
Copyright © 2007 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail
permissions@acm.org.
GRAPHITE 2007, Perth, Western Australia, December 1–4, 2007.
© 2007 ACM 978-1-59593-912-8/07/0012 $5.00

Design and Implementation of a Built-in Camera based User Interface for
Mobile Games

Khoa Nguyen Tran

*
Zhiyong Huang

†

 School of Computing, National University of Singapore Institute for Infocomm Research (I2R), A*STAR, Singapore

Abstract

In this paper, we present a novel user interface design for mobile
games using its built-in camera. It is motivated by the problem of
limited number of keys on the small keypad of mobile devices.
We implement two different ways, with and without the use of
markers, to study the effectiveness of the design in a 2-
dimensional and 3-dimensional game respectively. The algorithms
implemented in the design are lightweight enough so that they are
executable in real-time and at the same time, able to produce
realism for the games.

CCS Categories: I.3.4 [Graphics Utilities]: Virtual device
interfaces; I.3.7 [Three-Dimensional Graphics and Realism]:
Virtual reality; I.4.1 [Digitization and Image Capture]: Camera
calibration; I.4.8 [Scene Analysis]: Motion

Keywords: User Interfaces, Motion Detection, Mobile Games,
Augmented Reality, Built-in Camera, Mobile Devices

1 Introduction

Nowadays, the use of mobile phones has penetrated to mass
population rapidly. As reported by Business Times on April 7,
2007, Singapore has a mobile phone subscriber rate of more than
one per person. SingTel, StarHub and M1 have a combined
customer base of 4.61 million for a population of 4.5 million.

Playing games on mobile phones has also been growing rapidly
with the subscription. Due to the rapid development of mobile
embedded hardware, mobile phone has been used beyond its
original purpose of sending SMS and making phone calls, more
like a Personal Digital Assistance (PDA), a Pocket PC and a
Personal Entertainment Device (PED) for storing and processing
information, as well as playing electronic games. Most of the
recently made mobile phones have everything that is needed for a
low-end laptop, e.g., a processor that matches a Pentium II speed,
Gigabytes of external memory, a brilliant LCD display, a built-in
camera, and satisfactory quality speaker. The latest Nokia N93 is
even equipped with a dedicated graphic card. Note that more than
50% of them have built-in cameras. Compared to a laptop PC, the
number of keys on the small keypad

* khoanguyen@nus.edu.sg
† zyhuang@i2r.a-star.edu.sg

of a mobile phone is a limit for user interface of the games, hence
solving this problem is the motivation to our work. Use of build-
in camera for user interface is the major idea of our work.

In this paper, we present a user interface design for mobile games
using its built-in camera. We implement two different ways, with
and without the use of markers, to study the effectiveness of the
design in a 2-dimensional and 3-dimensional game respectively.
The algorithms implemented in the design are lightweight enough
so that they are executable in real-time and at the same time, able
to produce realism for the games. The contributions of our work
are summarized as:

(1) the design and implementation of user interface using the

built-in camera of mobile phone,

(2) implementation of a 2D game without the use of marker for

the built-in camera based the user interface, and

(3) implementation of a 3D augmented reality game with the use

of 2D markers. The experimental study results showed the
effectiveness of the proposed design.

2 Related Work

User interface design is an important area in computer science
[Shneiderman 2004]. It is the design of computers, appliances,
machines, mobile communication devices, software applications,
and websites with the focus on the user's experience and
interaction. The goal is to make the user's interaction as friendly
as possible.

Other related work includes [Rekimoto 1996, Harrison et al.
2005], where the tilt input was used for navigating menus, maps,
and 3-D scenes and for scrolling through documents and lists
respectively.

A prototype TinyMotion was proposed for detecting a mobile
phone user’s hand movement in real-time by analyzing image
sequences captured by the built-in camera [Wang et al. 2006].
However, we focus more on the efficiency of the computing in
deriving the hand motion and its application to mobile games. The
use of markers in the built-in camera based user interface for 3D
game is also different from their work.

The most relevant work to our 3D part is [Möhring et al. 2004]. A
similar implementation was presented in which the markers
consist of four non-coplanar points and three colored axes that
intersect at the origin. In contrast to our design that uses binary
color-code, the colored blob features were used to encode maker’s
ID. The colored markers are harder to produce and more sensitive
to the variation of light intensity.

3 Our Work

In this section, we will start to describe the technical details of our
work. First, we present the design of built-in camera based user

25

interface. Then, the application of the interface is showcased by a
2D game and 3D augmented game implementations.

3.1 A Design of Built-in Camera based User

Interface

The original purpose of a built-in camera in a mobile phone is to
take photos and videos. The wire and wireless network allow
users to upload and transmit the photos and videos, sharing them
with other people.

The built-in camera can be used as user interface, in particular, to
detect and use the hand motion as demonstrated in [Wamg et al.
2006]. It is particularly useful for game player on a mobile phone,
where there are a limited number of keys on a small keypad. In a
typical game, the most frequently used keys are “up directional
key”, “down directional key”, “left directional key” and “right
directional key”. The direction of hand movement, detected by the
built-in camera, can be used for the purpose. It not only adds four
most frequently used keys to the game set, but also makes a player
more immersive in the games.

In computer vision, optical flow is a technique used to describe
image motion. It is usually applied to a series of images that have
a small time step between them, for example, video frames.
Optical flow calculates a velocity for points within the images,
and provides an estimation of where points could be in the next
image sequence. However, computing optical flow is time
consuming for real-time application [Barron et al. 2006]. Further
more, for the purpose of user interface, we do not need the
accurate and detailed movement information represented by
optical flow. Thus, we need to explore a simple, less accurate and
fast method.

A simple and fast method for motion estimation usually comprises
the following typical procedures:

(1) Capture two consecutive images,

(2) Filter the images to reduce noise,

(3) Filter the images to reduce noise,

(4) Divide each image into rectangle macro blocks of the same

size,

(5) Locate blocks with good features,

(6) Perform block matching on every block with good features to

derive motion vector for individual block,

(7) Use robust method to filter out outliners, and

(8) Compute overall motion vector.

Initially, we implemented the method above on a Nokia 7610
mobile phone. The results showed that it is not feasible to perform
all seven steps due to its limited processing power. Thus, we have
to either simplify or skip some steps. Through many experiments
and data analysis, we worked out a method that balances between
accuracy and real-time performance. It is based on corner
detection and consists of four steps:

(1) Perform Grayscale conversion,

(2) Generate three multi-resolution layers and apply Gaussian
noise filter,

(3) Identify four blocks at the four corners with good features,

and

(4) Perform the block matching on the four blocks starting from

lowest resolution and refining in higher resolution images.

In each step, we further optimize the computations. For examples,
integer and bit-shifting operations are used instead of floating-
point ones, looping is avoided whenever possible as it is very
slow. The algorithm used in each step is also simplified to speed
up the process. For example, feature detection is reduced to
simply counting of pixels above a threshold. A three-step
hierarchical block matching is applied and the process stops
earlier upon a well-experimented threshold.

3.2 Implementation of the User Interface in a 2D

Game

In order to show the effectiveness of the built-in camera based
user interface, we implement it in a 2D game. We design the
game in such a way that it has most of the characteristics of a
typical game such as human-computer interactions, real-time
animations, and sound effects.

Duck Hunter is a first person shooter game in which the player’s
mission is to shoot down all the flying virtual ducks. The user can
aim the gun at the ducks by physically moving the mobile phone
in the horizontal or vertical direction. By using the built-in camera
based user interface, the only key needed is “5” on the keypad
when the player wants to fire the virtual duck.

Figure 1. Snapshot of Duck Hunter game in action

3.3 Performance Analysis of the 2D Hand Motion

Detection and Game

The four step method was tested on Nokia 7610.The frame rate is
8 frames per second. It has been tried on a variety of backgrounds
and we find out that it is sensitive to contrast and illumination of
the background. With normal lighting, it works in any conditions
as long as there are some feature points in the captured
background; under poorly contrasted and dark background, even
though the exact distance of the hand movement is not correctly
determined, the direction of motion is still correct.

26

The only case in which the four step process does not work is
when the background is completely void of any feature points,
e.g., completely plain background such as a piece of white paper,
or completely dark environment such as a pitched-dark room.

The game runs at a rate of 6 frames per second which is faster
than the frame rate of movement of the flying ducks. Hence, there
is no jerky motion felt during playing. In this game, we tried to
reduce the four step motion detection process further to only three
steps:

(1) Grayscale conversion,

(2) Multi-resolution layers generation and Gaussian filter. Only

layer 2 is generated, and

(3) Block matching algorithm using 4 corners on layer 0 only.

There are two reasons. First, the game deals with slow motion
within a short range and it is not necessary to refine the movement
at higher resolution layers and divide it by two later on. Second,
the game does not require accurate movement as the player can
shoot at anywhere on the duck body.

Therefore, it is not necessary to refine the motion vector. This
further simplification can be applied to other similar games.

3.4 Implementation of the User Interface in a 3D

Augmented Reality Game

For this game, we use markers to determine to camera position
instead of detection of hand movement only. The markers we used
consist of four black non-coplanar circles that form a 3D
Cartesian coordinate system. One of them will be defined as the
origin of the coordinate system. The other three are as basic points
(X, Y, Z). There is a special code marker placed in one of the
three planes, i.e., OXY, OXZ, OYZ. The code marker is used to
identify which object should be rendered into the scene.

Figure 2. The Code Marker and the coordinate system used in our

implementation

The visual code marker standard, invented by Rohs [Rohs 2004],
is used as it is universal and simple to detect.

Figure 3. An illustration of a visual code marker and its fixed

features

In Figure 3, it shows an example of the visual code marker. The
standard marker has a dimension of 11x11. There are 2 fixed
guide bars and 3 fixed cornerstones. The dimensions of the
principle and secondary guide bars are 1x7 and 5x1 respectively.
The cornerstone is 1x1. These fixed elements are crucial as we
will use them as guiding anchors to locate the marker. There are
six stages from preprocessing to projecting the 3D models to the
scene,

(1) Preprocessing: The image is first converted to grayscale.

After that, we apply adaptive threshold method proposed in

[Wellner 1993] to obtain a binary image of the original
image.

(2) Connected region labeling: A modified version of the fast

connected component labeling algorithm [Stefano and
Andrea 1999] is adopted. Only regions that have the size fall
within a range (MIN_SIZE, MAX_SIZE) are kept. Too small
or too big ones are discarded.

(a) Original image

(b) Grayscale image

27

(c) Regions-segmented image

Figure 4. Original image is converted into grayscale and
segmented into regions

(3) Locating fixed elements: At first, we search for all the

possible candidates for principle guide bars, then for each
candidate we search for its respective secondary guide bar
and NE (North East) cornerstone. After that, using the
secondary guide bar, we search for respective SW (South
West) cornerstone. Finally, we use all the information
extracted from the principle, secondary guide bar, NE and
SW cornerstone, to locate the NW (North West) cornerstone.
After we find a respective secondary guide bar, and 3
cornerstones for a principle guide candidate, we identify
them as the fixed elements of a visual marker. Moments, the
major and minor axis of each region, are computed to
identify candidate regions.

(4) Reading code marker: Once the marker is detected, a

system of simultaneous equations (Equation 1) is solved in
order to map the detected marker into the standard 11x11
marker. After that, the bit information of the detected code
can then be read.

where (xi,yi) and (ui,vi), i=1,2,3,4 are the screen, and the local
coordinates of the centers of 4 fixed features : NW, NE, SW
cornerstone and principle guidebar of the detected and standard
marker respectively; a to h are 8 unknowns that form the
projection matrix which maps the detected marker to standard
one.

(a) Detected markers before bits information is extracted

(b) Detected markers after bits information is extracted, each bit is

marked with a blue dot. There are 11x11 bits in each marker

Figure 5. Example of detected code markers and extracted bits
information

(5) Basic point detection: The connected regions are searched

to locate 4 circles which are the origin/basic points of the
coordinate system. The points are sorted to determine the
origin point.

Figure 6. Detected origin (blue region) and basis points (green
regions)

(6) Projection of virtual 3D model into real scene: Weak

perspective projection is used to project the 3D virtual object
into the real scene (Figure 7).

Figure 7. Projection models

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

4 4 4 4 4 4

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

4 4 4 4 4 4

1 0 0 0

1 0 0 0

1 0 0 0

1 0 0 0

0 0 0 1

0 0 0 1

0 0 0 1

0 0 0 1

u v u x v x a

u v u x v x b

u v u x v x c

u v u x v x d

u v u y v y e

u v u y v y f

u v u y v y g

u v u y v y h

1

2

3

4

1

2

3

4

, (1)

x

x

x

x

y

y

y

y

=

28

(a) Perspective projection: Point p = [x y z l]

T
 is projected to p =

[fx/d fy/d 1]
T, where d is the point’s distance from the center of

projection and f is the camera’s focal length.

(b) Weak perspective projection: Point p is projected to [fx/davg fy/
davg l]

T where davg is the average distance of the object’s points
from the center of projection. Weak perspective projection
amounts to first projecting the object orthographically and then
scaling its image by f/davg; it is a good approximation to
perspective projection when the camera’s distance to the object is
much larger than the size of the object itself.

Accurate projection of a virtual object requires knowing precisely
the combined effect of the object-to-world, world-to-camera and
camera-to-image transformations, i.e., the model-view matrix
[Shreiner et al. 2005] as illustrated in Figure 8.

Figure 8. Illustration of view transformation

In homogeneous coordinates, this projection is described by the
equation,

)2(,444443=

w

z

y

x

OCP

h

v

u

xxx

where [x y z w]

T is a point on the virtual object, [u w h]
T
 is its

projection, 04X4 and C4X4 are the matrices corresponding to the
object-to-world and world-to-camera homogeneous
transformations respectively. P3X4 is the matrix modeling the
object’s projection onto the image plane.

The main idea of our approach is to represent both the object and
the camera in a single, non-Euclidean coordinate frame defined by
basis points that can be tracked across frames in real time. In
particular, Equation 2 becomes

)3(,

'

'

'

'

43=

w

z

y

x

h

v

u

x

where [x’ y’ z’ 1]

T are the transformed coordinates of point [z y z
1]

T
 and 3X4 models the combined effects of the change in the

object’s representation as well as the object-to-world, world-to-
camera and projection transformations.

Non-calibrating augmented reality technique [Valino and
Kutulokos 2001] uses results from the theory of affine-invariant
object representations which become important because they can
be constructed for any virtual object without requiring any
information about the object-to-world, world-to-camera, or
camera-to-image transformations. The image coordinates of the
basis points contains all the information needed to project the
virtual object; the 3D position and calibration parameters of the
camera as well as the 3D location of the basis points can be
unknown.

Hence, the transformation from marker’s local coordinate systems
to camera coordinates system is simplified to multiplying the
Model-View matrix by matrix T:

)4(,

0000

0321

0321

=
t

bbbb

pbbb

vvvv

uuuu

T

where

=

03

02

01

03

02

01

pb

pb

pb

pb

pb

pb

vv

vv

vv

uu

uu

uu

and [up0,vp0] ,[ubi vbi l]

T
 (i = 1, 2, 3) are the image locations of the

affine origin/basis points in Equation (1).

Figure 9. The 3D virtual duck is projected into the real scene

Notice that there is no camera calibration involved in this step.
This is a tremendous improvement in speed from the typical pose
estimation using camera calibration technique which is very
computationally expensive and requires the users to initialize the
camera before hand. This technique is much faster than camera-
calibration technique. However, its accuracy is inferior.

Again, it is a matter of comprising between accuracy and real-
time performance. We implemented the non-calibrating technique
and found that it can produce satisfactory results on mobile
devices.

One variation of the 3D Augmented Reality game is a Chinese
Character Tutor. We embed a Chinese character inside the code
marker as shown below,

Marker
Coordinat

Screen
Coordinat

Camera
Coordinat

29

Figure 10. Example of pictorial code markers, the left Chinese
character is Duck and the right one is Cube

The game can be used for language learning purpose. The player
has a set of cards that contain the code markers with the character
embedded inside, and a coordinate system that contains four
circles as described previously.

There are two empty spaces in the two perpendicular planes of the
coordinate system for the player to place the card inside. The
cards are designed to fit nicely inside the empty space and the
player must make sure that the cards do not block any of the
circles that form the coordinate system. An illustration of the
cards and the coordinate system is shown in Figure 11.

Figure 11. The card samples and the coordinate system (four dots
at Chinese character Cube). The selected card Cube is placed in

the region highlighted in pink. Other cards are Chinese characters
of the Rice, Person, and Duck

When a player points the phone camera to the marker, the phone
will analyze and detect the code, then retrieve the respective
model from its database. After that, it will superimpose the virtual
object over the code marker. In Figure 12, it shows a 3D duck and
a cube together with the real scene of the Chinese characters Duck
and Cube in the code markers.

(a) Virtual duck is super-imposed over the character Duck

(b) Virtual cube is super-imposed over the character Cube

Figure 12. Illustration of the Chinese Character Tutor

The rule of the game is that, the teacher will give the picture of
the duck and the player’s job is to pick up a card with the
character Duck among a stack of cards. Once the player selects
the card, he/she will place it on the coordinate system and point
the phone camera there. The player will see the 3D virtual object
associated with that character popping out. The magic of
augmented reality game will definitely amazes the curiosity of the
player and drive him/her to learn more. The object can be
animated to perform associating action e.g. a, we manage to do
simple rotation animation as show in the Figure 13.

(a) The cube tilts to the right

(b) The cube rotates and tilts to the left

Figure 13. Animated virtual 3D cube in real space

3.5 Performance Analysis of the 3D Augmented

Reality Game

Compared to the 2D game, the 3D Augmented Reality game is far
more computationally expensive, in which higher resolution
images are needed for marker detection, complicated region
segmentation, recognition, and especially OPENGL ES rendering
process. Hence, the frame rate plunged to 2 frames per second
which is too slow for any real-time game like first-person-shooter.
However, we can use it in games that do not require instant
response such as the Chinese Character Tutor game.

30

One way to speed up the game is that we separate the code marker
detection and the OPENGL ES rendering instead of performing
both concurrently. First the user selects an option from the menu
to start detecting the marker, once the marker to recognized, only
pose-estimation and OPENGL ES rendering is performed until the
user select marker detection option once again. In this way, the
more computationally expensive operation is removed from the
game, and the game runs many times faster. In our experiment,
we have doubled the frame rate to 4 frames per second.

4 Conclusion and Future Work

In this paper, we present a design of built-in camera based user
interface for mobile games. Our approach is carefully selecting
and adapting the techniques of a desktop platform to a mobile
platform. We design and implement two different algorithms with
and without the use of markers and demonstrate the effectiveness
of the design. The results are promising. Further more, we have
implemented the design in API with all the important functions
such as marker detection, pose estimation, motion detection for
others to use this built-in camera based user interface for other
applications.

For the future work, we are conducting usability study. We have
shown a demo to public in the "Window into SoC" on May 19,
2007 School of Computing, NUS. Feedbacks from users have
been summarized and used for the improvement of our design.

Finally, we would like to thank the comments from Graphite 2007
reviewers.

References

K. L. BARRON, D. J. FLEET, and S. BEAUCHEMIN,
Performance of optical flow techniques. International Journal
of Computer Vision, 12(1), 1994, pp. 43-77.

K. L. HARRISON, K. P. FISHKIN, A. GUJAR, C. MOCHON,

and R. WANT, Squeeze me, hold me, tilt me! An exploration
of manipulative user interfaces. In Proc. of CHI’98, April 1998,
pp. 17–24.

M. MÖHRING, C. LESSIG, and O. BIMBER, Optical tracking

and video see-through AR on consumer cell phones, in: Proc.

of Workshop on Virtual and Augmented Reality of the GI-

Fachgruppe AR/VR, 2004, pp. 193-204.

J. REKIMOTO, Tilting operations for small screen interfaces. In

Proceedings of UIST 1996, pp. 167–168.

M. ROHS, Real-world interaction with camera phones. In 2nd

International Symposium on Ubiquitous Computing system
(UCS 2004), Tokyo, Japan 2004., pp. 74-89.

B. SHNEIDERMAN, Designing the user interface: strategies for

effective human-computer interaction, 4th ed., Addison-
Wesley, 2004.

D. SHREINER, M. WOO, J. NEIDER, and T. DAVIS, OpenGL

Architecture Review Board, OpenGL programming guide: The
official guide to learning OpenGL, Version 2 (5th Edition),
Addison-Wesley Professional; 5 edition, August 1, 2005.

L. STEFANO and A. BULGARELLI, A simple and efficient

connected component labeling algorithm, Proceedings.
International Conference on Digital Object Identifier, 1999, pp.
322-327.

J. VALLINO and K. N. KUTULAKOS, Augmented reality using

affine object representations. Fundamental of Wearable
Computers and Augmented Reality, Lawrence Erlbaum, 2001,
pp.157-182.

J. WANG, S. ZHAI, and J. CANNY, Camera phone based motion

sensing: interaction techniques, applications and performance
study, In ACM UIST 2006, Montreux, Switzerland, October 15-
18, 2006, pp. 101-110.

P.D. WELLNER, Adaptive thresholding for the DigitalDesk,

Xerox Technical Report, vol. EPC-1993-110, 1993.

31

32

