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Abstract
Skyline queries are well suited when retrieving data ac-

cording to multiple criteria. While most previous work has
assumed a centralized setting this paper considers skyline
querying in a mobile and distributed setting, where each
mobile device is capable of holding only a portion of the
whole dataset; where devices communicate through mobile
ad hoc networks; and where a query issued by a mobile user
is interested only in the user’s local area, although a query
generally involves data stored on many mobile devices due
to the storage limitations. We present techniques that aim
to reduce the costs of communication among mobile devices
and reduce the execution time on each single mobile device.
For the former, skyline query requests are forwarded among
mobile devices in a deliberate way, such that the amount of
data to be transferred is reduced. For the latter, specific op-
timization measures are proposed for resource-constrained
mobile devices. We conduct extensive experiments to show
that our proposal performs efficiently in real mobile devices
and simulated wireless ad hoc networks.

1. Introduction

With the continued advances in electronics and wire-
less communications, more and more mobile handsets with
computing and wireless networking capabilities are being
deployed. For example, mobile handsets are being equipped
with infrared, Bluetooth, or even Wi-Fi capabilities. Fur-
ther, positioning capabilities are becoming available on
handsets, based, e.g., on GPS, the communication infras-
tructure, or a combination.

In particular, handsets are now being equipped with wire-
less peer-to-peer (P2P) capabilities. This enables handsets
to become parts of self-organizing, wireless mobile ad hoc
networks (MANETs) that allow seamless, low-cost, and
easily deployed communications [7, 10]. It is conceivable
that ad hoc and P2P technologies will be combined to bring
about wireless communications without the presence of cen-
tral servers [4].

Assuming a relational setting, a skyline query [9] returns
tuples from a set of tuples that are not dominated by oth-

ers. A tupletp1 is said todominatetuple tp2, if tp1 is no
worse thantp2 in any dimension and is better thantp2 in at
least one dimension. In different contexts, “better” can be
“smaller” or “larger”. For example, a skyline query may re-
quest the hotels that have high quality ratings and low room
prices.

Most previous work on skyline queries [9, 12, 15, 19, 21]
has assumed that the data is stored in a centralized fashion.
This paper considers skyline querying in a mobile context
with the following assumptions: 1) each mobile device only
holds a portion of the entire dataset; 2) devices communi-
cate through MANETs; 3) and mobile users posing skyline
queries are only interested in data pertaining to a limited ge-
ographical area, although the queries involve data stored on
many mobile devices due to the storage limitations of the
devices.

Consider the example skyline query shown in Figure 1.
Here,M1, ...,M4, are mobile devices, each storing data cor-
responding to different portions of geographical space. De-
viceM2 is interested in the region represented by the circle,
the data of which is held on all four mobile devices. Thus,
the skyline query ofM2 involves all four mobile devices.
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Figure 1. Skyline Query on Mobile Devices

To improve the efficiency of skyline queries, we consider
the two most important costs: the cost of the communication
among the mobile devices and the cost of query execution
on the mobile devices. To reduce the former cost, a skyline
query request is sent to the mobile devices involved in a de-
liberate way such that the amount of data to be transferred is



minimized. To reduce the latter, specific optimization mea-
sures are proposed for resource-constrained mobile devices.
Our experimental study shows that the proposed method is
efficient in terms of both communication cost and response
time.

The paper makes the following contributions: First, it
captures the problem of skyline querying in MANETs. Sec-
ond, it proposes distributed processing strategies that aim to
reduce the data to be transferred during the processing of
queries. Third, it proposes optimizations that aim to speed
up the local query processing on resource-constrained de-
vices. Fourth, it reports on extensive experiments that in-
volve both real mobile devices and MANET simulators.
The results show that the paper’s proposals perform effi-
ciently.

The remainder of this paper is organized as follows. Sec-
tion 2 defines the problem to be solved. Section 3 presents
the proposed skyline query processing strategies. Section 4
concerns optimization measures for resource-limited mobile
devices. Section 5 experimentally evaluates the proposed
techniques. Section 6 reviews the related work, followed by
conclusions and future directions in Section 7.

2. Problem Definition

We assume a setting withm mobile devicesM =
{M1,M2, . . . ,Mm}. Each deviceMi holds a database rela-
tion Ri that contains the data that pertains to sites located in
a small geographical area. AllRis on all devices conform to
the same schema<x, y, p1, p2, . . . , pn>, where(x, y) rep-
resents the location of a site and thepi are attributes de-
scribing a site. The contents of differentRis may overlap,
i.e., it is possible thatRi ∩ Rj 6= Ø for any i 6= j. We
may also envision a global (and virtual) relationR, such
that

⋃m
i=1 Ri = R.

In this setting, a mobile deviceMi can ask a distributed
skyline query, whose result consists of all sitess in global
relationR that satisfy these conditions: (a) sites is within
distanced of Mi’s current position; (b) sites is in the sky-
line of R′ in terms of all attributespi, whereR′ is the set
of all sites satisfying condition (a). Such a query can be de-
fined asQds = (id , posorg , d), whereid is the identifier of
the deviceMorg issuing the query,posorg is the location of
Morg , andd is the distance specifying the region of interest.

Such queries are meaningful in practice. For instance,
a tourist may want to know about inexpensive and highly
rated restaurants within a certain range, in order to find a
near-by place for dinner. However, the data on the tourist’s
own device does not cover the region of interest. The device
thus contacts other available devices to obtain additional
data. As has been pointed out [17], the wireless cellular
link between a mobile phone and its base station is usually
much slower than IEEE 802.11-based wireless P2P links be-
tween mobile devices. This argues for the relevance of our

problem definition that does not assume a fixed base sta-
tion. Alternatively, we can limit our problem to the extent
of a single cell [17].

The queries we consider differ from traditional skyline
queries. First, a region of interest is specified in the query,
making the query a constrained skyline query. However, this
query differs from those obtained by placing constraints on
the dimensions involved in the skyline operation [19]. In
particular, we use spatial constraints that are not involved
in the skyline operation. The use of spatial constraints is
reasonable because usually, a mobile user is only interested
in sites located in a region around the user’s current po-
sition, not in the entire geographical space. Also, when
within the region of interest, the specific location of a site
is often not particularly important. Instead, other attributes
of the sites are the important ones. Thus, a skyline query
applied to those sites within the range provides the user
with a relevant set of answers. Second, horizontal parti-
tions of the global relation are distributed across different
mobile devices, which is different from vertical partition-
ing [6]. Third, mobile devices here have limited storage and
processing capabilities in comparison to the computers nor-
mally assumed in skyline querying.

Together, the above features pose several challenges to
our distributed skyline queries. First, the wireless commu-
nication channels between mobile devices are slow and un-
reliable, in comparison to wired connections. This implies
that the amounts of data transferred between devices should
be reduced. Second, the devices are resource-constrained.
This calls for processing and energy saving techniques for
use on the mobile devices. Finally, because differentRis on
different mobile devices may overlap, duplicate elimination
must be applied before results are returned.

In the considered environment, both communication
costs and processing costs on the mobile devices are im-
portant to the overall query performance. Indeed, these two
aspects determine the performance of a query. With this in
mind, we provide processing methods that can reduce the
amount of data to be transferred among mobile devices and
speed up the query processing on a single mobile device.
Symbols to be used throughout this paper are summarized
in Table 1.

3. Skyline Queries on Mobile Devices

3.1. Straightforward Strategy

The originatorMorg of a query does not need to obtain all
relations from all other mobile devices—only those tuples
that may potentially appear in the final skyline are needed.
Based on this observation, we can reduce the amounts of
data to be transferred as follows: query originatorMorg

sends the query specification,Qds = (id , posorg , d), rather
than simple data requests. On receiving the specification,
deviceMi does a skyline query on its relationRi and then



Symbol Description

m Total number of mobile devices
Mi One mobile device
n Number of attributes of a tuple
pi ith non-spatial attribute of a tuple
Ri Local relation onMi

R Virtual global relation, union of allRis
Morg The mobile device originating queryQds

Qds Distributed mobile skyline query
posorg Location of query originatorMorg

d Distance of interest in queryQds

SKi Local skyline onMi w.r.t. Qds

SK Final skyline w.r.t.Qds

tpflt Tuple used for filtering

Table 1. Symbols Used in Discussions

sendsMorg the result only, not the entireRi. DeviceMorg

also computes a local skyline for its relation after sending
out the query specification. Later, it merges each result it
receives with the previous result in an incremental fashion,
while also removing the non-qualifying tuples.

This method reduces the amount of data to be transferred
at the cost of local computations at eachMi. Suppose for
relationRi on mobile deviceMi that the result of skyline
queryQds isSKi. Then the reduction ratio of the data trans-
ferred is(|Ri| − |SKi|)/(|Ri|) = 1− |SKi|/|Ri|. Clearly,
the more selective a local skyline query is, the smaller the
communication cost.

Although the use of local skyline queries can reduce the
amount of data sent back to the query originator, there is still
a chance that a local result may contain tuples that do not
belong to the final skyline. In other words, the union of the
SKi is a superset ofSK. The setFSK =

⋃m
i=1 SKi−SK

contains all those tuples that appear in one or more local
skylinesSKi, but not in the final skylineSK. Transmit-
ting SKi − SK from mobile deviceMi to query originator
Morg is a waste because it does not affect the final query
result. We useFSK i to represent that subsetSKi−SK on
each mobile device. If we can reduce eachFSK i, we can
also reduce the communication cost. As an extreme, if each
FSK i is empty,

⋃m
i=1 SKi = SK will hold, and the com-

munication cost is at its lowest. Unfortunately, this is almost
impossible in practice because it implies a very special data
distribution: the final skylineSK must be perfectly parti-
tioned among all mobile devices, and every tuple inMi not
belonging toSK has at least a dominator inSK within the
same local relationRi.

In distributed join processing, a smaller projection of one
relation is first sent from one site to its peer site, where it is
used to reduce the tuples to be sent to the first site, so that
the total communication cost of joining the two relations is
reduced [24]. In our setting,FSK and theFSK i provide
indications as to where and how to reduce the communi-
cation cost. We proceed to present a strategy that is based

on the analysis above and is inspired by the join processing
approach.

3.2. Filtering Tuple Based Strategy

Since in each local skylineSKi there may exist non-
qualifying tuples for the final skylineSK, it may be helpful
to identify and prevent these from being transmitted. If a tu-
ple tpi in SKi does not appear inSK, there must be at least
one tupletpj in SK and not inSKi that dominatestpi. If
we can knowtpj when doing the local skyline query on de-
vice Mi, tpi can be removed from the result. We useSK ′

i

to representSKi from which some (maybe not all)tpis of
this kind have been removed. In this way, the number of
reduced tuples for transmission is|SKi| − |SK ′

i|.
The problem is now how to get suchtpjs for a mobile

deviceMi. Such atpjs must come from somewhere else
thanMi. Since we do a local skyline query on query origi-
natorMorg , we can pick possibletpjs from its local result.
We useSKorg to represent the initial, local skyline onMorg .
Which tuple to choose fromSKorg is then of interest. To ad-
dress this issue, we need to consider for a tupletpj in SKorg

its ability to dominate and then remove other tuples.
For a tupletpj (<pj1, . . . , pjn>), its ability to dominate

other tuples is determined by its own values and the bound-
aries of the data space, i.e., the hyper-rectangle whose diag-
onal is the line segment withtpj and the maximum corner
of the data space as coordinates. Any other tuple that resides
in that region is dominated bytpj and is excluded from the
skyline. For this reason, we call that hyper-rectangle the
dominating regionof tuple tpj . Intuitively, the largertpjs
dominating region is, the more other tuples are dominated
by tpj because a larger hyper-rectangle covers more tuples
in the data space, especially when the tuples are distributed
independently. For simplicity, we use a 2-D illustration as
shown in Figure 2(a) in our discussion.
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(a) Dominating Region
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(b) Estimated Dominating Region

Figure 2. Example of Dominating Region

Suppose the value range on dimensionpk is [sk, bk] in
the virtual global relationR. Then the volume of tupletpjs
dominating region isVDRj =

∏n
k=1(bk−pjk). We choose

the tuple, termedtpflt, from SKorg with the maximum
VDRj value and use this tuple to filter out non-qualifying
tuples. Then instead of sending only the query specification



to the mobile devices, we include alsotpflt. Each device
Mi will then usetpflt to prune non-qualifying tuples dur-
ing its local skyline query processing.

Because we add a tuple to what we send to the mobile de-
vices from query originatorMorg , the communication sav-
ings is |SKi| − |SK ′

i| − 1 for one Mi. It can be seen
that if tpflt fails to remove any non-qualifying tuples from
SKi, the communication cost is actually increased by one
tuple. However, we expect that in total, this strategy will be
competitive. That is, we expect that

∑m
i=1,i 6=org(|SKi| −

|SK ′
i| − 1) =

∑m
i=1,i6=org(|SKi| − |SK ′

i|)−m + 1 > 0.
As an example, two mobile devicesM1 and M2 hold

hotel relationsR1 and R2, respectively, as shown in Ta-
bles 2 and 3. AssumeM2 is the query originator that wants

hotel price rating
h11 20 7
h12 40 5
h13 80 7
h14 80 4
h15 100 7
h16 100 3

Table 2. Relation R1

hotel price rating
h21 60 3
h22 90 2
h23 120 1
h24 140 2
h25 100 4

Table 3. Relation R2

information on cheap and good hotels (smaller value means
better rating). In both relations, each hotel tuple has at-
tributes for the price and the rating based on recommenda-
tions. The skyline onM2 is{h21, h22, h23}, whereas that on
M1 is {h11, h12, h14, h16}. If no filtering tuple is used, all
four tuples inM1’s local skyline are transferred toM2. To
use a filtering tuple, assume the global upper bound on price
and rating is 200 and 10, respectively. We need to pick a fil-
tering tuple fromM2’s local skyline{h21, h22, h23}. Using
theVDR definition from above, we haveVDR21 = (200−
60)∗(10−3) = 980, VDR22 = (200−90)∗(10−2) = 880,
andVDR23 = (200 − 120) ∗ (10 − 1) = 720. Because
h21 has the largestVDR value, we choose it as the filtering
tuple. This tuple eliminatesh14 andh16 from M1’s local
skyline. (Tupleh22 happens to also have this effect.) As a
result, the amount of data transferred toM2 is reduced by
two, and the total savings are one tuple. As the cardinality
of Ri increases, more non-qualifying tuples can be identi-
fied from the local skyline using a filtering tuple.

3.3. Estimated Dominating Region

In the above, we have assumed that the global domain
range of any attributepj is known on mobile deviceMi.
This ensures exact computation of the dominating region.
Sometimes, the global domain range may be unknown to
Mi. In this case, we can compute over-estimated and under-
estimated dominating regions for a given tupletpi.

Over-estimation of the dominating region for tupletpj

is achieved using formulaVDRo =
∏n

k=1(maxk −pjk),
wheremaxk is a pre-specified value larger than the global

domain upper boundbk, or the largest possible value of
the attribute value type. Underestimation is done using
VDRu =

∏n
k=1(hk − pjk), wherehk is the local maxi-

mum value of attributepk known toMi. The estimations of
the dominating region are shown in Figure 2(b). Note that
neither over- nor under-estimation affects the correctness of
query results. They possibly pick different filtering tuples
and therefore have different filtering abilities. Section 5 ex-
plores this aspect.

3.4. Adaptation to Wireless Ad Hoc Networks

So far, we have assumed that the query originator can
directly communicate with any other mobile device. In
that setting, the filtering tuple decided by the originator is
used for all mobile devices. In a real mobile setting, how-
ever, communication is more likely to be accomplished us-
ing multiple hops via intermediate mobile devices if source
and destination cannot contact each other directly. In such a
setting, we need to adapt our strategy to reduce the commu-
nication cost.

First, tpflt is dynamically updated during the procedure
of query relay to increase its pruning potential. After doing
a local skyline query on mobile deviceMi, the tupletp′flt

with the maximumVDR value is obtained from the local
skyline resultSKi. Thentp′flt is compared with the current
tpflt, and the one with the larger pruning potential, i.e., the
largerVDR value, will be used as the new filtering tuple for
other mobile devices to whichMi will forward this query.

As an example consider the three mobile devices
M1, M3, and M4, whose relations are shown in Ta-
bles 2, 4, and 5. Here,M4 is the query originator andM3 is

hotel price rating
h31 60 3
h32 80 5
h33 120 4

Table 4. Relation R3

hotel price rating
h41 80 2
h42 120 1
h43 140 2

Table 5. Relation R4

the intermediate in-betweenM4 andM1. The local skyline
on M4 is {h41, h42} and that onM3 is {h31}. Based on
theVDR values,h41 on M4 is chosen as the filtering tuple
and is sent toM3. If the filtering tuple is not dynamically
adjusted,h41 will be sent toM1 as well, where it will elim-
inateh16 only. If the filtering tuple is dynamically adjusted,
h31 on M3 will be used as the new filtering tuple. When
h31 is sent toM1, it will eliminate bothh16 andh14. This
example shows how dynamic updates of the filtering tuple
can make a difference.

Second, a check is made in every mobile device to avoid
processing the same query more than once. To support this
check, a tagcnt is added to every query, which then be-
comes(id, cnt, posorg, d). This tag is a local count, gener-
ated by each query originator. In other words, each mobile
device maintains a count for all queries it issues, and this



count is attached to the corresponding query. When a mo-
bile deviceMi receives a query(id, cnt, posorg, d), it will
check its log to see if this query has been processed. If not,
Mi processes this query and forwards it to others. Other-
wise, the query is ignored.

To save communication cost, countcnt can be defined
as a byte, allowing a device to generate 256 queries with
increasingcnt value. The count can be reset at regular in-
tervals, e.g., each day. The log on a device keeps for every
device its last arriving query’s countcnt, which is imple-
mented simply by a hash table that maps the device iden-
tifier id to a count. On each mobile device, the worst case
space cost of such a hash table isO(m), wherem is the to-
tal number of mobile devices. The time cost of the check
is O(1). This mechanism works well under the assumption
that a mobile device is only interested in its latest query.

4. Optimizations on Mobile Devices

On the mobile devices, relations are stored in a manner
that takes into account the limited storage space on the de-
vices and that enables efficient local skyline query process-
ing.

4.1. Dataset Storage

Because mobile devices have limited storage (sometimes
both data and running programs share the same limited
memory space), simply storing all tuples sequentially in
so-called flat storage will either consume too much space
or harm query processing performance. Several storage
alternatives have been proposed for devices with limited
space [5, 8, 20].

We adopt a hybrid storage scheme for each relationRi

stored on a mobile devices. EachRi has both spatial and
non-spatial attributes. Because different tuples are usually
located at different geographic sites and thus have different
spatial attributes, storing the spatial values separately from
the tuples does not save storage space. Hence, we store for
each tuple its spatial coordinate values directly inRi. Non-
spatial attribute values are likely to be shared among multi-
ple tuples, making it beneficial to store them separately. To
facilitate skyline query processing on mobile deviceRi, we
use ID-based storage [20] for the non-spatial attributes. To
support fast spatial range checks, the maximum and min-
imum spatial coordinates are kept as constants inxmax,
ymax, xmin andymin. These coordinates specify the mini-
mum bounding rectangleMBRi of all sites inRi.

We do not use ring storage [8], as not every tuple has
pointers to values in this scheme. Instead, all tuples with
the same value for an attribute are linked by internal point-
ers, and only one tuple has a pointer to the shared value.
This causes expensive access to tuple values, since we have
to traverse the internal pointer chain to reach the unique tu-
ple with the external pointer. This hurts skyline query pro-

cessing, which needs tuple values frequently in dominance
comparisons.

Though domain storage [5] has tuple-to-value pointers
for each attribute of each tuple, we also do not use this
scheme, as it still consumes extra time to use tuple-to-value
pointers to access a tuple’s attribute values from separate
domains. Also, domain storage does not provide the conve-
nience given by ID-based storage.

4.2. Local Skyline Computing

In domain storage, ring storage, and ID-based storage, all
domain values are stored in an array for each attribute. This
arrangement can be used to facilitate local skyline query
processing on a mobile device. Suppose on mobile device
Mi the value range of attributepj is [lj , hj ]. Such anlj or
hj value can be fetched on a mobile device inO(1) time, if
we store all available values in each sorted. We assume that
smaller values are preferred for each attributepi, and all val-
ues in each attribute domain are stored in ascending order.
Our hybrid storage model for local relationRi is illustrated
in Figure 3.
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Figure 3. Hybrid Storage Model

Inspired by the SFS algorithm [12], we also sortRi on
the ID value of one attribute. This reduces the number of
value comparisons in determining dominance during query
processing. We choose the attribute with the largest number
of distinct values as the attribute to be sorted on. For sim-
plicity and without loss of generality, we assume thatp1 is
that attribute.

With the domain information andtpflt received from the
query originator, we can determine efficiently whether we
need to generate the local skyline on mobile deviceMi.
If on every attribute, we havetpflt.pj ≤ lj , which means
that the best tuple (potentially, maybe unavailable) onMi

is dominated bytpflt, no tuple in relationRi will be in
the global skyline. All these comparisons costO(n) time,
wheren is the number of attributes. In this case,Mi needs
to do nothing, but return a correct, short message toMorg .
Thus, local computation is saved significantly.

If the range check does not imply that all ofRi is domi-
nated bytpflt , we need to generate the local skyline query.



Here, the sorted storage of domains is also useful. Because
the domain values of any dimensionpj are ordered, the IDs
in relationRi reflect the inequality between the realpj val-
ues of different tuples. For instance, suppose two tuples
tp1 andtp2 haveidj1 andidj2, respectively, on dimension
pj , and that all domain values are stored in ascending or-
der. Then simply comparing each pair ofidj1 andidj2, in-
stead of accessing and comparing the real domain values, is
enough to determine the dominance betweentp1 and tp2.
This has two benefits. First, access time is saved since no
offset based addressing is needed to access values. Second,
comparison of simple ID integers generally costs less time
than that of domain values.

The algorithm for a local skyline query on mobile de-
vice Mi is presented in Figure 4. Initially, a spatial range

Algorithm local skyline(posorg , d, tpflt )
Input : posorg is the location of query originator

d is the distance of interest
tpflt is the filtering tuple

Output : reduced local skyline, and updated filtering tuple
// Check ifRi’s MBR overlaps the query region
if (mindist(posorg ,MBRi) > d) return ;
// Check ifRi is dominated by the filtering tuple
skip = TRUE;
for eachattributej of Ri

if (tpflt .pj > lj) skip = FALSE; break;
if (skip) return ; else SKi = Ø;
// Local ID-based SFS processing
for each tupletpj in Ri

// Too far away from query point
if (dist(posorg , tpj) > d) continue;
out = FALSE;
for eachskyline pointspk in SKi

// spk dominatestpj

if (∀l > 1, spk.idl < tpj .idl) out = TRUE; break;
if (!out) addtpj into SKi

// Filtering, and picking up maximumVDR
idx = null; VDRm = 0;
for eachskyline pointspk in SKi

if (∀l, tpflt .pl < spk.pl) removespk from SKi

else if(VDRk > VDRm) idx = k; VDRm = VDRk

// Update filtering tuple if necessary
if (VDRm > VDRflt ) tpflt = tpidx ;

Figure 4. Local Skyline Query on Mi

check is done to see if the spatial extent covered by mo-
bile deviceMi overlaps with the query region specified in
Qds . If not, the processing stops. Otherwise, each attribute
domain range’s lower bound is checked against the filter-
ing tupletpflt , to determine whether the entire local relation
Ri is dominated bytpflt . If not, Ri is scanned sequentially
to obtain the local skylineSKi, which takes advantage of
the sorted attributep1 and checks the rest of the dimensions
only. Two aspects make this procedure different from that of
the SFS algorithm. First, attribute IDs are compared instead

of real attribute values. Second, a spatial distance check is
used to exclude tuples too far away from the query posi-
tion. After getting the local skylineSKi, the filtering tuple
is used again to filter out non-qualifying tuples, and a more
capable filtering tuple might be found inSKi to replace the
old one.

4.3. Assembly on Query Originator

When receiving results back from devices, the query
originator needs to combine them with its own local sky-
line to obtain the correct global skyline. Assembly involves
two tasks. The one is to remove non-qualifying tuples from
the incoming result andMorg ’s own local result. The other
is to remove all duplicate tuples in the final skyline result.
Both tasks can be done within a simple nested loop, i.e., for
each tupletpj in an incoming resultSK ′

i, every tupletpk

in the local current resultSKorg is checked. Duplicates can
be identified by checking thex andy values only, since we
assume that no two tuples represent the same geographic
location. Iftpj andtpk are not the same, the dominance be-
tween them is determined by checking all their non-spatial
attributes. This way,SK ′

i andSKorg are merged together
correctly to produce the updatedSKorg .

5. Experimental Studies

We proceed to offer insight into the properties of the
methods proposed in this paper based on experimental stud-
ies. We first study the efficiency of the local optimizations,
then study the performance of the distributed processing
strategies in a simulated MANET environment.

5.1. Studies on Local Optimizations

This set of experiments is conducted on an HP iPAQ
h6365 pocket PC running MS Windows Mobile 2003 with
a 200MHz TI OMAP1510 processor and 64MB SDRAM
(55MB user accessible). All programs are written using Su-
perWaba, a Java-based open-source platform for PDA and
Smartphone application development [3]. The parameters
used in the experiments are listed in Table 6.

Parameter Setting

Number of total mobile devices 32, 42, . . . , 102

Cardinality of global relation 100K, 200K, . . . , 1000K
Cardinality of local relations 10K, 20K, . . . , 100K
Storage model for local relations Flat, Hybrid
Number of non-spatial attributes 2, 3, 4, 5

Non-spatial attribute range [0, 1000], [0.0, 9.9]
Spatial extent of global relation 1000× 1000
Attribute distribution Indep., Anti-Correl.
Query distance of interest 100, 250, 500

Table 6. Parameters Used in Experiments

For tests on dataset cardinality, the datasets contain 10K
to 100K points with two non-spatial attributes. For tests on



non-spatial dimensionality, the datasets contain 50K points
with two to five non-spatial attributes. Each non-spatial
attribute is of type float and its domain is{0.0, 0.1, 0.2,
. . . , 9.9}. Since each domain contains 100 distinct values,
we use byte type IDs in the hybrid storage implementation.
Synthetic datasets with both independent and anti-correlated
distributed attributes are used.

For the reasons stated in Section 4.1, we only compare
the hybrid storage (HS) scheme that we propose with the flat
storage (FS) scheme in terms of skyline query processing
time. For either scheme, we assume that no extra index is
used. For the HS scheme, we use the algorithm we propose
to process the local skyline query. For the FS scheme, we
use the simple BNL algorithm since no multi-dimensional
index or sort order is assumed to be available on a mobile
device.

Figure 5 shows the query processing time for each
scheme, where IN and AC represents the independent and
anti-correlated dataset, respectively. It is not surprising that
query processing needs less time on HS than on FS. This is
because in HS, most comparisons are between simple IDs
of type byte, whereas in FS, all comparisons are between
float raw values which consume more time. In addition,
HS keeps the domains and the first attribute sorted, which
is also helpful in speeding up skyline computation. In Fig-
ure 5(b) we show the average costs of both distributions be-
cause their costs are very close to each other for each di-
mensionality.
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Figure 5. Local Processing Time

5.2. Performance in Simulated MANETs

In this set of experiments, we test our proposed meth-
ods in a MANET environment simulated using JiST-
SWANS [1], a Java-based wireless ad hoc network simu-
lator. We consider three main performance aspects: (1)
the data reduction efficiency of the distributed query pro-
cessing; (2) the overall response time; and 3) the numbers
of messages used to forward a query between mobile de-
vices. The simulation experiments have been conducted on
a Pentium IV desktop PC running MS Windows XP with a
2.99GHz CPU and 1GB main memory.

5.2.1 Experiment Settings
We use global relations of 100K to 1M. In each global re-
lation, all tuples are distributed randomly within a1000 ×
1000 spatial domain. Based on a uniform grid on the spatial
domain, a global relationR is divided into local relations
(the Ris), each containing all the tuples within its corre-
sponding grid cell.

We use total numbers of mobile devices (m) equal to the
squares of the numbers 3 to 10, i.e.,{9, 16, 25, 36, 49, 64,
81, 100}, with each device containing the data of a grid
cell. The number of non-spatial attributes is varied from
2 to 5. All non-spatial attributes are of integer type in the
range[1, 1000], and they conform to either independent or
anti-correlated distributions. The total number of mobile
devices indicates that we test our methods in environments
of small-scale and moderate-scale MANETs, according to
a recent classification [18]. All devices move within the
spatial domain according to the random waypoint mobility
model [10]. In that model, every device moves towards
its own destination with its own speed, and when it reaches
that destination it will stop there for a period of time (hold-
ing time) and then move to another destination with a new
random speed. The mobility and wireless settings used are
listed in Table 7. Every mobile device issues 1 to 5 queries

Parameter Setting

Total simulation time 2h
Speed range 2m/s–10m/s
Holding time 120s
Wireless routing protocol AODV

Table 7. Parameters Used in Simulations

at random times during the simulation. Queries of different
devices can coexist, while a single device does not issue a
new query if it has one in progress.

For query forwarding, we compared two different strate-
gies. The first is abreadth-firststrategy, where initially the
query originator sends its query to all its neighbors. Each
neighbor processes the query locally, sends the result back
to the originator and then forwards the query to its own
neighbors. The same procedure is repeated on every mo-
bile device involved. The second is adepth-firststrategy,
where a query is forwarded to only one neighbor to which
the query has not been sent. The query result will only be
returned when no further neighbor is available or all neigh-
bors have processed it. Then the result will be forwarded
back along the reversed path. Each mobile device (including
the originator) on the path merges the result with its own re-
sult and then either sends the result back or sends the query
to another available neighbor.

5.2.2 Data Reduction Efficiency
We proceed to study the efficiency of the distributed pro-
cessing strategies in terms of their data reduction rate. The
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Figure 6. Data Reduction Rate on Independent Datasets in a Static Setting
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Figure 7. Data Reduction Rate on Anti-Correlated Datasets in a Static Setting

data reduction rateDRR is the proportion of tuples reduced
by the filtering tuple to the number of tuples in the unre-
duced skyline. To be specific, recall from Section 3 that, for
each mobile deviceMi (except the query originatorMorg ),
the unreduced skyline isSKi and the reduced skyline is
SK ′

i. The data reduction rate with respect to the whole sys-
tem is then defined as:

DRR =

∑m
i=1,i 6=org(|SKi| − |SK ′

i| − 1)∑m
i=1,i6=org |SKi| (1)

I. Pre-Tests in Static Setting
Before conducting the simulation, we test the different

filtering tuple selections in a static setting where no devices
move and queries are forwarded recursively from the origi-
nator to the outer neighbors in the grid. We also ignore the
distance constraint and use every deviceMi as the query
originator once. The final result is the average of a total of
m×m queries for each single experiment.

The experimental results on independent global relations
are shown in Figure 6. The results show that different esti-
mations of the dominating region (OVE for over-estimation,
EXT for exact computation, and UNE for under-estimation)
barely affect the filtering efficiency for uniform global rela-
tions. This justifies the use of estimation in a mobile device
that does not require knowledge about the global bounds of
each attribute.

In the experiment covered in Figure 6(a), all global re-
lations have two non-spatial attributes and are partitioned

among5× 5 mobile devices. For the strategy using a single
filtering tuple (SF), the data reduction rate grows slowly as
the global cardinality increases. A fixed-size data spaceD
becomes increasingly dense as more tuples are added, and
tuple tpflt is likely to dominate more tuples. The use of a
dynamic filtering tuple (DF) is attractive. The filtering tuple
is dynamically changed based on its pruning capacity such
that a tuple with higher pruning potential (if one exists) is
picked for further processing. This dynamic adjustment also
renders DF less stable.

In the experiment covered by Figure 6(b), all global re-
lations have 500K tuples and are partitioned among5 × 5
mobile devices. For both filtering strategies, the data reduc-
tion rate decreases as the attribute dimensionality increases.
In contrast to Figure 6(a), the fixed-cardinality data spaceD
becomes sparser as the dimensionality increases, meaning
that a given tupletpflt is likely to dominate fewer tuples.

In the experiment reported upon in Figure 6(c), all global
relations have 500K tuples with two non-spatial attributes.
For the SF strategy, the data reduction rate decreases slightly
as the number of mobile devices increases. As the global
relation is partitioned among more mobile devices, the
denominator

∑m
i=1,i6=org |SKi| in Formula 1 possibly in-

creases while the single filtering tuple strategy cannot prune
additional tuples, which leads to a smallerDRR value. The
pruning capacity of the dynamic strategy is not affected, as
the filtering tuple is dynamically changed according to the
local skyline on every mobile device.
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Figure 8. Data Reduction Rate on Independent Datasets in MANET Simulation
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Figure 9. Data Reduction Rate on Anti-Correlated Datasets in MANET Simulation

The experimental results on anti-correlated global rela-
tions are shown in Figure 7. For this data, we can see that
for the SF strategy, over-estimation of the dominating re-
gion exhibits the best filtering efficiency in almost all cases.
Also, for every single experiment, the filtering efficiency is
lower when compared to that of its counterpart for indepen-
dent global relations. This is not surprising because filtering
tuples are chosen based on the assumption of an indepen-
dent distribution.
II. Tests in MANET Simulation

The pre-tests in the static setting suggest that the use of
estimated versus exact selections of filtering tuples leads
only to slight differences, especially for uniform datasets.
It is also seen that dynamic filtering of tuples yields better
DRRs. Thus, we use only under-estimation of dominat-
ing regions when selecting filtering tuples in the simulation,
and dynamically update them between mobile devices, if
possible. The same series of datasets are used in the simula-
tion as in the pre-tests. TheDRR results are shown in Fig-
ures 8 and 9, where DF (BF) is for the depth-first (breadth-
first) query forwarding strategy and the integers are the dis-
tances of interest in queries.

For both distributions,DRRs are lower compared to
those in the static setting. The is attributed to the MANET
setting, where not all devices always participate in the query
processing, thus decreasing the data reduction. The mobile
characteristic also makes theDRR changes for increasing
global cardinalities less stable. This is because the part(s)
of the global relation that do not participate in the query

processing vary. TheDRR change in terms of attribute
dimensionality is still pronounced, which indicates that di-
mensionality still plays an important role in the query pro-
cessing performance in MANETs.

5.2.3 Response Time

For the BF strategy, the response time is defined as the
elapsed time from the moment that a query is issued at a
mobile deviceMorg to the moment that 80% of the other
devices in the network have sent back results, since in a
wireless ad hoc network, it is not ensured that all devices
are always reachable and available. For the DF strategy,
the response time is defined a bit differently. Here, a query
ends when the originator receives the result and finds that
all its neighbors have processed the query. The simulation
results are shown in Figures 10 and 11, covering indepen-
dent and anti-correlated datasets, respectively. The response
time consists of both the wireless transfer time and the lo-
cal processing time on each device. Based on the results
from Section 5.1, we estimated the local processing costs in
the simulation and added them to the communication delays
gained in the MANET simulator to obtain the total response
time.

From the figures, we see that BF exhibits shorter re-
sponse times than does DF. The most important explana-
tion is that the BF query forwarding strategy enables par-
allel query processing among the mobile devices, while the
DF strategy only allows each query to be processed serially
along all devices involved. Another reason that leads to a
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Figure 10. Response Time on Independent Datasets in MANET Simulation
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Figure 11. Response Time on Anti-Correlated Datasets in MANET Simulation

marginal difference is that we only count 80% results back
in computing the response time for BF, whereas DF needs
to wait longer before a query stops.

DF deteriorates much more quickly than does BF when
the dimensionality increases, as shown in Figures 10(b)
and 11(b). Local skyline processing over multi-dimensional
datasets is time consuming on resource-constrained mobile
devices. BF offsets that effect through parallelism; in con-
trast, DF is only hurt by that effect because of serialization.

BF improves as the number of mobile devices increases,
as shown in Figures 10(c) and 11(c). This is because more
devices increases the degree of parallelism of BF. The dis-
tance constraints make a more obvious difference to DF than
to BF. This is also attributed to DF’s serialization, which is
more sensitive than parallelism to distance constraints, as
larger search ranges usually involve more devices and data.

5.2.4 Query Message Count

In the simulation we found that the cardinality, the dimen-
sionality, and the distribution have little impact on the mes-
sage count. Therefore, we only show in Figure 12 how the
message count varies as the number of mobile devices in-
creases. Although BF shows better performance than does
DF in terms of response time, this gain is not for free. Par-
allelism generates and forwards more messages in the wire-
less network, which in turn consumes more wireless com-
munication bandwidth. As a result of this effect, the im-
provement of response time slows down in our simulation

500

400

300

200

100

 
10x109x98x87x76x65x54x43x3

M
es

sa
ge

 c
ou

nt

Mobile device number

BF
DF

Figure 12. Query Message Count

(shown in Figures 10(c) and 11(c)) as the number of mobile
devices increases.

6. Related Work

One area with related work is that of skyline query-
ing. Borzonyi et al. [9] introduce the skyline operator into
database systems with algorithmsBlock Nested Loop(BNL)
andDivide-and-Conquer(D&C). Chomicki et al. [12] pro-
pose aSort-Filter-Skyline(SFS) algorithm as a variant of
BNL. Tan et al. [21] propose two progressive algorithms:
Bitmap and Index. The former represents points in bit
vectors and employs bit-wise operations, while the latter
utilizes data transformation and B+-tree indexing. Koss-
mann et al. [15] propose aNearest Neighbor(NN) method.
It identifies skyline points by recursively invoking R∗-tree
based depth-first NN search over different data portions.



Papadias et al. [19] propose aBranch-and-BoundSkyline
(BBS) method based on the best-first nearest neighbor algo-
rithm [13]. All works above assume centralized data stor-
age. In contrast, we assume that data is distributed hori-
zontally among multiple mobile devices. This also differs
from [6] where different dimensions are stored at different
web sites.

Another area with related work concerns mobile P2P,
where P2P and MANETs are combined into a new and in-
teresting area. Kortuem et al. [14] describe scenarios where
mobile devices can exchange data when they encounter each
other. Budiarto et al. [11] mainly discuss strategies for data
replication in a mobile P2P environment. Xu et al. [23]
cover systemic topics on data management in mobile P2P
networks. The same ideas have been applied to dissem-
inate spatio-temporal resource information in mobile P2P
networks [22]. Lindemann et al. [16] propose a distributed
document search service for applications in mobile ad hoc
networks. With controlled message forwarding and local
caching, their method avoids flooding messages throughout
the network. For a quality presentation of the state of the
art on mobile ad hoc networking, readers are referred to a
recent book [7].

7. Conclusion and Future Work

Assuming a setting with mobile devices communicating
via an ad hoc network, this paper studies skyline queries
that involve spatial constraints. Each mobile device contains
some portion of the data against which the queries are is-
sued. To reduce the communication cost, a distributed query
processing strategy is proposed that takes advantage of the
skyline dominance relationship to eliminate non-qualifying
intermediate tuples, thus reducing the amount of data trans-
mitted. On each mobile device involved, the local query
processing is optimized using a hybrid storage model for the
tuples, which have both spatial and non-spatial attributes.
Extensive experimental studies demonstrate the efficiency
of the methods, in terms of both communication cost sav-
ings and response time.

One research direction is to generalize the filtering idea,
using more than one filtering tuple. Important questions in-
clude how many, and which, tuples should be used as filters,
to achieve the best data reduction rate. Another direction is
to extend the current strategies to retain good performance
while incorporating the redistribution of local relations due
to device mobility.
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