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Abstract

Autoassociator is an important issue in concept learn-
ing, and the learned concept of a particular class can be
used to distinguish the class from the others. For nonlinear
autoassociation, this paper presents a new model referred
to as kernel autoassociator. Using kernel feature space as a
potential nonlinear manifold, the model formulates the au-
toassociation as a special reconstruction problem from ker-
nel feature space to input space. Two methods are devel-
oped to solve the problem. We evaluate the autoassociator
with artificial data, and apply it to handwritten digit recog-
nition and multiview face recognition, yielding positive ex-
perimental results.

1. Introduction

Autoassociator, also referred to as autoassociative mem-
ory or autoassociative network, is a brain-like distributed
memory that learns from a set of samples {x;} to perform
the pattern reconstruction by ([1] pp.75)

F:X,'—>)A(i (1)

Thereby, through learning dependencies among the samples
in the autoassociation, the network can find the commonali-
ties and capture the concept of the particular class [2, p.72].
For instance, Kohonen demonstrated in an early work that
an autoassociative memory can be used to store and retrieve
face images [3].

Autoassociators themselves do not produce explicit re-
sponses to classification tasks. Instead, a set of such net-
works can to be created for each class, and classifying a
given pattern can be achieved by comparing the individual
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autoassociation results - as the network dedicated to the true
class would produce the best results [4].

In this field, the linear networks such as correlation as-
sociative memory [3] exhibit the simplest form, but they
have limitations in exploring high-order dependency among
the data. Therefore, they are inappropriate for classification
tasks involving multimodal and nonlinearly distributed pat-
terns [5], such as face images under varying lighting condi-
tions or pose angles.

Previous research usually addresses the nonlinear is-
sue by using autoassociative Multi-Layer Perceptrons (AA-
MLPs), which have been widely used in computer vision
applications [6][7]. During learning, the hidden units in the
network could build for the input pattern an internal rep-
resentation that is useful for pattern reproduction through
hidden-to-output layer connections.

However, it is known that for high-dimensional data, au-
toassociative MLPs may have difficulties in efficient train-
ing. Moreover, it has been found that autoassociative MLPs
are somehow equivalent to linear PCA in many cases [6].

The goal of this paper is to propose an efficient approach
to nonlinear autoassociation. We introduce kernel method
[8] to nonlinear autoassociation, yielding a new network
model referred to as kernel autoassociator. It is known that
kernel method has been well-established as an efficient way
to nonlinear analysis in recently years. For nonlinear autoas-
sociation, we can use it as a generic and accessible method
to obtain nonlinear features.

In particular, the kernel network achieves the autoassoci-
ation mapping F' through kernel feature space in two steps:
the mapping from input space to kernel feature space; the
mapping from the feature space backwards to input space.
The latter one is stressed in the present work. Two methods
are developed for the backward mapping. One involves lin-
ear manipulations in kernel feature space, while the other

COMPUTER
SOCIETY

YF]',F.



employs polynomial functions in a kernel feature subspace
spanned by kernel principal components [9].

The proposed approach has been evaluated with simula-
tions, and applied to face recognition (FR) (UMIST mul-
tiview face database [10]) and optical character recogni-
tion (OCR) (USPS handwritten digit database). The results
demonstrate the effectiveness of this nonlinear autoasso-
ciator model, and suggest that the proposed approach can
achieve high performance for classification, comparable to
other state-of-the-art techniques.

2. Kernel Autoassociator

Feature Space

Input Space
X)

| ZZ Class 1 [T Class 2 |

Figure 1. The kernel autoassociation

A conceptual depiction of kernel autoassociation is given
in Fig. 1, where the autoassociator performs in two steps:
first a pattern x is implicitly transferred to a kernel feature
space ¥ by ®(x), and is then mapped backwards to input
space by

Fb(c) :®(x) - %, forx € classc 2)

where ®(x) is the kernel feature of x. ® together with F},
would constitute a complete kernel autoassociator. Strictly,
the ®(x) may be in implicit form, but it has an important
property: the dot products of ® can be performed by means
of kernel functions in input space

k(xi,x;) = (2(x;) - 2(x;)) 3)

where () denotes a dot product, and % the kernel function
in input space. By this, the problems in kernel feature space
may be expressed and solved in forms of kernel functions.

Common kernel functions for k include Gaussian ker-
nel, polynomial kernel and sigmoid kernel. Since the ker-
nel mapping has been well addressed in the literature, this
work will emphasis on another part of kernel autoassocia-
tor: the backward mapping F3, for which a linear method
and a polynomial method for Fj are developed in the fol-
lowing.
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3. Linear Functions for F}

In its simplest form, F} would be a linear function on ®.
Because of the intrinsic nonlinearity of kernel feature space,
the complete autoassociator is still nonlinear. This leads to
a new expression of Eq. (2)

& = F}(®(x)) = §] 2(x) @)

where Z is a component of X, B;, a kernel feature vector.
Suppose 545 can be spanned by the given M examples.

M
Bo = b:i®(x;) (5)
i=1
then we can rewrite Eq. 4 as
M M
&= b®(x)®(x) = > _bik(xi;,x) =b"k  (6)
i=1 i=1
where b = [b1,...,bn] and k is the kernel product vector

(k; = k(x;,%)). Hence for the complete output vector X,
the backward mapping can be expressed in matrix form by

x = Bk (N

where B = [by,...,bp], D the dimension of %. Interest-
ingly, it is the same as the expression of kernel associative
memory (KAM) [4] proposed earlier, which however is de-
rived in a different way as an extension of correlation asso-
ciative memory. This suggests that KAM can be viewed as a
linear instance of kernel autoassociator. And we can just re-
fer to [4] for training the network.

4. Polynomials for F,

Let Fp consist of 2nd order multivariate polynomial
functions in the kernel feature space

& = Fy(®(x)) = 8T (x)Wyd(x) + FL8(x) + ¢4 (8)

where W¢,Ew and ¢y are the multivariate polynomial co-
efficients. ® is the centered feature vector given by ¢ —
+ Zi\il ®(x;). The direct calculation of Eq. 8, however,
may be inapplicable because the kernel feature vector ¢ can
be implicit. A practical solution is to find a low-dimensional
representation of ®(x) such that the feature vector can be
written as
N
o(x) = Zaivi = (
i=1

Vi Vo V3...)(041 Qo )T = VO_Z (9)

where V' is the matrix with each column a basis of the sub-
space, and @ the projections of ® onto V.
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And we can arrive at a new form of Equation 8.

i=F,(a@)=a"Wa+fTa+c (10)
which is a polynomial funciton on the coefficient vector @,
and W denotes VI W, V.

In practice, the low-dimensional representation in Eq. (9)
can be obtained by KPCA which performs linear PCA in
the kernel feature space by an elegant method [9]. In partic-
ular, the vector @ is obtained as & = Ak., where A is the
KPCA projection matrix and k.. is given by

k. =k — K 1!, — 1k + 1, K, 1, = Tk + k,, (11)

with K, the gram matrix of prototypes: K7 = k(x;,x;),
Iy a M x M matrix with all entries equal to 1/ M, 1], a1x
M vector with all entries equal to 1/ M. And we also use
k,,, to represent the term (K1), + 1,, K1) independent
of the kernel product vector k, use .J,,, to represent I — 1,,.
For details please refer to [9].
Importantly, from the above we can derive a new expres-
sion of Eq. 10 directly on kernel product vector k
&= Fr(k) = kW,k + .k + ¢, (12)
And 8, W, and ¢, can be calculated as in Table 1 that gives
the relationship between a polynomial in KPCA subspace
(&) and the equivalent polynomial on kernel product vector
(k). By this, we can bypass the explicit KPCA calculations
of @ to reduce computational complexity in running kernel
autoassociator.

[(Fa(@ | Fi (k) |
W W, = JLATW A,
B B, =2KLATWAJ,, + BT AJ,,
c cq = KTATWAK,, + TAK,, + ¢

Table 1. Equivalent kernel polynomials

For training the autoassociator from a given set of sam-
ples, we have to determine those polynomial coefficients
W,ﬁ and c. Although the function is nonlinear in the vari-
able &, fortunately it is linear in the coefficients, so the so-
lution can be achieved by linear approaches using the least
mean square error criteria. The details are omitted here due
to the space limitation.

5. Evaluation with Spiral Data

To examine the proposed method, we first generate a set
of patterns on a 2D spiral as plotted in the leftmost panel
of Fig. 2. The patterns are used to train an autoassocia-
tive MLP (AA-MLP), a kernel autoassociator with linear
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Fy, (hereafter referred to as KAA-1) and a kernel autoasso-
ciator with polynomial Fj, (hereafter referred to as KAA-2),
respectively. Next, we evaluate the reconstruction error of
each 2D pattern by each network, yielding error surfaces in
the form of image in Fig. 2, where the reconstruction error
is denoted by the pixel intensity. For the AA-MLP, we use
a hidden layer of 12 hidden neurons, though more neurons
yield similar result in our tests. For KAAs, we use Gaussian
kernel functions k. KAA-2 employs 20 KPCA features.

Samples AA-MLP KAA-1 KAA-2

Figure 2. Evaluation with spiral data

Though the patterns exhibit a nonlinear and complex dis-
tribution thus posing a problem to AA-MLP, apparently the
proposed kernel networks can produce reconstruction error
surfaces that correctly capture the underlying structure of
the data.

6. Application to OCR

US-Postal Service (USPS) handwritten digit database
consists of 7291 training patterns and 2007 test patterns of
16 x 16 pixels. Fig. 3 shows some reconstruction exam-
ples, from left to right in (b,c) are results by the networks
for 0’ to ’5’. It can be seen that each kernel autoassocia-
tor would perform well just on its intra-class patterns.

PIQLLISISISION

(@) |

Of §-§- 11K

Figure 3. Pattern reconstruction by kernel au-
toassociators. (a) original pattern; (b) recon-
structions by KAA-1s; (c) by KAA-2s.

Table 2 compares the kernel autoassociators with other
techniques in USPS test. Here KDDA is a newly proposed
kernel Fisher discriminant method [12], and KPCA-NN is
the Nearest-Neighbour technique used in the KPCA sub-
space. Please note that no domain knowledge is used by any
method in this study. The results suggest that kernel autoas-
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sociators can offer satisfactory performance for handwritten
digit recognition.

KAA-1 | 438% || KPCA-NN | 6.15%
KAA-2 | 4.68% AA-MLP | 7.42%
KDDA | 10.0% SVM[11] 4.4%

Table 2. Recognition error rates on USPS.

7. Application to Face Recognition

The UMIST database consists of 575 gray-level face im-
ages of 20 subjects, each covering a wide range of poses
[10]. The training set consists of 6 images per person, while
test set is just the reminder. Both KPCA-NN and KAA-2
employ 40 principal components. Resulting recognition er-
ror are compared in Fig. 4, over the bandwidth o of Gaus-
sian kernel (Note that 1-Nearest-Neighbour (NN) and AA-
MLP do not use Gaussian kernel). The performance of ker-
nel autoassociators in the test are favourably compared to
others, just slightly outperformed by KDDA (though they
significantly outperformed KDDA in the previous experi-
ment). Remarkably, KAA-1 demonstrates consistent perfor-
mance over a wide range of o.

5
) t == KPCA-NN
I
b9
@ 1.
o --- AA-MLP
é
K « NN
B0
S = KAA-1
£ P —o= KAA-2
A -4 KDDA
0

! log(o) :

Figure 4. Face recognition results

8. Efficiency Consideration

Since kernel autoassociators can be trained using linear
mean square error algorithms, in the training stage they gen-
erally take an advantage in computational time over AA-
MLPs with back-propagation program. In the test stage, the
overall cost can be approximated by that of O(M) kernel
operations plus some manipulations in Eq. 6 (O(DM) lin-
ear) or Eq. 12 (O(DM?) linear). (Remind that D is the di-
mension of output, M the number of examples). Compar-

ing with AA-MLPs which do no use large number of hid-
den nodes, the computational cost of kernel autoassociators
could be higher. But the performance comparison described
earlier demonstrates that kernel autoassociators are more ef-
fective.

9. Conclusion

This paper has presented a kernel autoassociator model
for nonlinear autoassociation, and the model is capable of
exploring nonlinear dependency among the data in an ef-
ficient way, by taking advantage of kernel techniques. The
kernel autoassociator model has been evaluated using ar-
tificial data, as well as OCR and face recognition bench-
mark databases. Positive results attest to the excellent per-
formance of the proposed model for visual classification.
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