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Abstract 

Different from Western Paintings, one can only appreciate the 
beauty of Eastern paintings by looking at its “spiritual” aspects: “a 
liking of simpleness with subtlety” – The Art of Sumi-e. It is the 
careful brushwork with abstract strokes that embrace chance 
while leaving nothing up to chance, from any subtle changes in 
brush’s pressure onto the paper to the fascinating ink diffusion 
absorbed by painting papers with various microstructures. Hence, 
the goal of this research work aims to “capture” these 
expressivenesses of the Eastern Arts, in digitalized form, which 
will open to new opportunities of exploration of painting 
techniques on the new digital Media, as well as of the easiness of 
calligraphical practices, complementary to the traditional way. By 
combining the flexibility from CPU and the power of GPU 
parallelism, together with carefully scheduling the simulation 
tasks between CPU and GPU, we have achieved good results with 
high visual quality and also are able to fulfill the requirement of 
real-time simulation.  
 
CCS Categories: I.3.1 [Hardware Architecture]: Graphics 
processors; I.3.3 [Picture/Image Generation]: Display algorithms; 
I.3.4 [Graphics Utilities]: Virtual device interfaces; I.3.5 
[Computational Geometry and Object Modeling]: Physically 
based modeling; I.3.6 [Methodology and Techniques]: Interaction 
techniques 
 
Keywords: Interactive Painting, Brush Modeling, Physically-
based Simulation, GPU programming 

1    Introduction 

Brush simulation is a subject in non-photorealistic rendering. In 
fact, the first method proposed can be traced back ever since 1986 
by Strassmann [12]. In his simulation system, the 2D brush 
footprint is constructed by “splatting” 1D or 2D bristle map along 
the drawing line, which is usually sampled from pen-based input. 
However, the method is only suitable for Western paintings.  
However, in Eastern painting, the symbolism may take higher 
priority where “It is a classical art form that emphasizes the skill 
of using brush and ink and carries deep inner meanings” – the Art 
of Sumi-e, Shozo Sato.  Thus, as illustrated in Figure 1, only 
consists of a few very abstract strokes of black and white, mastery 
Eastern paintings can 
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seek to capture the spirit from the physical world and blend it 
perfectly into the metaphysical world which is difficult to 
understand in Western terms. 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. A Sumi-e Masterpiece: Shrike on a Barren Tree 
 

Due to this reason, the restriction from traditional 2D splatting 
method no doubt becomes the obvious constraint for Eastern 
paintings, at least in terms of brush footprint expressiveness. In 
fact, a traditional system can only afford some degrees of 
freedom, for example, the thickness for each stroke and 
orientation. However, Chinese brush technique is the great 
collection of many different stroke styles, especially in 
calligraphy works illustrated in the Figure 2. 

  
(a)    (b) 

Figure 2. Two Chinese calligraphy artworks with brush splitting 

effect 
 

Recently there has risen up a new interest shifting towards 
simulating the actual 3D model of the painting brush. One of the 
first efforts is by Xu et al. [14]. Taking into account of many 
physical conditions like water wetness level, brush pressure and 
physical energy, a method was proposed of using deformable 
NURB sweeping surface along the brush main skeleton to 
generate the 3D brush model by sweeping operation. Due to the 
use of the 3D brush model, the footprint generated offers much 
more direct and natural stroke shape compared to the previous 
work. However, the results are still not persuasive enough because 
the simplicity of 3D solid volume is not sufficient to capture the 
flexibilities of the brush. For example, in reality the brush tends to 
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branch out into many small groups of bristles called turf when 
drying out or being pressed by high pressure, which is called 
“flying-white” calligraphy technique as illustrated in Figure 2. 

 
On the other hand, ink diffusion effect is also a very important 
factor would contribute into immersive simulation. A wet brush is 
referred as one that has been coated with so much ink that it drips 
easily from the bristles. For example, in “chrysanthemum”, one of 
the results produced by our system in Figure 15, the smeared 
outline is produced by the excessive ink applying on the paper.  
 
In this paper, we propose a GPU-based method for real-time 
simulation of Chinese painting. There are three main 
contributions: First, for 3D brush modeling, we introduce a novel 
3D brush simulation method. Taking advantage of GPU 
parallelism, the model can support up to thousands of each 
individual bristle that altogether form the 3D brush. Our method 
yields out with more realistic and persuasive results because the 
process is the natural and direct way for interactive painting 
application. Second, due to using the individual bristles as the 
lowest primitives of the virtual brush, the simulation results would 
be unlimited resolution in theory. Third, post-rendering ink 
diffusion effect based on physical “Xuan” paper structure is 
implemented and integrated seamlessly into 3D brush model to 
achieve more the realistic results. The experimental results 
showed the effectiveness of the method. For example, the 
“Orchid” painting can be generated in 1.5 times of A1 resolution 
300 dpi with 25 frames per second, see Figure 16. 

2    Related Work 

In this section, we will summarize the methods of brush painting 
simulation with their relevance to our method.  

2.1 1D brush modeling 

Date back to 1986, Strassmann published his Master’s thesis 
“Hairy Brushes” which is regarded as the first generation system 
for hairy brush painting [12]. It is the pioneer research that defines 
a painting system with four different components: the brush, the 
stroke, the dip, and the paper. It would offer a great flexibility for 
experiment framework, for example, instead of directly rendering 
the brush footprint to the final results, the system could integrate 
different ink effects and paper texture maps into the final results.  

 
Strassmann method is able to synthesize many of the interesting 
effects often seen in sumi-e style paintings. However, there are 
also some drawbacks that make it far from what painters should 
experience. Firstly, for each stroke, the system requires user to 
specify a set of control points and the pressure levels, which is 
quite different from the actual interactive painting process. Time 
consumption is another problem for interactive simulation.  Due 
to using CPU to compute the footprint, generating each stroke 
may take more than one second, which is impossible for 
interactive application. 

2.2 3D brush modeling 

With the emerging of powerful CPUs, hairy brush simulation 
becomes more and more practical [5, 7, 8, 13, 15]. The painting 
brush model proposed by [8] is the first important improvement of 
[12], from 1D to actual 3D brush model with three significant 
advantages: First, it is more natural for painters to directly 
manipulate the 3D brush rather than abstract the control points. 
Second, it is more accurate to capture many subtle Eastern 
painting brush effects as having mentioned before. Third, the 
system employs the physically-based approach to afford more 

accessibility for the users to easily adjust many parameters like 
the stiffness of the bristle, wetness of the brush and the friction 
level of the paper.  
 
The brush model presented in our work is inspired by [2, 8], 
where a large amount of bristles, which is represented as 
parametric curves, is attached to the same root on the brush 
handle. One problem of Lee’s model is that the number of bristles 
is limited to achieve high realism. Our method addresses this 
problem by a GPU-based solution which offers more brush 
dynamics as well as high speed of rendering. 

2.3 The skeleton brush 

Lee’s research [8] suggested that a high level of physical-based 
simulation needs to be taken into account in order to achieve 
persuasive results. Following it, Chu and Tai demonstrated a more 
accurate of physically based system [2]. However, their dynamics 
model, originally from [1], consists of many nodes which will be 
too expensive to compute in real-time. Even though it is very 
physically accurate, the number of bristles that the system can 
support is limited which affects the stroke quality. The Equality 
Non-linear Constraint Programming is applied for solving energy 
minimization problem which is very computational expensive, 
especially when the number of variables of the optimization 
equation is fairly high. This inherently limits the levels of detail 
that their brush model can achieve, especially for high resolution 
results. 

2.4 Ink diffusion model 

The additional step to achieve realistic brush painting is the ink 
diffusion model. A physically-based model to simulate the 
“Xuan” physical paper structure was proposed in [13] consisting 
of a fiber network which mimicries the actual “Xuan” paper with 
cells as fiber piles, linked by fiber threads. However, the problem 
of this method is the large amount of micro fibers and cells that it 
has to represent. In reality there are thousands of fibers 
overlapping onto a small area of paper. As a result, the method 
becomes too expensive to use for high resolution rendering. 
 
Gou and Kunii later proposed an approach for representing the 
Nijimi effect [7]. In their work, fiber mesh is subdivided into 
smaller circular regions. Each region will be assigned with a 
number of micro fibers. “Xuan” paper mesh data is constructed by 
traversing each region and generate mesh structure locally. This 
method is more efficient than [13] because it reduces the 
complexity of large paper area into small regions and generates 
the fiber-mesh data by computing the virtual capillary tubes 
among these regions as fiber-mesh information. The excessive ink 
is transferred in the diffusion process from the source, along the 
capillary tubes, to the surrounding paper cells, in a way similar to 
the real “Xuan” paper. 
  
However, since having to store information of the fibers (such as 
position, orientation) into fiber data structures, the fiber-mesh 
construction is still quite expensive for large scale paper. Our 
work addresses the problem with improvement of this issue. More 
recently, a physically-based method was proposed for simulating 
ink dispersion in absorbent paper [3], where the fluid flow model 
is based on the lattice Boltzmann equation. However, physically-
based ink dispersion is not our focus. 

3    Our Method 

In this section, we first describe our Bristle-based brush model. 
Then, we present the use of GPU to achieve real-time simulation. 
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Finally, we discuss the improvement on the ink diffuse model. For 
the future work, we are conducting usability study. We have 
shown a demo to public in the "Window into SoC" on May 19, 
School of Computing, NUS. Feedbacks from users have been 
summarized and used for the improvement of our design. 

3.1 The bristle-based brush model 

In this subsection, we describe Bristle-based Brush (BBB) model 
design. We use a hybridization approach aiming to achieve both 
the high quality of realistic brush footprints and real-time 
simulation. The BBB model follows the real painting brush 
structure which is made up of a mass group of individual small 
hair units called bristles, whose size may be up to thousands. The 
individual deformation is necessary because the brush geometry 
volume is totally dynamic and more flexible with countless 
degrees of freedom. Each bristle is presented as a Bezier curve 
with 4 control points computed based on energy minimization 
method using equality constraint optimization. The summary of 
the BBB model is shown in Figure 3. 

 
 
 

 

 

 

 

 

 

 

 

Figure 3. The system flow chart 

 

(a)   (b) 

Figure 4. Bezier-based Bristle with 4 control points P1, P2, P3 

and P4 (a). Initial non-pressure state of P1, P2, P3 and P4 (b) 

 

The use of Bezier curves requires less computation because of 

smaller number of the control points. Further more, it can fit well 

into GPU platform. Depend on the resolution requirements, the 

number of bristles should be adjusted accordingly. For example, if 

paper resolution is more than 40 million pixels, more than 1,000 

bristles should be used to achieve the realistic level. Finally, BBB 

can solve the clumping and branching out effect naturally as it 

works on the lowest level of bristles. The effect can be produced 

by manipulating the bristles represented by Bezier curves into 

groups by using K-nearest neighboring algorithm which will be 

elaborated in subsection 3.3.3.  

To use cubic Bezier curves, each bristle is composed of four 

control points P1, P2, P3 and P4 to define the shape. Note that P1 

and P2 are aligned statically to the brush handle main axis as in 

Figure 4. They are fixed relative to the orientation of the axis, 

which in charge of the physical stiffness of the brush. 

Thus, the actual dynamic factors fall into control points P3 and P4 

at the end of the bristle. There are also constraints for them. First, 

they must always lie right above the paper plane as illustrated in 

Figure 4. This assures the brush will always touch and do not 

penetrate the paper when pressed. Second, they must be 

positioned such that the bristle’s arc length keeps constant.  

Initially, P3 and P4 are set to be close to each other so that 

without pressure, the bristle is orthogonal to the paper plane as in 

Figure 4 (b). During the painting simulation, the length of vector 

P3P4 changes (stretches or contracts) governed by Physics. 

To simulate the bristle deformation accurately in Physics, BBB 

uses equality constraint optimization to determine the steady state 

of the bristles (P3 and P4) at each step of the iterative process. 

Giving the new positions of P1 and P2, due to the brush new 

orientation, the system will solve the energy minimization 

problem seeking for the new positions of P3 and P4 to the most 

stable configuration with least energy stored, similar to that of 

mass-spring particle system. Naturally, the sequential quadratic 

programming (SQP) with equality constraints is employed for 

solving the problem. The detail of solving the minimization 

energy with equality constraint is firstly described in 3.1.1 

followed by the energy function formulation in 3.1.2. 

3.1.1 Solving energy minimization problem 
 
The optimization problem is solved by sequential quadratic 
programming (SQP) with the active set of equality constraints [9]. 
Consider the general problem: Minimize f(X) such that h

j
(X) = 0, j 

= 1, 2, ... , r. To find optimal solution of f(X), according to [11], it 
can be shown that given estimates X

k
, k = 0, 1, ... ,n with 

respective to multipliers values 
k
, the iteration step s of iteration 

k+1, such that X
k+1

=X
k
+s is given by the solution of the following 

k-th SQP problem: 
 

SQP-k (Xk, k) // Minimize with respect to s 
F(s) = f(X

k
) + 

T
f(X

k
)s +  s

T
H

L
(X

k
) s (1) 

Such that 
h(X

k
) + h’(X

k
)
T
s = 0,    (2) 

and the Hessian of the classical Lagrangian with respect 
to x is H

L
(X

k
) = 2f(X

k
) + 

2
h

j
(X

k
). 

 
Table 1. SQP-k problem 

 
Given the estimates X

K
, the solution of SQP-k yields s, thus we 

can construct the next SQP problem: SQP-k+1 until s=0. 
 

Energy and Constraint 
computation 

Energy minimization 

Bristle clumping and 
splitting 

Bristle rendering 

Ink diffusion 

Brush physical-
based 

deformation 
(GPU -Fragment 

shader) 
 

Brush Rendering 
(GPU – Vertex 

shader) 
 

Ink simulation 
(CPU) 
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For an active set of equality constraints, according to [11], the 
problem of finding solution s of SQP with only equality 
constraints presented above can be much simplified in SQP with 
active set of equality constraints. First, consider a SQP problem 
with equality constraint: 

 
Minimize f(X) =  X

T
AX + b

T
x + z  (3) 

 
Subject to 

C
T
X = D    (4) 

 
Suppose that the active set at X* is known or it can represent the 
active set in matrix form by C

T
X = D as in equation (4). Then, the 

solution X
#
 is obtained by minimizing f(X) over the set {X | 

C
T
X=D}. The solution is obtained by solving the linear system: 
 

 
 

 
 

To sum up, given a set equality constraints of Equation (4), we 
can solve the SQP problem with linear equation system of 
Equation (5). 
 
Note that SQP-k problem of Equation (1) with the equality 
constraint from Equation (2) is exactly the same with Equations 
(3) and (4) where X=s, z=f(X

k
), b= f(X

k
), A = H

L
(X

k
), C = h’(X

k
) 

and D = -h(X
k
). In other words, we can find s the Newton step of 

X in Equation (1) by solve this linear equation: 
 

 
Thus, with X

k+1
=X

k
+s we may construct the next SQP problem 

SQP-k+1 until getting convergent to optimal solution X
#
 with 

s=0. At that point, F(X
#
) is absolutely minimal and the constraint 

h
j
(X

#
)=0 will also be satisfied. 

 
It is now straight forward to apply it into bristle deformation by 
minimization of bristle energy and its physical constraints. Here is 
the algorithm: 

 

For each bristle represented by a cubic Bezier curve, let the 
previous state of the four control points be Oi=(P1i, P2i, 
P3i, P4i), we need to determine the new configuration of 
new P3i+1 and P4i+1 of Oi+1 as bristle’s new state: 
Oi+1=(P1i+1, P2i+1, P3i+1, P4i+1) in the following steps: 
 
1) Set initial values of Oi+1=Oi. 
2) Update Oi+1 with new brush transformation (includes 

translate and rotation). Oi+1 state now becomes non- 
optimized (or less stable) and we need to determine new 
positions for P3i+1 and P4i+1 to have Oi+1 with least 
energy state. 

3) Based on Oi and new Oi+1, the system calculates the 
energy function as well as constraint equation for SQP to 
find new P3i+1 and P4i+1 (subsection 3.1.2). 

4) Using Equality constraint optimization to find P3i+1 and 
P4i+1. 

5) Update the new positions and repeat the loop. 

 
Table 2. Algorithm of bristle deformation 

3.1.2 Constraint and energy formulation 

 
The most important thing for solving SQP with equality constraint 
as presented in 3.1.1 is to setup the proper constraint and its 
energy measurement. The purpose is to make sure the system 
stable and able to reach the optimal solution in numerical solution. 
 
First, it is necessary to ensure that the arc length of Bezier curve 
to remain unchanged. Second, the bristle must not penetrate the 
paper. So, there are two bristle-paper contacting constraints to be 
satisfied: the P3P4 vector must fall completely right above the 
paper plane, forcing the bristles to lie along and the arc length 
must be preserved. 
  
For the non-penetrating constraint, we assume y component of P3 
and P4 are 0 so that they always lie on paper plane as in Figure 4 
(a). For the arc length constraint, one straight forward approach is 
to sample the Bezier curve with fixed intervals and get the 
approximate of the arc length by summing the segments: 
ArcLength(Oi)=  | Pt

j
  - Pt

j+1 
| with Pt

j
 the sample points on 

Bezier curve at interval jth and Oi=(P1i, P2i, P3i, P4i) as current 
state of the Bristle curve. Thus, the equality constraint for SQP 
can be formulated as: H(Oi): ArcLength(Oi –BezierLength =0 
with BezierLength the desirable length of the bristle. 
 
For energy function,  due to light weight characteristic of brush 
bristle, it is reasonable to ignore the potential energy from gravity 
as well as kinetic energy that actually contributes very minimum 
to the overall energy function. As the result, each bristle has two 
major components, bend potential energy and friction lost energy. 
The bend potential energy EBend is straight forward to compute 
from the angles O1 between P1P2 and P3P2, O2 between P2P3 
and P4P3 (Figure 5). EBend(Oi)=Kbend (w1|O1|+w2|O2|), where 
Kbend is the bend coefficient, and w1 and w2 the weights for each 
angle. The weights can be tuned experimentally.  

 

Figure 5. Bend energy computation 

 
Friction lost energy is more complicated to compute because it 
involves in the dragging area sweeping from (P3i, P4 i) to (P3i+1, 
P4 i+1) as shown in Figure 6. 
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(a)   (b) 

Figure 6. Different cases for frictional lost energy based on 

dragging area 
 

As two vectors P3iP4 i and P3i+1P4 i+1 can cross each other as 
shown in Figure 6(a), forming non-convex area is hard to handle. 
Therefore, to have a robust solution, we subdivide the two vectors 
into N segments and calculate the sweeping area for each pairs of 
them as in Figure 7.  

  

Figure 7. Discrete solution for dragging area approximation 

 
The Friction energy is formulated by Efrict(Oi)=Kfrict (wi Ai) 
where Kfrict is the frictional coefficient, Ai is the approximated 
areas for the sweeping operation of the ith segment, wi is the 
weight coefficient. P3 are put with higher weight as it contributes 
more frictional lost energy. 

3.2 The use of GPU 

The use of GPU is a common practice in real-time graphics 
system nowadays. However, one limitation of GPU programming 
is that for each rendering kernel, the fragment shader can output 
maximum only a set of four 32-bit floating point channels at a 
time, or 128-bit of information in total, even though it can read 
much more texture inputs from the main memory. In CG 
language, though it is possible to pack 8 or 16 values in to 4 
channels [10], the information will be lost proportionally which is 
undesirable. Control point positions must be precisely computed; 
otherwise it will not converge in solving the equality constraint 
optimization problem. Thus, in order to map the algorithm onto 
GPU platform, a special way of data structure use needs to be 
considered. 

3.2.1 The data structure 

First, because of the non-penetrating constraint on control points 
P3 and P4, their Y components can be removed from the equality 
constraint optimization process (which always zero). Further 
more, the control points P1 and P2 are only related to the brush 
handle axis and can be computed globally, based on each new 
transformation. So, for individual bristle deformation, this leaves 
us exactly only 4 parameters to consider: X3, Z3, X4 and Z4 which 

can be arranged nicely in 4 separate channels of one texture pixel. 
Consequently, bristle information can be well-compressed into 
only one texture unit with four 32-bit components. This has 
shown a great advantage in the viewpoint of GPU pipeline as it 
takes only one rendering pass in GPU to get all the bristle 
deformation results [4]. The process of the GPU fragment 
program is listed as follows: 

 

1) Initialize bristle information (X3, Z3, X4, Z4) and 
transfer it into texture with (R, G, B, A) format. 
2) For each pixel, the fragment shader will 

• Generate P1 and P2 based on the global brush 

handle axis. 

• Read input texture (R,G,B, A) and construct P3 and 

P4 as (X3, 0, Z3) and (X4, 0, Z4) with X3=R, Z3=G, 

X4=B and Z4=A. 

•  Compute new P1’, P2’, P3’ and P4’ by translation 

and rotation of P1, P2, P3 and P4, as first raw 

deformation. 

•  Setting up constraint and energy function based on 

P1, P2, P3, P4, P1’, P2’, P3’, and P4’ as described 

in previous section. 

•  Solve the energy minimization problem to find new 

(X3’, Z3’, X4’, Z4’) of P3’ and P4’. 

•  Output to as (R, G, B, A) format. 

 

Table 3. The process of GPU fragment program 

3.2.2 Footprint generation on GPU 

It takes the second rendering pass of GPU to generate the 
footprint. After the new positions of P3 and P4 are determined 
from GPU fragment shader, another vertex shader is used to 
construct and render the bristles with four new Bezier control 
points.  
 
Note that only bottom parts of the Bezier curves actually 
contribute to the footprint as suggested in Figure 8. Those upper 
parts are irrelevant and should be discarded. This is done easily by 
setting the far plan of the viewing frustum with proper distance in 
order to cull off the unnecessary parts. 

 

 

Figure 8. Illustration of Bristles culling for footprint synthesizing 

3.2.3 Bristle clumping and splitting on GPU 

The brush model can clump and split the bristles dynamically 
based on the wetness and pressure level of the brush physically, 
independent of the resolution.  
 
Thus, we can cluster the bristles into smaller groups with same 
representational control points P3 and P4. First, the system needs 
to derive the wetness level of the virtual brush by defining Wet(t) 

115



as the function of time t. In our simulation system, it is defined as 
linear function of time: Wet(t) = Kwet t., where Kwet is the wetness 
coefficient decided by the paper type. 

 
Next, we need a scheme to cluster bristles together and assign 
those groups with their unique representational control points P3 
and P4. This can be done dynamically without interfering the 
GPU pipeline by using a look-up coordinate texture table to 
replace the original coordinates automatically. As in Figure 9, the 
vertex shader will access only those presentational texture 
coordinates from the lookup table, forming new representational 
P3 and P4. As the result, with the look-up table, bristles are can 
be clustered together as in real brush. 

 

 

Figure 9. Coordinate look-up Texture fetch 
 

In order to construct the look-up table, K-nearest neighboring 
algorithm is used as following: 

 

1) Generate initialized Coordinate values, ranging from (0, 
0) to (1, 1), same as the original. 

2) Based on the wetness level, determine number of bristle 
groups that the Brush should have. The higher Wet(t) is, 
the lesser number of groups the system should have. 

3) For each group, decide its representative coordinate by 
using randomize function.  

4) For each pixel in the Bristle deformation Texture, find 
the Cartesian nearest neighbor among the representative 
coordinates defined at step 3 and replace it accordingly. 

 

Table 4. The process to construct a look-up table 

3.3 Physical-based ink diffusion with “Xuan” 

paper structure 

This subsection will focus on the ink diffusion effect on “Xuan” 
paper structure as the post-processing stage of the simulation.  
The physically-based “Xuan” paper structure is discussed 
followed by the elaboration of the ink diffusion scheme. 
 
From the microscopic pictures of painting papers, its structure is a 
fibrous mesh consisting of irregularity distributed fibers [7]. This 
means that even though the fibers are rather distributed randomly, 
due to its geometry characteristic, the fiber density at local level 
still varies non-uniformed. This non-uniformed structure of 
“Xuan” paper is the source of “Nijimi” diffusion effects. Note that 
the fiber mesh structure is impossible to generate by using simple 
probability distribution functions and needs to work on the fiber 
geometry level. 

3.3.1 Paper mesh construction 

We build up paper mesh data from actual individual micro fibers 
by considering the position, orientation and geometry information 
of individual fibers. Improving the method in [7], we present a 
method for generating “Xuan” paper mesh data with less 
computational cost and practical to high resolution requirement. 
 
The major idea of “Xuan” paper mesh data is to identify capillary 
tubes forming among the paper cells. Capillary tubes are defined 
as many micro interlacing fibers staying closed together, can 
transfer or diffuse the liquid to the other ends of the tube. Hence, 
capillary tubes mesh information is very crucial for diffusion 
effect because the ink liquid flows very strongly along the 
capillary tubes and this active flowing process decides “Nijimi” 
image. 
  
The micro fibers structure is stored in texture format. As shown in 
Figure 11, a set of different fibers geometry and orientation are 
presented by a texture map with alpha value to provide fiber 
shape information. Each texture has a unique color ID IDColor 
which is assigned based on the fibers main axis orientation as in 
Figure 10. Those fiber textures are then cloned, randomly 
distributed as in “Xuan” paper. Fiber density Texture (D) is 
generated naturally by accumulating the number of fibers 
overlapped at each point in the texture. For efficiency, the whole 
fiber “splatting” process is GPU accelerated. 

 

Figure 10. “Xuan” fiber structure 

 
Next, the capillary structure data (C) is determined in CPU, with 
the assumption that all the capillary tubes formed by connected 
fibers having the same radius. It is further assumed that fibers will 
form the diffusion tube whenever there are N fibers with similar 
orientation connected together at any points on the paper. In our 
implementation, it is assumed that a tube is formed with N 3. 
Note that the orientation has already been coded by IDColor as in 
Figure 11. Hence, for each position in the paper, the fiber IDColor 
is compared with its neighbors. If the color difference falls into 
the threshold, which means that they are oriented pretty much in 
same direction, it is considered that that tube has been formed 
among them and recorded into the output texture. As the result, 
the capillary texture data (C) will record the capillary tube mesh 
information at each cell to other neighboring cells. 

3.3.2 Nijimi diffusion effect 

Nijimi diffusion takes place only when the brush deposits an 
excessive amount of liquid onto the paper. This is so-called the 
source of ink diffusion that will transfer its liquid to the 
surrounding areas with lower ink level, starting from its nearest 
neighboring points. In this simulation, it is assumed that the speed 
of ink diffusion is constant. Therefore, at each steps of the 
diffusion, only 8 adjacent neighboring points will receive the 
liquid transferring as in Figure 11. 
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Figure 11. Ink transferring scheme 

 

For each of liquid transferring, there are three main characteristics 
of “Nijimi” diffusion that has to be strictly followed:  

1) Ink pigment and water will flow along the capillary tubes 
formed by parallel micro fibers to its neighboring areas. 

2) The flow only flows from higher ink density to lower with 
decreasing diffusion. 

3) The absorbency at each point based on the local fiber 
density. 

Therefore, in our implementation, the amount of ink exchanged is 
proposed as a function based on the paper absorbency which 
involves in the fiber density (D) and the capillary tube (C) 
information. The amount can be computed as the multiplication of 
(D) and (C) as: InkTransfer= inktrans WDC, where W is the 
weighting constant. W=1/4 or 1/8 if 4 or 8 neighboring points are 
transferred, inktrans is the coefficient to control the amount of ink 
transferring. 

4    Results and Limitation 

4.1 Results 

We have implemented the proposed method and it yields several 
interesting results. Figure 12 shows the brush strokes simulation 
with different wetness levels. 

 

 

Figure 12. Brush clumping and splitting with different groups 
 
Figure 13 shows the simulated results with bamboo painting 
techniques. This is described as “the sections between knots near 
the ends of the stems should be short, those forming the middle of 
the stem should be long, and while at the base of the plant they 
again are short”. 

 

Figure 13. Bamboo illustration of 3D brush dynamic deformation 
 

Figures 14 and 15 show painting and calligraphy brushworks as 
illustration for the combination effects between 3D brush 
modeling and ink diffusion simulation with different water levels, 
demonstrating from “Nijimi” diffusion effects to “flying white” 
bristle splitting out phenomenon. 

 

Figure 14. Vietnamese calligraphy of “Soul” 

 
Figure 15. Chrysanthemum with Nijimi diffusion and “flying 

white” 

 
Figure 16 shows part of the virtual brush result inspirited from 
actual brushwork.  

N: number of bristle groups 
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Figure 16. A “snapshot” of A1 – 300 dpi resolution result 
 
All the results are generated by real-time rendered on a Pentium 4 
3.2 GHz, 1GB Ram with NVIDIA 7800 GT graphic card. For 
example, the result in Figure 16 was painted in approximate 25 
frames per seconds. The input devices are the Intuous A6 Wide 
Tablet and Art Pen. 

4.2 Limitation 

The first limitation of this Bezier-based simulation is the 
assumption on P3 and P4 controlling points that they both have to 
lie on paper plan. The purpose is to reduce the complexity of the 
energy minimization problem from 6 parameters to 4 parameters 
(Y value of P3 and P4 is assumed to be Zero). This results with 
unrealistic result for some cases of extremely fast stroke in 
Chinese calligraphy, which is currently out of our research range. 

 
Another limitation is that the global behaviors for each bristle 
have not been touch, namely self-collision between neighboring 
bristles as well as attraction force from the ink liquid that holds 
the bristles together. 

5    Conclusion and Future Work 

In this paper, we propose a GPU-based method for real-time 
simulation of Chinese painting. It includes physically-based brush 
deformation and seamless integration with ink diffusion rendering 
on “Xuan” paper structure. 3D Brush is modeled as a large 
number of small bristles. Each bristle is represented by a piece of 
cubic parametric Bezier curve. The deformation is physically 
based that takes into account of determining the balance state by 
minimization the actual physical bend potential energy and 
frictional energy of the bristles. Bristles splitting and clumping 
effect is simulated by accessing to the wetness level as in real 
brush painting. The footprint is generated by protecting the Bezier 
curves onto the paper plan which allows higher resolution output 
compared to previous methods. Ink diffusion is simulated based 
on “Xuan” paper structure. The contributions of this work are as 
follows: 
 

1) A novel 3D brush simulation method can model up to 
thousands of each individual bristles that altogether form the 
3D brush. 
2) Mapping from the algorithm onto GPU parallel exploits 
programmable graphics hardware (GPU) to achieve 
interactive simulation speed.  
3) Post-rendering ink diffusion effect based on physical 
“Xuan” paper structure is implemented and integrated 

seamlessly into 3D brush simulation to achieve more the 
realistic results. 
 

The self-collision among individual bristles can be considered in 
future work. We also can work on simulating other Eastern 
techniques, for example “ink washing” with various colors, 
instead of using gray-scale intensity. Finally, we would like to 
thank the comments from Graphite 2007 reviewers. 

6. References 

[1] W. Baxter, V. Scheib, M. Lin, and D. Manocha, Dab: 
Interactive haptic painting with 3d virtual brushes. SIGGRAPH 
2001, pp. 461–468.  
 
[2] N. S.-H. Chu and C.-L. Tai, Real-time Painting with an 
Expressive Virtual Chinese Brush. IEEE Computer Graphics and 
Applications, September/October, 2004, 24(5). pp. 76-85. 
 
[3] N. S.-H. Chu and C.-L. Tai, MoXi: Real-time ink dispersion in 
absorbent paper, ACM Transactions on Graphics (SIGGRAPH 
2005 issue), Vol. 24, No. 3, August 2005, pp. 504-511. 
 
[4] D. Goddeke, Playing Ping Pong with render-to-texture, 
University of Dortmund, Germany, 1999. 
 
[5] C. J. Curtis, S. E. Anderson, J. E. Seins, K. W. Fleischer, D. 
H. Salesin, Computer–generated watercolor, SIGGRAPH 1997, 
pp. 421-430. 
 
[6] R. B. Girshick, Simulating Chinese brush painting: The 
Parametric Hairy Brush, SIGGRAPH 2004 poster, pp. 22. 
 
[7] Q. Guo, T. Kunii, “Nijimi” rendering algorithm for creating 
quality black ink paintings, CGI 2003, pp. 152-161. 
 
[8] J. Lee, Diffusion rendering of black ink paintings using new 
paper and ink models. Comput. & Graphics, 25:295-308, 2001. 
 
[9] J. Nocedal, S. Wright, Numerical optimization. New York: 
Springer, 1999, ISBN-13: 978-0387987934. 
 
[10] M. Pharr and R. Fernando (series editor), GPU gems 2: 
programming techniques for high-performance graphics and 
general-purpose computation, edited by Addison-Wesley, 2005, 
ISBN-13: 978-0321335593. 
 
[11] J. A. Snyman, Practical mathematical optimization: An 
introduction to basic optimization theory and classical and new 
gradient-based algorithms, Springer; 1 edition (November 29, 
2005), ISBN-13: 978-0387298245. 
 
[12] S. Strassmann, Hairy brushes, SIGGRAPH 1986, pp. 225–
232. 
 
[13] M.-J. Sun, J.-Z. Sun, B. Yun, Physical modeling of “Xuan” 
paper in the simulation of Chinese ink-wash drawing, CGIV 2005, 
pp. 317-322. 
 
[14] S. Xu, M. Tang, F. Lau, and Y. Pan, Non-photorealistic 
rendering styles: A solid model based virtual hairy brush, 
Computer Graphics Forum 21 (3), 2002, 299-308. 
 
[15] T. Nishita, S. Takita, E. Nakamae, A display algorithm of 
brush strokes using Bezier functions, Computer Graphics 
International 93, pp.244-257, 1993. 

118


