
*
 Zhiyong Huang

†

 School of Computing, National University of Singapore Institute for Infocomm Research (I
2
R), A*STAR, Singapore

Abstract

Different from Western Paintings, one can only appreciate the
beauty of Eastern paintings by looking at its “spiritual” aspects: “a
liking of simpleness with subtlety” – The Art of Sumi-e. It is the
careful brushwork with abstract strokes that embrace chance
while leaving nothing up to chance, from any subtle changes in
brush’s pressure onto the paper to the fascinating ink diffusion
absorbed by painting papers with various microstructures. Hence,
the goal of this research work aims to “capture” these
expressivenesses of the Eastern Arts, in digitalized form, which
will open to new opportunities of exploration of painting
techniques on the new digital Media, as well as of the easiness of
calligraphical practices, complementary to the traditional way. By
combining the flexibility from CPU and the power of GPU
parallelism, together with carefully scheduling the simulation
tasks between CPU and GPU, we have achieved good results with
high visual quality and also are able to fulfill the requirement of
real-time simulation.

CCS Categories: I.3.1 [Hardware Architecture]: Graphics
processors; I.3.3 [Picture/Image Generation]: Display algorithms;
I.3.4 [Graphics Utilities]: Virtual device interfaces; I.3.5
[Computational Geometry and Object Modeling]: Physically
based modeling; I.3.6 [Methodology and Techniques]: Interaction
techniques

Keywords: Interactive Painting, Brush Modeling, Physically-
based Simulation, GPU programming

1 Introduction

Brush simulation is a subject in non-photorealistic rendering. In
fact, the first method proposed can be traced back ever since 1986
by Strassmann [12]. In his simulation system, the 2D brush
footprint is constructed by “splatting” 1D or 2D bristle map along
the drawing line, which is usually sampled from pen-based input.
However, the method is only suitable for Western paintings.
However, in Eastern painting, the symbolism may take higher
priority where “It is a classical art form that emphasizes the skill
of using brush and ink and carries deep inner meanings” – the Art
of Sumi-e, Shozo Sato. Thus, as illustrated in Figure 1, only
consists of a few very abstract strokes of black and white, mastery
Eastern paintings can

*
 edwin.kiet@gmail.com

†
 zyhuang@i2r.a-star.edu.sg

seek to capture the spirit from the physical world and blend it
perfectly into the metaphysical world which is difficult to
understand in Western terms.

Figure 1. A Sumi-e Masterpiece: Shrike on a Barren Tree

Due to this reason, the restriction from traditional 2D splatting
method no doubt becomes the obvious constraint for Eastern
paintings, at least in terms of brush footprint expressiveness. In
fact, a traditional system can only afford some degrees of
freedom, for example, the thickness for each stroke and
orientation. However, Chinese brush technique is the great
collection of many different stroke styles, especially in
calligraphy works illustrated in the Figure 2.

(a) (b)

Figure 2. Two Chinese calligraphy artworks with brush splitting

effect

Recently there has risen up a new interest shifting towards
simulating the actual 3D model of the painting brush. One of the
first efforts is by Xu et al. [14]. Taking into account of many
physical conditions like water wetness level, brush pressure and
physical energy, a method was proposed of using deformable
NURB sweeping surface along the brush main skeleton to
generate the 3D brush model by sweeping operation. Due to the
use of the 3D brush model, the footprint generated offers much
more direct and natural stroke shape compared to the previous
work. However, the results are still not persuasive enough because
the simplicity of 3D solid volume is not sufficient to capture the
flexibilities of the brush. For example, in reality the brush tends to

111

branch out into many small groups of bristles called turf when
drying out or being pressed by high pressure, which is called
“flying-white” calligraphy technique as illustrated in Figure 2.

On the other hand, ink diffusion effect is also a very important
factor would contribute into immersive simulation. A wet brush is
referred as one that has been coated with so much ink that it drips
easily from the bristles. For example, in “chrysanthemum”, one of
the results produced by our system in Figure 15, the smeared
outline is produced by the excessive ink applying on the paper.

In this paper, we propose a GPU-based method for real-time
simulation of Chinese painting. There are three main
contributions: First, for 3D brush modeling, we introduce a novel
3D brush simulation method. Taking advantage of GPU
parallelism, the model can support up to thousands of each
individual bristle that altogether form the 3D brush. Our method
yields out with more realistic and persuasive results because the
process is the natural and direct way for interactive painting
application. Second, due to using the individual bristles as the
lowest primitives of the virtual brush, the simulation results would
be unlimited resolution in theory. Third, post-rendering ink
diffusion effect based on physical “Xuan” paper structure is
implemented and integrated seamlessly into 3D brush model to
achieve more the realistic results. The experimental results
showed the effectiveness of the method. For example, the
“Orchid” painting can be generated in 1.5 times of A1 resolution
300 dpi with 25 frames per second, see Figure 16.

2 Related Work

In this section, we will summarize the methods of brush painting
simulation with their relevance to our method.

2.1 1D brush modeling

Date back to 1986, Strassmann published his Master’s thesis
“Hairy Brushes” which is regarded as the first generation system
for hairy brush painting [12]. It is the pioneer research that defines
a painting system with four different components: the brush, the
stroke, the dip, and the paper. It would offer a great flexibility for
experiment framework, for example, instead of directly rendering
the brush footprint to the final results, the system could integrate
different ink effects and paper texture maps into the final results.

Strassmann method is able to synthesize many of the interesting
effects often seen in sumi-e style paintings. However, there are
also some drawbacks that make it far from what painters should
experience. Firstly, for each stroke, the system requires user to
specify a set of control points and the pressure levels, which is
quite different from the actual interactive painting process. Time
consumption is another problem for interactive simulation. Due
to using CPU to compute the footprint, generating each stroke
may take more than one second, which is impossible for
interactive application.

2.2 3D brush modeling

With the emerging of powerful CPUs, hairy brush simulation
becomes more and more practical [5, 7, 8, 13, 15]. The painting
brush model proposed by [8] is the first important improvement of
[12], from 1D to actual 3D brush model with three significant
advantages: First, it is more natural for painters to directly
manipulate the 3D brush rather than abstract the control points.
Second, it is more accurate to capture many subtle Eastern
painting brush effects as having mentioned before. Third, the
system employs the physically-based approach to afford more

accessibility for the users to easily adjust many parameters like
the stiffness of the bristle, wetness of the brush and the friction
level of the paper.

The brush model presented in our work is inspired by [2, 8],
where a large amount of bristles, which is represented as
parametric curves, is attached to the same root on the brush
handle. One problem of Lee’s model is that the number of bristles
is limited to achieve high realism. Our method addresses this
problem by a GPU-based solution which offers more brush
dynamics as well as high speed of rendering.

2.3 The skeleton brush

Lee’s research [8] suggested that a high level of physical-based
simulation needs to be taken into account in order to achieve
persuasive results. Following it, Chu and Tai demonstrated a more
accurate of physically based system [2]. However, their dynamics
model, originally from [1], consists of many nodes which will be
too expensive to compute in real-time. Even though it is very
physically accurate, the number of bristles that the system can
support is limited which affects the stroke quality. The Equality
Non-linear Constraint Programming is applied for solving energy
minimization problem which is very computational expensive,
especially when the number of variables of the optimization
equation is fairly high. This inherently limits the levels of detail
that their brush model can achieve, especially for high resolution
results.

2.4 Ink diffusion model

The additional step to achieve realistic brush painting is the ink
diffusion model. A physically-based model to simulate the
“Xuan” physical paper structure was proposed in [13] consisting
of a fiber network which mimicries the actual “Xuan” paper with
cells as fiber piles, linked by fiber threads. However, the problem
of this method is the large amount of micro fibers and cells that it
has to represent. In reality there are thousands of fibers
overlapping onto a small area of paper. As a result, the method
becomes too expensive to use for high resolution rendering.

Gou and Kunii later proposed an approach for representing the
Nijimi effect [7]. In their work, fiber mesh is subdivided into
smaller circular regions. Each region will be assigned with a
number of micro fibers. “Xuan” paper mesh data is constructed by
traversing each region and generate mesh structure locally. This
method is more efficient than [13] because it reduces the
complexity of large paper area into small regions and generates
the fiber-mesh data by computing the virtual capillary tubes
among these regions as fiber-mesh information. The excessive ink
is transferred in the diffusion process from the source, along the
capillary tubes, to the surrounding paper cells, in a way similar to
the real “Xuan” paper.

However, since having to store information of the fibers (such as
position, orientation) into fiber data structures, the fiber-mesh
construction is still quite expensive for large scale paper. Our
work addresses the problem with improvement of this issue. More
recently, a physically-based method was proposed for simulating
ink dispersion in absorbent paper [3], where the fluid flow model
is based on the lattice Boltzmann equation. However, physically-
based ink dispersion is not our focus.

3 Our Method

In this section, we first describe our Bristle-based brush model.
Then, we present the use of GPU to achieve real-time simulation.

112

Finally, we discuss the improvement on the ink diffuse model. For
the future work, we are conducting usability study. We have
shown a demo to public in the "Window into SoC" on May 19,
School of Computing, NUS. Feedbacks from users have been
summarized and used for the improvement of our design.

3.1 The bristle-based brush model

In this subsection, we describe Bristle-based Brush (BBB) model
design. We use a hybridization approach aiming to achieve both
the high quality of realistic brush footprints and real-time
simulation. The BBB model follows the real painting brush
structure which is made up of a mass group of individual small
hair units called bristles, whose size may be up to thousands. The
individual deformation is necessary because the brush geometry
volume is totally dynamic and more flexible with countless
degrees of freedom. Each bristle is presented as a Bezier curve
with 4 control points computed based on energy minimization
method using equality constraint optimization. The summary of
the BBB model is shown in Figure 3.

Figure 3. The system flow chart

(a) (b)

Figure 4. Bezier-based Bristle with 4 control points P1, P2, P3

and P4 (a). Initial non-pressure state of P1, P2, P3 and P4 (b)

The use of Bezier curves requires less computation because of

smaller number of the control points. Further more, it can fit well

into GPU platform. Depend on the resolution requirements, the

number of bristles should be adjusted accordingly. For example, if

paper resolution is more than 40 million pixels, more than 1,000

bristles should be used to achieve the realistic level. Finally, BBB

can solve the clumping and branching out effect naturally as it

works on the lowest level of bristles. The effect can be produced

by manipulating the bristles represented by Bezier curves into

groups by using K-nearest neighboring algorithm which will be

elaborated in subsection 3.3.3.

To use cubic Bezier curves, each bristle is composed of four

control points P1, P2, P3 and P4 to define the shape. Note that P1

and P2 are aligned statically to the brush handle main axis as in

Figure 4. They are fixed relative to the orientation of the axis,

which in charge of the physical stiffness of the brush.

Thus, the actual dynamic factors fall into control points P3 and P4

at the end of the bristle. There are also constraints for them. First,

they must always lie right above the paper plane as illustrated in

Figure 4. This assures the brush will always touch and do not

penetrate the paper when pressed. Second, they must be

positioned such that the bristle’s arc length keeps constant.

Initially, P3 and P4 are set to be close to each other so that

without pressure, the bristle is orthogonal to the paper plane as in

Figure 4 (b). During the painting simulation, the length of vector

P3P4 changes (stretches or contracts) governed by Physics.

To simulate the bristle deformation accurately in Physics, BBB

uses equality constraint optimization to determine the steady state

of the bristles (P3 and P4) at each step of the iterative process.

Giving the new positions of P1 and P2, due to the brush new

orientation, the system will solve the energy minimization

problem seeking for the new positions of P3 and P4 to the most

stable configuration with least energy stored, similar to that of

mass-spring particle system. Naturally, the sequential quadratic

programming (SQP) with equality constraints is employed for

solving the problem. The detail of solving the minimization

energy with equality constraint is firstly described in 3.1.1

followed by the energy function formulation in 3.1.2.

3.1.1 Solving energy minimization problem

The optimization problem is solved by sequential quadratic
programming (SQP) with the active set of equality constraints [9].
Consider the general problem: Minimize f(X) such that h

j
(X) = 0, j

= 1, 2, ... , r. To find optimal solution of f(X), according to [11], it
can be shown that given estimates X

k
, k = 0, 1, ... ,n with

respective to multipliers values
k
, the iteration step s of iteration

k+1, such that X
k+1

=X
k
+s is given by the solution of the following

k-th SQP problem:

SQP-k (Xk, k) // Minimize with respect to s
F(s) = f(X

k
) +

T
f(X

k
)s + s

T
H

L
(X

k
) s (1)

Such that
h(X

k
) + h’(X

k
)
T
s = 0, (2)

and the Hessian of the classical Lagrangian with respect
to x is H

L
(X

k
) = 2f(X

k
) +

2
h

j
(X

k
).

Table 1. SQP-k problem

Given the estimates X

K
, the solution of SQP-k yields s, thus we

can construct the next SQP problem: SQP-k+1 until s=0.

Energy and Constraint
computation

Energy minimization

Bristle clumping and
splitting

Bristle rendering

Ink diffusion

Brush physical-
based

deformation
(GPU -Fragment

shader)

Brush Rendering
(GPU – Vertex

shader)

Ink simulation
(CPU)

113

For an active set of equality constraints, according to [11], the
problem of finding solution s of SQP with only equality
constraints presented above can be much simplified in SQP with
active set of equality constraints. First, consider a SQP problem
with equality constraint:

Minimize f(X) = X

T
AX + b

T
x + z (3)

Subject to

C
T
X = D (4)

Suppose that the active set at X* is known or it can represent the
active set in matrix form by C

T
X = D as in equation (4). Then, the

solution X
#
 is obtained by minimizing f(X) over the set {X |

C
T
X=D}. The solution is obtained by solving the linear system:

To sum up, given a set equality constraints of Equation (4), we
can solve the SQP problem with linear equation system of
Equation (5).

Note that SQP-k problem of Equation (1) with the equality
constraint from Equation (2) is exactly the same with Equations
(3) and (4) where X=s, z=f(X

k
), b= f(X

k
), A = H

L
(X

k
), C = h’(X

k
)

and D = -h(X
k
). In other words, we can find s the Newton step of

X in Equation (1) by solve this linear equation:

Thus, with X

k+1
=X

k
+s we may construct the next SQP problem

SQP-k+1 until getting convergent to optimal solution X
#
 with

s=0. At that point, F(X
#
) is absolutely minimal and the constraint

h
j
(X

#
)=0 will also be satisfied.

It is now straight forward to apply it into bristle deformation by
minimization of bristle energy and its physical constraints. Here is
the algorithm:

For each bristle represented by a cubic Bezier curve, let the
previous state of the four control points be Oi=(P1i, P2i,
P3i, P4i), we need to determine the new configuration of
new P3i+1 and P4i+1 of Oi+1 as bristle’s new state:
Oi+1=(P1i+1, P2i+1, P3i+1, P4i+1) in the following steps:

1) Set initial values of Oi+1=Oi.
2) Update Oi+1 with new brush transformation (includes

translate and rotation). Oi+1 state now becomes non-
optimized (or less stable) and we need to determine new
positions for P3i+1 and P4i+1 to have Oi+1 with least
energy state.

3) Based on Oi and new Oi+1, the system calculates the
energy function as well as constraint equation for SQP to
find new P3i+1 and P4i+1 (subsection 3.1.2).

4) Using Equality constraint optimization to find P3i+1 and
P4i+1.

5) Update the new positions and repeat the loop.

Table 2. Algorithm of bristle deformation

3.1.2 Constraint and energy formulation

The most important thing for solving SQP with equality constraint
as presented in 3.1.1 is to setup the proper constraint and its
energy measurement. The purpose is to make sure the system
stable and able to reach the optimal solution in numerical solution.

First, it is necessary to ensure that the arc length of Bezier curve
to remain unchanged. Second, the bristle must not penetrate the
paper. So, there are two bristle-paper contacting constraints to be
satisfied: the P3P4 vector must fall completely right above the
paper plane, forcing the bristles to lie along and the arc length
must be preserved.

For the non-penetrating constraint, we assume y component of P3
and P4 are 0 so that they always lie on paper plane as in Figure 4
(a). For the arc length constraint, one straight forward approach is
to sample the Bezier curve with fixed intervals and get the
approximate of the arc length by summing the segments:
ArcLength(Oi)= | Pt

j
 - Pt

j+1
| with Pt

j
 the sample points on

Bezier curve at interval jth and Oi=(P1i, P2i, P3i, P4i) as current
state of the Bristle curve. Thus, the equality constraint for SQP
can be formulated as: H(Oi): ArcLength(Oi –BezierLength =0
with BezierLength the desirable length of the bristle.

For energy function, due to light weight characteristic of brush
bristle, it is reasonable to ignore the potential energy from gravity
as well as kinetic energy that actually contributes very minimum
to the overall energy function. As the result, each bristle has two
major components, bend potential energy and friction lost energy.
The bend potential energy EBend is straight forward to compute
from the angles O1 between P1P2 and P3P2, O2 between P2P3
and P4P3 (Figure 5). EBend(Oi)=Kbend (w1|O1|+w2|O2|), where
Kbend is the bend coefficient, and w1 and w2 the weights for each
angle. The weights can be tuned experimentally.

Figure 5. Bend energy computation

Friction lost energy is more complicated to compute because it
involves in the dragging area sweeping from (P3i, P4 i) to (P3i+1,
P4 i+1) as shown in Figure 6.

)5(
0

=
D

bX

C

CA
T

)6(
)(

)(

0)('

)(')(
=

K

K

K

TKKL

Xh

Xfs

Xh

XhXH

114

(a) (b)

Figure 6. Different cases for frictional lost energy based on

dragging area

As two vectors P3iP4 i and P3i+1P4 i+1 can cross each other as
shown in Figure 6(a), forming non-convex area is hard to handle.
Therefore, to have a robust solution, we subdivide the two vectors
into N segments and calculate the sweeping area for each pairs of
them as in Figure 7.

Figure 7. Discrete solution for dragging area approximation

The Friction energy is formulated by Efrict(Oi)=Kfrict (wi Ai)
where Kfrict is the frictional coefficient, Ai is the approximated
areas for the sweeping operation of the ith segment, wi is the
weight coefficient. P3 are put with higher weight as it contributes
more frictional lost energy.

3.2 The use of GPU

The use of GPU is a common practice in real-time graphics
system nowadays. However, one limitation of GPU programming
is that for each rendering kernel, the fragment shader can output
maximum only a set of four 32-bit floating point channels at a
time, or 128-bit of information in total, even though it can read
much more texture inputs from the main memory. In CG
language, though it is possible to pack 8 or 16 values in to 4
channels [10], the information will be lost proportionally which is
undesirable. Control point positions must be precisely computed;
otherwise it will not converge in solving the equality constraint
optimization problem. Thus, in order to map the algorithm onto
GPU platform, a special way of data structure use needs to be
considered.

3.2.1 The data structure

First, because of the non-penetrating constraint on control points
P3 and P4, their Y components can be removed from the equality
constraint optimization process (which always zero). Further
more, the control points P1 and P2 are only related to the brush
handle axis and can be computed globally, based on each new
transformation. So, for individual bristle deformation, this leaves
us exactly only 4 parameters to consider: X3, Z3, X4 and Z4 which

can be arranged nicely in 4 separate channels of one texture pixel.
Consequently, bristle information can be well-compressed into
only one texture unit with four 32-bit components. This has
shown a great advantage in the viewpoint of GPU pipeline as it
takes only one rendering pass in GPU to get all the bristle
deformation results [4]. The process of the GPU fragment
program is listed as follows:

1) Initialize bristle information (X3, Z3, X4, Z4) and
transfer it into texture with (R, G, B, A) format.
2) For each pixel, the fragment shader will

• Generate P1 and P2 based on the global brush

handle axis.

• Read input texture (R,G,B, A) and construct P3 and

P4 as (X3, 0, Z3) and (X4, 0, Z4) with X3=R, Z3=G,

X4=B and Z4=A.

• Compute new P1’, P2’, P3’ and P4’ by translation

and rotation of P1, P2, P3 and P4, as first raw

deformation.

• Setting up constraint and energy function based on

P1, P2, P3, P4, P1’, P2’, P3’, and P4’ as described

in previous section.

• Solve the energy minimization problem to find new

(X3’, Z3’, X4’, Z4’) of P3’ and P4’.

• Output to as (R, G, B, A) format.

Table 3. The process of GPU fragment program

3.2.2 Footprint generation on GPU

It takes the second rendering pass of GPU to generate the
footprint. After the new positions of P3 and P4 are determined
from GPU fragment shader, another vertex shader is used to
construct and render the bristles with four new Bezier control
points.

Note that only bottom parts of the Bezier curves actually
contribute to the footprint as suggested in Figure 8. Those upper
parts are irrelevant and should be discarded. This is done easily by
setting the far plan of the viewing frustum with proper distance in
order to cull off the unnecessary parts.

Figure 8. Illustration of Bristles culling for footprint synthesizing

3.2.3 Bristle clumping and splitting on GPU

The brush model can clump and split the bristles dynamically
based on the wetness and pressure level of the brush physically,
independent of the resolution.

Thus, we can cluster the bristles into smaller groups with same
representational control points P3 and P4. First, the system needs
to derive the wetness level of the virtual brush by defining Wet(t)

115

as the function of time t. In our simulation system, it is defined as
linear function of time: Wet(t) = Kwet t., where Kwet is the wetness
coefficient decided by the paper type.

Next, we need a scheme to cluster bristles together and assign
those groups with their unique representational control points P3
and P4. This can be done dynamically without interfering the
GPU pipeline by using a look-up coordinate texture table to
replace the original coordinates automatically. As in Figure 9, the
vertex shader will access only those presentational texture
coordinates from the lookup table, forming new representational
P3 and P4. As the result, with the look-up table, bristles are can
be clustered together as in real brush.

Figure 9. Coordinate look-up Texture fetch

In order to construct the look-up table, K-nearest neighboring
algorithm is used as following:

1) Generate initialized Coordinate values, ranging from (0,
0) to (1, 1), same as the original.

2) Based on the wetness level, determine number of bristle
groups that the Brush should have. The higher Wet(t) is,
the lesser number of groups the system should have.

3) For each group, decide its representative coordinate by
using randomize function.

4) For each pixel in the Bristle deformation Texture, find
the Cartesian nearest neighbor among the representative
coordinates defined at step 3 and replace it accordingly.

Table 4. The process to construct a look-up table

3.3 Physical-based ink diffusion with “Xuan”

paper structure

This subsection will focus on the ink diffusion effect on “Xuan”
paper structure as the post-processing stage of the simulation.
The physically-based “Xuan” paper structure is discussed
followed by the elaboration of the ink diffusion scheme.

From the microscopic pictures of painting papers, its structure is a
fibrous mesh consisting of irregularity distributed fibers [7]. This
means that even though the fibers are rather distributed randomly,
due to its geometry characteristic, the fiber density at local level
still varies non-uniformed. This non-uniformed structure of
“Xuan” paper is the source of “Nijimi” diffusion effects. Note that
the fiber mesh structure is impossible to generate by using simple
probability distribution functions and needs to work on the fiber
geometry level.

3.3.1 Paper mesh construction

We build up paper mesh data from actual individual micro fibers
by considering the position, orientation and geometry information
of individual fibers. Improving the method in [7], we present a
method for generating “Xuan” paper mesh data with less
computational cost and practical to high resolution requirement.

The major idea of “Xuan” paper mesh data is to identify capillary
tubes forming among the paper cells. Capillary tubes are defined
as many micro interlacing fibers staying closed together, can
transfer or diffuse the liquid to the other ends of the tube. Hence,
capillary tubes mesh information is very crucial for diffusion
effect because the ink liquid flows very strongly along the
capillary tubes and this active flowing process decides “Nijimi”
image.

The micro fibers structure is stored in texture format. As shown in
Figure 11, a set of different fibers geometry and orientation are
presented by a texture map with alpha value to provide fiber
shape information. Each texture has a unique color ID IDColor
which is assigned based on the fibers main axis orientation as in
Figure 10. Those fiber textures are then cloned, randomly
distributed as in “Xuan” paper. Fiber density Texture (D) is
generated naturally by accumulating the number of fibers
overlapped at each point in the texture. For efficiency, the whole
fiber “splatting” process is GPU accelerated.

Figure 10. “Xuan” fiber structure

Next, the capillary structure data (C) is determined in CPU, with
the assumption that all the capillary tubes formed by connected
fibers having the same radius. It is further assumed that fibers will
form the diffusion tube whenever there are N fibers with similar
orientation connected together at any points on the paper. In our
implementation, it is assumed that a tube is formed with N 3.
Note that the orientation has already been coded by IDColor as in
Figure 11. Hence, for each position in the paper, the fiber IDColor
is compared with its neighbors. If the color difference falls into
the threshold, which means that they are oriented pretty much in
same direction, it is considered that that tube has been formed
among them and recorded into the output texture. As the result,
the capillary texture data (C) will record the capillary tube mesh
information at each cell to other neighboring cells.

3.3.2 Nijimi diffusion effect

Nijimi diffusion takes place only when the brush deposits an
excessive amount of liquid onto the paper. This is so-called the
source of ink diffusion that will transfer its liquid to the
surrounding areas with lower ink level, starting from its nearest
neighboring points. In this simulation, it is assumed that the speed
of ink diffusion is constant. Therefore, at each steps of the
diffusion, only 8 adjacent neighboring points will receive the
liquid transferring as in Figure 11.

116

Figure 11. Ink transferring scheme

For each of liquid transferring, there are three main characteristics
of “Nijimi” diffusion that has to be strictly followed:

1) Ink pigment and water will flow along the capillary tubes
formed by parallel micro fibers to its neighboring areas.

2) The flow only flows from higher ink density to lower with
decreasing diffusion.

3) The absorbency at each point based on the local fiber
density.

Therefore, in our implementation, the amount of ink exchanged is
proposed as a function based on the paper absorbency which
involves in the fiber density (D) and the capillary tube (C)
information. The amount can be computed as the multiplication of
(D) and (C) as: InkTransfer= inktrans WDC, where W is the
weighting constant. W=1/4 or 1/8 if 4 or 8 neighboring points are
transferred, inktrans is the coefficient to control the amount of ink
transferring.

4 Results and Limitation

4.1 Results

We have implemented the proposed method and it yields several
interesting results. Figure 12 shows the brush strokes simulation
with different wetness levels.

Figure 12. Brush clumping and splitting with different groups

Figure 13 shows the simulated results with bamboo painting
techniques. This is described as “the sections between knots near
the ends of the stems should be short, those forming the middle of
the stem should be long, and while at the base of the plant they
again are short”.

Figure 13. Bamboo illustration of 3D brush dynamic deformation

Figures 14 and 15 show painting and calligraphy brushworks as
illustration for the combination effects between 3D brush
modeling and ink diffusion simulation with different water levels,
demonstrating from “Nijimi” diffusion effects to “flying white”
bristle splitting out phenomenon.

Figure 14. Vietnamese calligraphy of “Soul”

Figure 15. Chrysanthemum with Nijimi diffusion and “flying

white”

Figure 16 shows part of the virtual brush result inspirited from
actual brushwork.

N: number of bristle groups

117

Figure 16. A “snapshot” of A1 – 300 dpi resolution result

All the results are generated by real-time rendered on a Pentium 4
3.2 GHz, 1GB Ram with NVIDIA 7800 GT graphic card. For
example, the result in Figure 16 was painted in approximate 25
frames per seconds. The input devices are the Intuous A6 Wide
Tablet and Art Pen.

4.2 Limitation

The first limitation of this Bezier-based simulation is the
assumption on P3 and P4 controlling points that they both have to
lie on paper plan. The purpose is to reduce the complexity of the
energy minimization problem from 6 parameters to 4 parameters
(Y value of P3 and P4 is assumed to be Zero). This results with
unrealistic result for some cases of extremely fast stroke in
Chinese calligraphy, which is currently out of our research range.

Another limitation is that the global behaviors for each bristle
have not been touch, namely self-collision between neighboring
bristles as well as attraction force from the ink liquid that holds
the bristles together.

5 Conclusion and Future Work

In this paper, we propose a GPU-based method for real-time
simulation of Chinese painting. It includes physically-based brush
deformation and seamless integration with ink diffusion rendering
on “Xuan” paper structure. 3D Brush is modeled as a large
number of small bristles. Each bristle is represented by a piece of
cubic parametric Bezier curve. The deformation is physically
based that takes into account of determining the balance state by
minimization the actual physical bend potential energy and
frictional energy of the bristles. Bristles splitting and clumping
effect is simulated by accessing to the wetness level as in real
brush painting. The footprint is generated by protecting the Bezier
curves onto the paper plan which allows higher resolution output
compared to previous methods. Ink diffusion is simulated based
on “Xuan” paper structure. The contributions of this work are as
follows:

1) A novel 3D brush simulation method can model up to
thousands of each individual bristles that altogether form the
3D brush.
2) Mapping from the algorithm onto GPU parallel exploits
programmable graphics hardware (GPU) to achieve
interactive simulation speed.
3) Post-rendering ink diffusion effect based on physical
“Xuan” paper structure is implemented and integrated

seamlessly into 3D brush simulation to achieve more the
realistic results.

The self-collision among individual bristles can be considered in
future work. We also can work on simulating other Eastern
techniques, for example “ink washing” with various colors,
instead of using gray-scale intensity. Finally, we would like to
thank the comments from Graphite 2007 reviewers.

6. References

[1] W. Baxter, V. Scheib, M. Lin, and D. Manocha, Dab:
Interactive haptic painting with 3d virtual brushes. SIGGRAPH
2001, pp. 461–468.

[2] N. S.-H. Chu and C.-L. Tai, Real-time Painting with an
Expressive Virtual Chinese Brush. IEEE Computer Graphics and
Applications, September/October, 2004, 24(5). pp. 76-85.

[3] N. S.-H. Chu and C.-L. Tai, MoXi: Real-time ink dispersion in
absorbent paper, ACM Transactions on Graphics (SIGGRAPH
2005 issue), Vol. 24, No. 3, August 2005, pp. 504-511.

[4] D. Goddeke, Playing Ping Pong with render-to-texture,
University of Dortmund, Germany, 1999.

[5] C. J. Curtis, S. E. Anderson, J. E. Seins, K. W. Fleischer, D.
H. Salesin, Computer–generated watercolor, SIGGRAPH 1997,
pp. 421-430.

[6] R. B. Girshick, Simulating Chinese brush painting: The
Parametric Hairy Brush, SIGGRAPH 2004 poster, pp. 22.

[7] Q. Guo, T. Kunii, “Nijimi” rendering algorithm for creating
quality black ink paintings, CGI 2003, pp. 152-161.

[8] J. Lee, Diffusion rendering of black ink paintings using new
paper and ink models. Comput. & Graphics, 25:295-308, 2001.

[9] J. Nocedal, S. Wright, Numerical optimization. New York:
Springer, 1999, ISBN-13: 978-0387987934.

[10] M. Pharr and R. Fernando (series editor), GPU gems 2:
programming techniques for high-performance graphics and
general-purpose computation, edited by Addison-Wesley, 2005,
ISBN-13: 978-0321335593.

[11] J. A. Snyman, Practical mathematical optimization: An
introduction to basic optimization theory and classical and new
gradient-based algorithms, Springer; 1 edition (November 29,
2005), ISBN-13: 978-0387298245.

[12] S. Strassmann, Hairy brushes, SIGGRAPH 1986, pp. 225–
232.

[13] M.-J. Sun, J.-Z. Sun, B. Yun, Physical modeling of “Xuan”
paper in the simulation of Chinese ink-wash drawing, CGIV 2005,
pp. 317-322.

[14] S. Xu, M. Tang, F. Lau, and Y. Pan, Non-photorealistic
rendering styles: A solid model based virtual hairy brush,
Computer Graphics Forum 21 (3), 2002, 299-308.

[15] T. Nishita, S. Takita, E. Nakamae, A display algorithm of
brush strokes using Bezier functions, Computer Graphics
International 93, pp.244-257, 1993.

118

