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Abstract

In a visualization system, one of the key issues is to opti-
mize performance and visual fidelity. This is especially crit-
ical for large virtual environments where the models do not
fit into the memory. In this paper, we present a novel struc-
ture called HDoV-tree that can be tuned to provide excel-
lent visual fidelity and performance based on the degree of
visibility of objects. HDoV-tree also exploits internal level-
of-details (LoDs) that represent a collection of objects in a
coarser form. We also propose three storage structures for
the HDoV-tree. We implemented HDoV-tree in a prototype
walkthrough system called VISUAL. We have evaluated the
HDoV-tree on visibility queries, and also compared the per-
formance of VISUAL against REVIEW, a walkthrough sys-
tem based on R-tree. Our results show that the HDoV-tree
is an efficient structure. Moreover, VISUAL can lead to high
frame rates without compromising visual fidelity.

1. Introduction

Interactive visualization systems are gaining importance
in various applications in industry, academics and entertain-
ments. The models to be visualized are getting increasingly
complex. In some applications such as a large-scale Vir-
tual Environment, or a CAD software, the models consist
of tens of thousands of objects, each of which may consist
of thousands of polygons. Moreover, each object typically
has multi-resolution representations called level-of-details
(LoDs). Thus, the storage requirement of such systems is
extremely large, ranging from thousands of megabytes to
hundreds of gigabytes and even terabytes. Conventional
visualization systems that assume models fit into the main
memory are no longer affordable. This calls for novel tech-
niques to handle models that are too large to fit into the
memory, and has to be stored in disk.

In visualization systems, one of the most frequently used
operations is the viewpoint query, which returns all objects

that are visible from the query viewpoint. By modeling the
movement of a viewpoint, we will have a walkthrough ap-
plication that continuously refreshes the set of visible ob-
jects as the viewpoint moves. To support these queries for
large models, one straightforward solution is to partition the
user viewpoint space into disjoint cells. For each cell, we
associate a list of objects that are visible from any point
within the cell. Thus, based on the cell corresponding to
the viewpoint, only the visible objects need to be accessed.
In practice, for performance reason, objects that are nearer
to the viewpoint are shown in greater details while those
that are further away may be approximated by their coarser
representations. This minimizes I/O cost and the amount
of data that the graphics engine need to render. However,
there are some limitations with this simple strategy. First,
the decision on the appropriate LoDs to be used is ad-hoc
and static, and cannot be changed at runtime. Second, the
number of objects to be loaded may be unnecessarily high.
This is because the LoDs are for individual objects. For ex-
ample, for a group of k distant objects, k LoDs have to be
loaded even though these objects can be treated as a sin-
gle “entity” (i.e., a coarse representation obtained based on
the group of objects). Finally, since the list is a single di-
mensional representation of the objects, there is no way to
determine the spatial properties of these objects relative to
one another without examining the entire list. This is im-
portant since it may be useful to load in the portion of data
that the view frustum is (based on the viewing direction),
followed by those outside the view frustum.

In this paper, we propose a novel data structure called
Hierarchical Degree-of-Visibility tree (HDoV-tree) to sup-
port visibility queries. The HDoV-tree has the topology of a
hierarchical spatial subdivision, and captures the geometric
and material data as well as the visibility data in the nodes.
Moreover, it is distinguished from spatial data structures
such as R-tree in several ways. First, the HDoV-tree is view-
variant. Given different viewing positions, the objects that
a viewer can see may be different. In other words, at differ-
ent viewpoint positions, the tree/nodes “capture” different
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visible objects. Second, traversing the HDoV-tree is based
on the visibility data rather than spatial proximity. A branch
along a path may be pruned based on some threshold value
if the objects along the branch are hardly visible. Third, the
HDoV-tree is tunable. Depending on the users’ needs and
the computing power of the machines, different users may
see visible objects with different degree of fidelity.

We propose a threshold-based traversal algorithm that
allows the structure to be tuned to balance visual fidelity
and performance. We also propose three storage organi-
zations of the HDoV-tree on secondary storage. We have
implemented the proposed structure in a prototype walk-
through system called VISUAL, and conducted experi-
ments to study its effectiveness. Our results show that the
proposed scheme is efficient and provide excellent visual fi-
delity. Our VISUAL system also outperforms REVIEW, a
walkthrough system based on R-tree, in terms of frame rates
and visual fidelity.

The rest of this paper is organized as follows. In the
next section, we review some related work on managing
large virtual environments. We present the structure of the
HDoV-tree in Section 3. The search method of the HDoV-
tree is also discussed in this section. In Section 4, we
present the storage schemes for the HDoV-tree. Section 5
reports the results of our experimental study on our proto-
type system, and finally, we conclude in Section 6.

2. Related Work

Most of the earlier works have assumed that virtual en-
vironments are memory resident. It is not until recently that
managing large virtual environments has become an active
area [8, 12]. Most of the works have adopted spatial indexes
to organize, manipulate and retrieve the data in large virtual
environments.

Kofler et al. proposed the LoD-R-tree [8] that combines
the R-tree index with a hierarchy of multi-representations
of the three-dimensional data. This data structure consid-
ers only the spatial proximity of objects and does not in-
corporate any visibility data. To minimize the amount of
data to be fetched from disk, the search method converts the
viewing-frustum into a few rectangular query boxes (instead
of one single large query box that bounds the view frustum),
and retrieves only objects within these boxes. Thus, the
structure leads to high frame rates as long as the user stays
within the viewing-frustum. However, its performance de-
generates significantly as the user view changes.

In [12], Shou et al. proposed the REVIEW walkthrough
system. REVIEW also exploits spatial proximity for re-
trieving visible objects. It employs R-tree as the underly-
ing spatial data structure, but extended the R-tree search
scheme such that data that have been retrieved in earlier op-
erations do not need to be accessed again. It also supports

a semantic-based cache replacement strategy based on spa-
tial distance between the viewer and the nodes. Prefetching
and in-memory optimization are some other optimization
strategies that have been deployed to improve the system
performance.

Although spatial access method offers a neat solution to
real-time visualization, it suffers from two problems. First,
it may miss some visible objects that are far from the view-
point. This is because a typical spatial query only retrieves
objects that are within (or overlap) the query box, and thus
visible objects that are out of the query box will not be re-
trieved. As we shall see in our experimental study, this may
affect the visual fidelity of the scene. Second, it may waste
I/O and memory resources by retrieving objects that are
“hidden”. These are objects that are located within the spa-
tial query box, but are not visible because they are blocked
by other larger objects.

We believe a better solution to the aforementioned two
problems is to compute the visibility of objects with respect
to a viewpoint or cell. Many visibility algorithms that com-
pute objects that are visible from a given viewpoint or a
viewing cell have been proposed by the computer graph-
ics community, for example, the work of Teller and Sequin
[13], Funkhouser et al. [5], Aliaga et al. [2], Bittner et al.
[4], Saona-Vázquez et al. [10], Agarwal et al. [1], Koltun
et al. [9]. However, computing visibility at runtime is ex-
pensive. Moreover, how the datasets and visibility data are
managed at run-time has not been reported.

3. The HDoV-Tree

As described in the introduction, one straightforward
method to managing visibility in large virtual environments
is to partition the viewpoint space into disjoint cells, and as-
sociate each cell with a list of visible objects. At runtime,
the objects corresponding to the viewpoint are loaded into
memory. We shall refer to this method as the (cell, list-of-
objects)-based method. As noted in the introduction, there
are several limitations with such a method. In this paper, we
adopt a similar strategy of partitioning the viewpoint space
into disjoint cells. However, we propose a novel tree struc-
ture, HDoV-tree, to overcome the limitations of the simple
method. In this section, we shall discuss the tree structure
and the traversal algorithm, and defer the discussion on the
storage schemes to the next section. Before that, we shall
introduce the novel concept of degree-of-visibility.

3.1. Degree of Visibility

In computer graphics, existing visibility algorithms usu-
ally mark an object as visible or invisible. We observe that
such boolean representation tends to be too ‘conservative’
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as it will mark an object as visible even if only a very small
part of it can be seen.

We introduce degree-of-visibility (DoV) to represent vis-
ibility more precisely. Firstly, we define the 3D shadow
set of viewpoint p generated by an occluder O ⊂ R3 to
be S(p, O), which, in mathematical language, is the set of
points s, whose interconnecting line with p, sp, intersects
O, while s is not in O [10]. Therefore, we have

S(p, O) = {s|s ∈ R3, sp ∩ O �= φ ∧ s /∈ O} .

For a given viewpoint p, the visible part of a point set
X ⊂ R3 can be defined as:

Xvisible = X −
⋃
i

S(p, Oi) . (1)

We define the Degree of Visibility (DoV) of a point set X
with regard to a number of occluders Oi to be the ratio of the
area of the projection of Xvisible onto a unit sphere (where
R = 1) centered at p and the spherical area of the sphere.
If we use SProjp(ξ) to denote the spherical projection of ξ
on the unit sphere centered at p, the point DoV of set X can
be defined as

DoV (p, X) =

∫
s∈Sphere

Fp(s, Xvisible)dA

4πR2
,

where

Fp(s, ξ) =
{

1 s ∈ SProjp(ξ)
0 otherwise

The DoV provides an indication on how visually impor-
tant an object is, considering all possible viewing directions.
The geometric meaning of DoV is the solid angle of the
“visible” part of the point set. Thus, DoV of an object takes
on values between 0 and 1. An object with DoV value of
0 is unimportant since it is hidden from the viewpoint and
therefore should not be accessed. On the other hand, an ob-
ject that is completely visible (with DoV > 0) should be
retrieved. Intuitively, the larger the DoV value of an object,
the more likelihood that it be noticed and so it is more criti-
cal for it to be shown in greater details. On the contrary, an
object that has very low DoV value with respect to a view-
point may not be noticeable, and hence can be represented
by a coarse LoD.

The concept of DoV can also be extended to a group
of objects, where the DoV of a group is defined as if the
aggregation of the group of objects is an individual point
set. For a viewing region(cell), the DoV of an object viewed
from region R can be defined conservatively as

DoV (R, X) = max(DoV (p, X)), ∀p ∈ R (2)

In this paper, we use region-based DoV.

3.2. The Logical Structure of The HDoV-Tree

We combine LoD, spatial index structure, and degree-
of-visibility (DoV) into a Hierarchical Degree-of-Visibility
(HDoV) tree structure. The backbone of the HDoV-tree is
a spatial data structure that also stores the level-of-details
(LoDs) and degree-of-visibility (DoV) information. The
spatial data structure essentially captures the spatial distri-
bution of the objects in the virtual environment. However,
there are several features that distinguish it from a spatial
structure. First, the traversal of the HDoV-tree is based on
the DoV values instead of the spatial content. Second, while
the structure captures the static spatial distribution of ob-
jects, the visibility of these static objects is dynamic, i.e.,
object visibility depends on the positions of the viewpoints.
In some sense, we can consider the HDoV-tree as a “tem-
plate” that is dynamically instantiated with the visibility
data of the corresponding cell of the viewpoint. Figure 1
illustrates this. Consider two viewpoints in cells i and j.
Both the spatial content of the HDoV-trees are the same,
but different sets of nodes are visible.

i

user path

Viewing cells

HDoV tree in i

update

Visibility data of j
Visibility data of i

HDoV tree in j
j

Figure 1. Dynamic update of the HDoV-tree.

In this paper, for simplicity as well as because we are
dealing with 3D objects only, we employ the R-tree [7] as
the spatial structure in our implementation.

Figure 2 shows the logical structure of the HDoV-tree.
By logical, we refer to an instance of the structure that cor-
responds to a particular cell. In the HDoV-tree, entries in
the leaf nodes are of the form (V D, MBR, Ptr) where V D
contains the DoV value of an object, MBR is the minimum
bounding box of the object and Ptr indicates the address
of the object LoDs. Each leaf node also contains internal
LoDs. These internal LoDs are coarse representations of the
aggregation of objects indexed by the node. Entries in in-
ternal nodes are also of the form (V D, MBR, Ptr). How-
ever, V D now contains the aggregated DoV values of the
objects that MBR bounds, and Ptr points to the child node
that leads to these objects. Each internal node also contains
a pointer to levels of internal LoDs that are even coarser
representations of all objects bound by the node. A node is
said to be visible, if any of its entries contains a DoV value
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Figure 2. A Hierarchical Degree-of-Visibility Tree.

greater than zero. The DoV field in the HDoV-tree has the
following attributes:

1. The DoV in any entry is always greater than or equal
to zero.

2. The DoV value of an entry E in an internal node equals
to the summation of all the DoV values in the node that
E points to. This is because the spherical projection of
the visible part of a group of objects is always equal
to the sum of all the visible parts of each object in the
group. This feature is useful for computing DoV val-
ues for entries of internal nodes.

3. If node N is visible, N must have at least one child
node (or object) that is also visible.

Since the DoV values stored in the tree depends on the
viewing region that the viewer is in, the V D fields stored
in each entry in the nodes are view-variant. In other words,
for different viewpoint, the V D values are different. In con-
trast, the Ptr fields which determine the topology of the
HDoV-tree, the internal LoDs, and the object LoDs are not
dependent on the viewer, they are therefore view-invariant.
Similarly, the MBR field is view-invariant.

The main challenge in implementing the HDoV-tree is
that the view-variant data change from one viewing cell to
another. We shall defer the discussion of an efficient imple-
mentation of the HDoV-tree in Section 4.

Before leaving this section, let us look at the strengths of
the HDoV-tree scheme, in particular, its advantages over the
simple (cell, list-of-objects)-based method. First, a thresh-
old DoV value, say η, can be used to balance the visual
fidelity and performance. η can be used to control the LoDs
to be fetched — objects with DoV values larger than η can
be loaded in great detail, while those that are smaller can be
represented by coarser LoDs. For example, consider a large
object that is very near the viewpoint but is barely visible
because of obstruction from other large occluders. This ob-
ject has very low DoV value. Under traditional method, the

object is treated as visible (equivalent to DoV value of 1)
and the detailed object model will be accessed. However, if
its DoV is smaller than the threshold, a coarse representa-
tion may be loaded instead.

Second, which follows the same logic as the first, we can
potentially terminate the search at internal LoDs if the ag-
gregated DoV value of a node is small. Both of the above
points translate to minimizing the amount of data to be
loaded, and hence improving the performance of the sys-
tem. By picking an optimal threshold value, the visual fi-
delity will not be compromised significantly.

Third, the spatial structure being used facilitates the de-
sign of a traversal algorithm that prioritizes the nodes to be
searched. In other words, regions that are closer to the cur-
rent view frustum can be traversed first, while regions that
are outside the view frustum can be delayed. This can fur-
ther improve the response time significantly.

3.3. Search algorithm

In a virtual environment, the main query type is the vis-
ibility query that asks for all objects (at their corresponding
representations) that are visible from a query point q. More
complex queries such as those involving the movement of a
point in walkthrough applications can be seen as a sequence
of point queries (with optimizations to exploit temporal co-
herency). As such, in this section, we shall focus on just
point visibility query.

Since the DoV defines the solid angle of the visible part
of an object(or a group of objects), it is closely related to
the screen projected area of the object. In real-time vi-
sualization, using different LoDs to render objects is of-
ten very effective in improving rendering performance. In
database query, using coarser LoDs leads to fewer disk I/Os
and higher retrieval performance. However, if the LoDs are
too coarse, the visual quality of real-time rendering will be
unacceptable. Therefore, we must find a balance to tradeoff
the performance and the visual quality.
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To realize this, we use a threshold DoV value η to deter-
mine what should be loaded in great details and what should
not be. Essentially, objects (or object groups) with spheri-
cal projections (i.e., DoV) smaller than η can be retrieved
with relatively low detail (internal LoD); otherwise, a finer
LoD should be considered. Therefore, η controls the vi-
sual quality and performance while traversing the tree. For
larger η values, the restriction on the visual quality will be
looser, and lower details are allowed. As such, fewer disk
I/Os are required to retrieve the results, and this leads to
higher frame rate. On the contrary, for smaller η values,
more detailed LoDs will be loaded giving rise to better vi-
sual fidelity at the expense of lower frame rate.

Following the above discussion, it is clear that η deter-
mines the levels in which the traversal can terminate. When
a traversal operation accesses a node entry, if the DoV value
is smaller than η, the traversal can terminate on this branch,
otherwise, the traversal needs to proceed to the child nodes.
By pruning branches with zero or small DoV values, disk
I/Os can be saved.

Figure 3 shows the algorithmic description of the HDoV-
tree search algorithm. Given a query point and an instan-
tiated HDoV-tree, the traversal starts from the root node
(line 1). In line 3, it looks for objects/nodes that are com-
pletely hidden. These are entries with DoV = 0. If so, it
is obvious that the whole branch pointed to by the entry is
completely invisible, therefore the recursion will terminate
at this branch without adding anything to the query result,
and the search continues with the next entry. If the DoV
is greater than 0, then it is either a visible leaf node or a
visible internal node. For the former, we include the object
LoDs into the answer set (lines 4-5). For an internal node,
the traversal algorithm will decide whether to proceed to
the child node based on the DoV value (line 7). If the DoV
value of the entry is smaller than the threshold η, the branch
under this entry is hardly visible, so we may want to retrieve
a low-level internal LoD and terminate the recursion (line
8). We will discuss the second condition shortly. For en-
tries with DoV values greater than η, we proceed to search
their child nodes (line 10).

One issue which may arise with the above method is the
LoD of a node, which has small DoV, may contain more
polygons than the sum of its visible descendants. To solve
this problem, we can store the number of visible objects
(NVO) in each VD entry. So VD has two view-variant fields

V D = (DoV, NV O)

Now we can apply a heuristic to determine whether to ter-
minate the search at a node or to traverse down to the next
level. This corresponds to the second condition in line 8 of
the traversal algorithm (see figure 3). Suppose node N has
m leaf descendants, if the fan-out of the internal nodes is M ,
the subtree on N has an estimated height of h = logMm. If

Algorithm Search (Node)
1. For each entry E in Node
2. begin
3. if(E.DoV equals to 0) return;
4. if(E is leaf)
5. Add E.ptr→LODleaf into result; //equation 6
6. else
7. if(E.DoV ≤ η and h(1 + logMs) < logM (E.NVO))
8. Add E.ptr→LODinternal into result; //equation 5
9. else
10. Search(E.ptr);
11. end;

Figure 3. The HDoV-tree traversal algorithm.

there are n leaf nodes visible in the subtree, and these leaf
nodes have equal DoV values, then the DoV of these leaf
nodes is DoV (N)

n . Suppose each visible object in the leaf
nodes has f polygons, and the ratio of the number of poly-
gons in parent nodes over the sum of those in child nodes
is s, or s = npoly(node)�

i npoly(childi)
, then the estimated number of

polygons in node N is m · f · sh. On the other hand, the
number of polygons in the visible leaf nodes sum up to f ·n.
So the condition to terminate the traversal is

m · f · sh < f · n . (3)

Substituting m into equation 3 gives

h(1 + logMs) < logMn . (4)

LoD of an active internal node can be selected as

LoDinternal =
DoV

η
LoDhighest +

�
1 − DoV

η � LoDlowest

(5)
where 0 < DoV

η ≤ 1. LoD of an active leaf node, mean-
while, can be selected as

LoDleaf = k · LoDhighest + (1 − k)LoDlowest (6)

where k = min( DoV
MAXDOV , 1). Since the spherical projec-

tion of an object will not exceed 0.5 if the viewpoint is out-
side the bounding box of the object, we set MAXDOV =
0.5.

4. Storage Schemes for HDoV-tree

Recall that the HDoV-tree is essentially a view-variant
structure: depending on the user’s viewpoint, the visibil-
ity data of the tree may be different. There are essentially
three ways in which the HDoV-tree can be implemented.
First, we can associate each cell with a HDoV-tree since all
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viewpoints within the cell have the same HDoV-tree. This
method, while efficient, would incur substantial amount of
storage. Moreover, such a scheme fails to exploit the view-
invariant data of the HDoV-tree to minimize the storage
overhead.

The second strategy is to construct a HDoV-tree on the
view-invariant data. At runtime, the view-variant portion
of the data is dynamically inserted into the tree. In other
words, depending on the cell that a viewpoint is in, the
tree is updated accordingly. This, however, requires the en-
tire tree structure to be updated, and hence the performance
penalty is very significant.

In this paper, we advocate a third approach, which is
to “store” the view-variant content into the HDoV-tree. In
other words, the HDoV-tree captures the information for all
cells, so that if the viewpoint is in cell i, then the content of
cell i is accessed. In this section, we present several stor-
age schemes for this purpose. We shall use the notations in
Table 1.

Nobj number of all leaf-level objects in the tree
Nnode number of nodes in the tree
Nvobj number of visible objects in a viewing cell
Nvnode number of visible nodes in a viewing cell
sizeinteger size of an integer
sizepointer size of a pointer
sizevpage size of a Vpage
c number of cells

Table 1. Some notations.

4.1. The horizontal storage scheme

Node 1

cell 0 cell 1

cell 0 cell 1 cell n

cell 0 cell 1 cell n

cell 0 cell 1 cell n

cell 0 cell 1 cell n

cell 0 cell 1 cell n

cell 0 cell 1 cell n

VPage0,0 ......

......

VPage0,2 ......

VPage0,3 ......

......

VPage0,5 ......

VPage0,6 ......

VPage0,1

VPage0,4

Node 2

Node 5 Node 6Node 4Node 3

cell n

VPage1,0 VPage n,0

VPage1,1 VPage n,1

VPage1,2 VPage n,2

VPage1,3 VPage n,3

VPage1,4 VPage n,4

VPage1,5 VPage n,5

VPage1,6 VPage n,6

Node 0

Figure 4. Horizontal Storage Scheme. VPage
i,j represents the V-page of node j in cell i.

The most straightforward scheme is to store a pointer
in each node pointing to a list of visibility data, which is
indexed by the cell ID number. Figure 4 shows the data
structure of the scheme, which we call a horizontal scheme.

In this scheme, the visibility data of a node N in cell C
are stored in a fixed-size page, called the V-page. The V-
page contains V-entries, one for each entry in a tree node,
i.e., each MBR has a corresponding V-entry. The nth V-
entry contains the visibility data of the nth entry in the
corresponding tree node. In the horizontal scheme, inter-
nal nodes point to V-pages containing visibility data of the
nodes, while leaf nodes point to V-pages containing object
DoVs. A visibility query to a node costs one V-page ac-
cess only. Unfortunately, the storage cost of the horizontal
scheme is very expensive. As many of the nodes and objects
in the tree are hidden when viewed from a cell, the horizon-
tal scheme reserves the storage space of a V-page even if
the node is not visible in the cell at all. More precisely, the
storage cost of the horizontal scheme, excluding the tree
structure, can be estimated as ( We have not included the
storage for the tree structure as all the storage schemes have
similar storage.)

sizevpage · c · Nnode .

4.2. The vertical storage scheme

Node 1 Node 2

Node 3 Node 4 Node 5 Node 6

visible

visible

invisible

visible

0 1 2 3 4 5 6
V−page−index buffer for
current segment (segment i)

Segment for cell j Segment for cell i Segment for cell k

offset:

V−Page−Index

offset = 2

offset = 0

offset = 3 offset = 4 offset = 5 offset = 6

Node 0

invisibleinvisibleinvisible

offset = 1

......

...
...

Other
Vpages

Other
Vpages

VPage i,3

VPage i,1

VPage i,0

...
...

Figure 5. Vertical Storage Scheme.

Another scheme, which requires lesser storage space, is
the vertical scheme. As figure 5 shows, this scheme de-
ploys an intermediate index structure, named V-page-index,
between the nodes and the V-pages. The V-page-index is
segmented by the cells so that each segment contains as
many as Nnode pointers. Each of the pointers, which are
called V-page pointers, points to a V-page or to nil. Each
node in the tree stores an offset starting from the beginning
of the segment of the V-page-index. These offset values do
not change by cells, therefore, they do not require any up-
date. When the visibility query traverses to node N , the
V-page pointer in the V-page-index is found by using the
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offset value stored in N . If the V-page pointer is nil, it
means the branch is not visible in the current cell, so the
branch below node N can be pruned; otherwise, the V-page
of node N is retrieved from the V-page table. When the cell
of the visibility query changes, the old segment of V-page-
index is simply “flipped” to a new one by retrieving a new
segment, which contains Nnode pointers.

To expedite the V-page access, we also store the V-pages
of the same cell together. The V-pages of a cell are sorted in
the order of the tree nodes accessed in the depth-first traver-
sal, so that all V-pages accessed during a visibility query
can be retrieved in a sequential scan.

If the average number of visible nodes in a cell is Nvnode,
the total storage cost of the vertical scheme excluding the
tree structure can be estimated as (While the vertical scheme
uses offset in the tree structure and the horizontal scheme
uses pointers, we assume that the size of an offset is the
same as that of a pointer.)

sizepointer · Nnode · c + sizevpage · Nvnode · c .

Since Nvnode is much smaller than Nnode, and the size
of a pointer is also very small compared to a V-page, the
storage taken by the vertical scheme is much smaller than
the horizontal one. More importantly, Nvnode is not directly
related to Nnode, so the scalability of the vertical scheme is
better than that of the horizontal scheme.

As the V-page-index keeps the current segment(cell) in
memory, getting the pointer to the the V-page requires only
memory access. If the visibility query changes the cell,
the I/O cost of retrieving the new segment is sizepointer ·
Nnode/sizepage number of page accesses. The extra cost
can be amortized over the visibility queries in the cell. How-
ever, the I/O cost to retrieve a new segment is O(Nnode). If
the number of nodes increases, “flipping” the V-page-index
will be more costly.
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Figure 6. Indexed Vertical Storage Scheme.

4.3. The indexed-vertical storage scheme

As mentioned, “flipping” the V-page-index can be costly.
To reduce the I/O cost during the segment flipping of V-

page-index and the space of V-page-index, we can deploy
another simple one-to-one index for the V-page-index file,
as figure 6 shows (The tree nodes are omitted, as they are
the same as those in figure 5). Only the offset numbers and
the V-page pointers of the visible nodes are saved in the
V-page-index file. As a result, only a visible node has a
pointer stored in the V-page-index file, i.e. only non-nil
pointers are stored in V-page-index. Therefore the size of
the segments can be reduced dramatically. Flipping the V-
page-index in this scheme requires only O(Nvnode) I/Os.
Note that the segments stored in the V-page-index file can be
of variable length. This scheme is named indexed vertical
scheme. The I/O cost of each cell-flipping is only Nvnode ·
sizepointer. The total storage cost of this scheme is

(sizepointer + sizeinteger) ·Nvnode · c+ sizevpage ·Nvnode · c .

Before leaving this section, let us have a feel of Nvnode.
Note that given an instance of the HDoV-tree (associated
with a particular cell), some nodes are visible while oth-
ers are not. If a node N is visible, N must have at least
one visible child. So the number of visible nodes (objects)
at a certain level in the tree is always larger than that at a
higher level. Therefore, if there are Nvobj objects visible,
there are at most Nvobj leaf nodes visible. Also there are
at most Nvobj parent nodes of the leaf nodes visible, and so
on. Hence, the total number of visible nodes in the tree is
given by

Nvnode ≤ Nvobj · levels ≤ Nvobj · logmNobj (7)

where m is the minimum number of entries for non-root
nodes defined for the R-tree.

5. Performance Study

5.1. Implementation and Experimental Setup

We have implemented the HDoV-tree as a component
of a prototype visualization system, VISUAL. VISUAL is
a virtual walkthrough system implemented on a Pentium 4
PC running RedHat 7.2 that also facilitates visibility queries
on specific viewpoint. The dataset we use is a synthetic city
model containing numerous buildings and bunny models.
The raw datasets excluding the visibility data vary in sizes
from 400 MB to 1.6 GB.

Generating the HDoV-tree requires a few steps. Firstly,
an R-tree spatial index is created to organize the object mod-
els. The insertion algorithm applies a linear node split-
ting algorithm [3] to minimize the overlap of the bounding
boxes. To generate internal LoDs, descendants of each in-
ternal node are found. For leaf nodes, the internal LoDs are
generated by aggregating the object models and running a
polygon simplification software, namely qslim [6]. Inter-
nal LoDs of nodes at higher levels are then generated in a
bottom-up order.
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A conservative visibility algorithm is also applied on
pre-determined cells to find visible objects in each cell. A
hardware-accelerated DoV algorithm is then applied on the
visible set to evaluate the DoV values of each individual
object and node. As computing DoV is not the focus point
of this paper, the reader is referred to [11] for more details
on the DoV computation algorithm. DoV values of objects
and nodes are then stored in V-Pages according to the var-
ious storage structures. For the largest 1.6 GB dataset, we
generated the internal LoDs and precomputed the DoVs for
more than 4000 viewing cells. The precomputation takes
about 1.02 seconds for each cell.

Two sets of experiments are conducted. (1) In the first
set, we evaluate the performance of the HDoV-tree for visi-
bility queries. Here, we test the scalability of the proposed
search algorithm. We also compare the proposed search al-
gorithm against a (cell, list-of-objects)-based method. We
shall refer to this latter scheme as the naı̈ve method. (2) In
the second set, we study the real-time walkthrough perfor-
mance of VISUAL. We use the REVIEW system [12] as
our reference. Recall (see Section 2) that REVIEW is a
real-time walkthrough system that indexes objects using R-
tree, and performs window queries in accessing the objects
during a walkthrough session. We shall denote the DoV
threshold used in the HDoV-tree as η. As threshold values
smaller than 0.008 generate very good visual fidelity, we
shall use η values in [0, 0.008].

5.2. The storage cost of the storage schemes

We begin by considering the storage overhead of the
HDoV-tree under the three storage schemes. Table 2 shows
the result for the default dataset (The storage cost for the
raw dataset is excluded since it is the same for all schemes).
We note that the space taken by the horizontal scheme is
very huge, as it stores V-pages for all the nodes in each
cell. In fact, its storage cost is almost 20 times that of the
other two schemes. The vertical scheme is more compact
compared to the horizontal scheme. The indexed-vertical
scheme is the most space efficient scheme as it stores both
the V-page-index and the V-pages in a compact format.
These data show that designing appropriate storage struc-
ture is very important for the visibility query system.

Storage Scheme Horizontal Vertical Indexed-vertical
Size 4 GB 267 MB 152.8 MB

Table 2. Storage space required by the
schemes.

5.3. Experiment 1: On visibility queries

In this experiment, we study the search performance
of the HDoV-tree. We shall look at all the three storage
schemes. We use the naı̈ve (cell, list-of-objects)-based algo-
rithm for comparison. In our implementation, this scheme
accesses the V-pages of visible leaf nodes only. Moreover,
all the models retrieved by the algorithm are from the ob-
ject LoDs. We note that the naı̈ve method outperforms a
spatial-query based method, as it accesses visible objects
only. We shall defer the comparative study against a spatial-
query based method to section 5.4.

We tested 10000 visibility queries at random viewpoint
positions obtained from the precomputed cells.
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Figure 7. Search time with different η values.

Figure 7 shows the results of the search time as η (DoV
threshold) varies from 0 to 0.008. From the figure, we ob-
serve that when η increases, the search time for all HDoV-
tree-based schemes decrease significantly. This is expected
as a large η value implies that the traversal will termi-
nate more often at internal nodes. As a result, more in-
ternal LoDs are allowed in the result set. Since the internal
LoDs have fewer details, the loading time of these objects
is shorter. We also observe that the search performance for
η = 0 is almost the same as that of the naı̈ve method. This
confirms our expectation that the HDoV-tree degenerates to
a (cell, list-of-visibility)-based algorithm when η = 0.

For the HDoV-tree-based schemes, we note that the per-
formance of the vertical scheme and the indexed-vertical
scheme is comparable. The performance of the indexed-
vertical scheme is only marginally better than that of the
vertical scheme as the former loads fewer data during the
cell-flipping. The horizontal scheme performs the worst.
This is expected as more disk seek is required in access-
ing the V-pages — all V-pages of a particular cell are not
consecutively stored.

 564

 

Proceedings of the 19th International Conference on Data Engineering (ICDE’03)
1063-6382/03 $ 17.00 © 2003 IEEE 



In view of the above results on the performance and stor-
age cost of the HDoV-tree-based schemes, for the remaining
experiments, we shall present the results for the indexed-
vertical scheme only.
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Figure 8. Performance results on disk I/Os.

Figure 8(a) shows the number of disk I/Os as η varies
from 0 to 0.008. Note that disk I/Os of tree nodes and V-
pages, as well as the retrieval of the heavy-weighted model
data are accounted in this figure. The results of the I/O cost
of accessing the nodes and V-pages excluding the model
data, or the light-weight I/O cost of the searches, are shown
in figure 8(b).

From figure 8(b) we found that for very small η val-
ues, the light-weighted I/O cost of HDoV-tree is higher than
that of the naı̈ve search. This is expected, as extra I/Os are
needed to access the internal nodes and internal V-pages of
the HDoV-tree. However, as η increases, the costs access-
ing the internal nodes are compensated by the much larger
benefits we obtain from being able to retrieve the internal
LoDs for nodes which have small DoVs. Therefore, the I/O

costs of the HDoV-tree are always smaller than that of the
naı̈ve method.

To test the scalability of the search performance of the
proposed HDoV-tree, we built a series of datasets ranging
from 400 MB to 1.6 GB. In the precomputed cells, we chose
1000 random viewpoints as the experimental query set, and
performed the same 1000 visibility queries on the datasets.
The average search time and the average number of I/Os are
shown in figure 9(a) and 9(b) respectively. We note that the
results show only the cost to traverse the HDoV-tree, and
excludes the cost to retrieve the objects (since all visible
objects must be retrieved).

As the figure shows, the average response time and I/O
cost increases only marginally with increasing dataset sizes.
The I/O cost only increases in very small amount as the
database size increases. The increase in search time is al-
most negligible. These results support our motivation for
designing an efficient and scalable search algorithm and
disk access method for querying visible objects.
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5.4. Experiment 2: On interactive walkthrough

In this experiment, we evaluate VISUAL against RE-
VIEW. For continuously moving viewpoint, there is often
some spatio-temporal coherence to be exploited. For ex-
ample, two neighboring cells often share a number of visi-
ble objects. For VISUAL, the search algorithm can be im-
proved to a “delta” search algorithm which does not retrieve
objects that have been retrieved in the previous queries. As
the models stored in the database are heavy-weighted, delta
search algorithm can reduce the I/O cost significantly. For
REVIEW, it also has its own “delta” search algorithm called
the complement search algorithm.

The main metrics that we use for comparing the perfor-
mance of interactive walkthrough are average frame time
and variance of frame time. We recorded a few walk-
through sessions and played them back on the interactive
walkthrough application. Each session is played back on
both the VISUAL system and the REVIEW system. None
of the two systems caches the tree nodes in the queries.

In the REVIEW system, the size of the spatial-query
boxes can be modified to update the system performance
and visual fidelity. If the query boxes become larger, the
system performs worse, but generates better visual fidelity,
since more data are being retrieved. We shall demon-
strate that when the spatial-query based system generates
good visual fidelity, its performance is worse than the vis-
ibility querying system, and when the spatial-based sys-
tem performs well, its visual quality suffers from “short-
sightedness”.

Figure 10(a) shows the results of time spent on each
rendering frame between the spatial-query based REVIEW
system and the VISUAL system. The size of the query box
in the REVIEW system is set to 400m. The visual qual-
ity of the REVIEW system in this case is slightly worse,
though comparable to the VISUAL system. However, the
rendering frame time is very different as shown in figure
10(a). The REVIEW system is not only slower than VI-
SUAL, but also “choppier”, as the delay (marked by the
spikes in the curves) caused by database queries are much
longer. Therefore, the user of the VISUAL system can ex-
perience smoother walkthrough. The results shown in figure
10(a) confirms our discussion about one of the problems of
the spatial methods, i.e., the spatial methods may retrieve
invisible models, wasting the I/O resources.

We also evaluated REVIEW with different query box
sizes, and the results showed that REVIEW is not as ef-
fective as VISUAL. While its average frame time is com-
parable to VISUAL for small boxes, the spikes caused by
spatial queries are tall. Moreover, as we will soon discuss,
the visual quality is unacceptable compared to VISUAL.

Figure 10(b) compares the results for VISUAL using two
different threshold values: η = 0.001 and η = 0.0003. As
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Figure 10. Comparison of frame time.

shown, with η = 0.001, the frame rate can be up to 20%
faster than that with η = 0.0003. This is expected since a
larger η implies coarser representations are retrieved. How-
ever, as we shall see next, the visual fidelity is not much
compromised.

Figure 11 illustrates an example on the visual fidelity of
the two systems. Comparing figure 11(a) and (b), it is clear
that REVIEW misses some objects. These are objects that
are more than 100m away from the query box. This con-
firms the problem of the spatial methods, i.e., the spatial
methods may lose some visible models in the output. Look-
ing at figure 11(c), it is clear that VISUAL not only provides
better visual fidelity than REVIEW, but the loss in visual fi-
delity is not obvious. Comparing figure 11(c) and (a), we
note that a threshold size of 0.001 can provide good visual
fidelity.

We recorded a few walkthrough sessions with different
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(a) Original models

(b) REVIEW (size of query boxes 200m)

(c) VISUAL (η = 0.001)

Figure 11. Comparison of Visual Fidelity. Far
objects are lost in (b) due to the spatial
method. The visual fidelity of VISUAL sys-
tem is very good even if the threshold η is as
large as 0.001.
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Figure 12. Search Performance in Different
Walkthrough Sessions.

motion patterns. Session 1 is a normal walkthrough; ses-
sion 2 turns left and right; and session 3 moves back and
forward frequently. These sessions are played back for both
the VISUAL system and the REVIEW system. Figure 12(a)
shows the average search time in each query for different
walkthrough sessions. Figure 12(b) shows the average num-
ber of I/O operations in each walkthrough session. From
these figures, it is clear that the queries in the VISUAL
walkthrough are much faster than the spatial queries in the
REVIEW system.

Table 3 shows the average frame time and the variance
of frame time at different threshold values of session 1. Ba-
sically, as the threshold value increases, the average frame
time decreases, due to shorter search time and coarser LoDs
being rendered. The variance of the frame time also de-
creases, therefore, the smoothness of the walkthrough also
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improves as the threshold increases. The average frame
time of the REVIEW system with comparable visual fidelity
(Size of query boxes is 400m) is much longer than that of
VISUAL. So is the variance of frame time. From this ta-
ble, it is clear that the VISUAL based walkthrough performs
smoother than the spatial access method.

η Avg Frame Time(ms) Variance of Frame Time
0 15.92 6.34

.00005 15.91 6.35
.0001 16.06 6.13
.0002 15.58 5.56
.0003 15.47 5.10
.0005 13.94 4.93
.001 12.78 4.35
.002 12.79 4.14
.004 12.65 4.15

REVIEW 57.84 16.46

Table 3. Results of frame time.

In the experimental walkthrough sessions, the maximum
memory used by the VISUAL system is 28MB, while the
REVIEW system with a query box size of 400 meters re-
quires 62MB. The memory requirement of the REVIEW
system is closely related to the size of the query boxes.
Since many invisible objects are retrieved by the spatial
query, the spatial method requires more memory. The mem-
ory consumed by VISUAL is smaller, and is related to the
search threshold. If the threshold becomes larger, more in-
ternal LoDs are allowed in the query results, so less memory
is consumed.

6. Conclusion

In this paper, we have addressed the problem of optimiz-
ing performance and visual fidelity in visualization systems.
We have proposed a novel structure called HDoV-tree that
can be tuned to provide excellent visual fidelity and perfor-
mance. The HDoV-tree is essentially an R-tree that con-
tains visibility data and LoDs. We also proposed three stor-
age structures for the HDoV-tree. We have implemented
HDoV-tree in a prototype walkthrough system called VI-
SUAL, and conducted extensive experiments to evaluate the
performance of HDoV-tree. Our results show that HDoV-
tree can provide excellent visual fidelity efficiently. In our
current work, we have not exploited the MBR information
in the HDoV-tree. As mentioned, this information can be
exploited to prioritize objects to be loaded. We are currently
exploring this as part of our agenda for future work.
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