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Abstract

We propose a new maximum margin discriminative

learning algorithm here for classification of temporal sig-

nals. It is superior to conventional HMM in the sense that

it does not need prior knowledge of the data distribution.

It learns the classifier by using a nonlinear discriminative

procedure based on a maximum margin criterion, providing

a strong generalization mechanism. This maximum margin

discriminative learning method is presented together with a

two-step learning algorithm. We evaluate the kernel based

hidden Markov model by applying it to some simulation and

real experiments. The preliminary results have shown sig-

nificant improvement in classification accuracy.

1 Introduction

Maximum likelihood (ML) estimation, as the most pop-

ular learning method for hidden Markov model [9], may

not lead to an optimal performance. This is due in part to

the mismatch between the chosen distribution form and the

actual signal distribution that is typically not available. To

address this issue, a few recent endeavors resort to discrimi-

native training approaches, such as maximum mutual infor-

mation (MMI) estimation [2] and minimum classification

error (MCE) estimation [6]. These approaches have their

roots in maximum a posteriori (MAP) decision theory. Dif-

ferent from ML, here the learning is applied to all categories

in the training phase. In the case of inadequate sparse train-

ing samples, they can usually demonstrate significant per-

formance over the traditional ML approach. However, the

performance of these learning methods still largely depends

on consistency to actual data distribution.

We expect a nonparametric method that can be used

with arbitrary distributions and without the assumption that

forms of the underlying densities are known. Support vec-

tor machine (SVM), for example, is a nonparametric classi-

fication method with solid background in statistical learning

theory [11]. In principle, SVM constructs a hyperplane in

the kernel space so as to maximize the margin of separation

between positive and negative examples, which guarantees

strong generalization compared with the traditional discrim-

inative approaches used to train HMM models. However,

SVM suffers from an apparent lack of considering the un-

derlying process of signal generation so that it may fail to

classify temporal signals.

Motivated by this dilemma, we propose a new non-

parametric learning for classification of temporal signal

in this paper. It incorporates kernel-based discriminative

learning approaches into hidden Markov model, having no

need of prior knowledge of signal distribution. The learning

is formulated as finding the maximum margin of separation

between the category of the sample and the best runner-up

in the kernel space. By contrast, previous margin-based ap-

proaches [1, 10] try to maximum the summation of margins

between the true states of all the observations and the best

runner-up(s). The formulation is by imposing the explicit

constraint to the cost function so that the inferred state se-

quence from the designed model is the most possible state

sequence. By minimizing an auxiliary cost function which

is associated to the inferred state sequence, we present a

two-step learning algorithm that alternatively estimates the

parameters of the designed model and the most possible

state sequences until convergence. Besides, our algorithm

has been applied to the synthetic and real data of motor im-

agery classification tasks, yielding positive experimental re-

sults.

2 Classification of temporal signal

Multiclass classification is to learn a function h : X 7→
Y that maps an instance x of X into an element y of Y .

In general Y is a countable set and has Y = {1, · · · , K}.

In this paper, we consider the problem of the signal classi-

fication where a signal x is a sequence from the set X =
{X1 × · · · × XT }. In a motor imagery signal classification

task [8], for example, the goal is to determine from the EEG



signal, a time sequence signal for several seconds, which

action the user is imagining.

A popular family of classification function h for the

problem of the signal classification is statistically based. To

achieve the minimum classification error, the optimal clas-

sifier, according to the classical Bayes decision theory, is

the one that employs the decision rule of Eq. (1), which is

called the maximum a posteriori (MAP) decision.

h(x) = arg max
y∈Y

P (y|x). (1)

There are some methods to compute the posterior prob-

abilities of Eq. (1). Here we approximate those by only

considering the most likely state sequence, that is1

P (y|x) ≈ max
q∈Q|y

P (q|x) (2)

where Q|y is the subset of state sequences q which belong

to model y.

The theorem of random fields [7] provides a way to ap-

proximate the conditional probability P (q|x) directly

P (q|x) ∝ exp

[

∑

C∈C

VC(q|C ,x)

]

where C is the set of cliques for a graph, q|C the set of

components of q associated with the clique C, and VC is

called a potential.

For simplicity, here we assume state-state interaction is

the first order Markov chain. In this special case, the po-

tential VC only models the interactions of each consecutive

state pair and state-observation pair. Therefore, the condi-

tional probability can be derived as

P (q|x) ∝ exp

[

w ·
∑

t

ϕϕϕ(qt, qt−1,xt)

]

. (3)

The basis functions are the features associated to the rela-

tionship of the observable signal and states sequence. In

this paper, we define the features as follows:

ϕϕϕ(qt, qt−1,x) = ρ(qt−1, qt)φφφ(qt,xt)

where ρ(qt−1, qt) is an indicator function for the the state

transaction and φφφ(qt,xt) represents the kernel features of

the observation xt given the state qt.

By substituting Eqs. (2) and (3) into Eq. (1), the classi-

fication function employed for the signal classification has

the logarithm form

h(x) = argmax
k

{

max
q

[

wk ·
∑

t

ϕϕϕ(qt−1, qt,xt)

]}

.

(4)

1in Eq. (2), p(q|x) = p(y, q|x) because we can certainly identify

every state sequence q as the unique category.

3 Maximum Margin Discriminative Learn-

ing

Maximum Margin discriminative learning can be used

to find the optimal decision surface, increasing the “confi-

dence” of the classification. The basic idea is to construct

the decision surface in such a way that the margin between

the true class and the best runner-up is maximized [4].

Given the training sample {(xi, yi)}
N
i=1, the margin r has

the upper bound as follows:

r ≤ min
i







max
q∈Q|yi

[wyi
·ϕϕϕ(q,xi)] − max

k 6=yi

q∈Q|k

[wk ·ϕϕϕ(q,xi)]







(5)

where we denote ϕϕϕ(q,x) =
∑

t ϕϕϕ(qt−1, qt,xt) for simplic-

ity.

Unfortunately, it may be difficult to maximize the mar-

gin of separation directly. Similar to the support vector

machine, this optimization problem is equivalent to mini-

mizing the Euclidean norm of the weight vector w while

keeping the margin r = 1. Furthermore, we can also ex-

tend the constrained problem to the linearly non-separable

case by introducing a new set of nonnegative slack variables

{ξi}
N
i=1. Therefore, the constrained optimization problem

that we have to solve may now be stated as:

Given the training sample {(xi, yi)}
N
i=1, find the opti-

mum values of the weight vector w such that they satisfy

the constraints

∀i, k,q wyi
·ϕϕϕ(q̂i,xi) +δk,yi

−wk ·ϕϕϕ(q,xi) ≥ 1−ξi

and the weight vector w minimizes the cost function:

J(w) =
1

2

∑

k

‖wk‖
2
2 + C

∑

i

ξi

4 Two-step learning algorithm

Because the underlying stochastic process is not usually

observable and thus the optimal state sequence has to be es-

timated, the constrained optimization problem given in sec-

tion 3 can not be solved directly using standard quadratic

programming (QP) techniques. In this section, we present a

two-step learning algorithm for solving the constrained op-

timization problem. It can be seen that this two-step algo-

rithm is similar to the mathematics of standard Expectation-

Maximization (EM) technique [5], although our optimiza-

tion problem is not directly related to probability estima-

tion.

The EM algorithm is an iterative optimization technique

to solve the parameters estimation problem while we are



not given some “hidden” nuisance variables. In particular,

an auxiliary function which averages over the values of the

hidden variables given the parameters at the previous itera-

tion is defined. By minimizing this auxiliary function, we

will always carry out an improvement over the previous es-

timated parameters, unless finding the optimal values of pa-

rameters. In our case, the hidden variables are the most

possible state sequences q̂i. Instead of considering the ex-

pected values over the distribution on these unobservable

state sequences, we just consider the sequences of states that

minimize the cost, given the previous values of the parame-

ters:

Q(w, w̄)
def

=
1

2

∑

k

‖wk‖
2
2+C

∑

i

ξi+
∑

i,k,q

ηi,k,qQ1(i, k,q).

(6)

The Q1 has the following form:

Q1(i, k,q) = wk·ϕϕϕ(q,xi)−wyi
·ϕϕϕ(q̂i(w̄yi

),xi)−δyi,k+1−ξi

(7)

where q̂i(w̄yi
) is the most possible state sequence of the

sample xi given the previous value of weight w̄yi
.

The next step is to find a new set of weights w which

minimizes Q(w, w̄) where w̄ is the previous set of weights.

Accordingly, we may solve this optimization subproblem

using Karush-Kuhn-Tucker (KKT) theorem [3]. Due to the

limit of space, here we omit the technical details of the

derivation. We obtain the optimization subproblem in the

dual formulation as follows:

max
α



















−
1

2

∑

k

∑

i,q

∑

j,q′

αi,k,qαj,k,q′K(q,xi,q
′,xj)

+
∑

i,k,q

αi,k,qδyi,k



















s.t.
∑

k,q

αi,k,q = 0, ∀i; αi,k,q ≤ Cδyi,kδq̂i,q, ∀i, k,q;

(8)

where K(q,xi,q
′,xj) = ϕϕϕ(q,xi) · ϕϕϕ(q′,xj). Having

determined the optimum Lagrange multipliers, denoted by

αi,k,q, we may compute the optimum weights w, yielding:

wk =
∑

i

∑

q∈Q|k

αi,k,qϕϕϕ(q,xi) (9)

where Q|k is the subset of state sequences q which belong

to model k.

The algorithm consists of steps of repeatedly replacing

w̄ by w using update Eq. (9) until convergence. Theo-

rem 4.1 guarantees that such an approach will converge in

a finite number of iterations to a solution so that the cost

function J(w) reaches the minimal point. Due to the limit

of space, here we omit the proof.

Theorem 4.1. Suppose that w
(p) for p = 0, 1, 2, . . . is an

instance of the two-step learning algorithm such that:

1. the sequence J(w(p)) is bounded, and

2. Q(w(p+1),w(p)) − Q(w(p),w(p)) ≤ 0 for all p.

Then the sequence w
(p) converges to some w

∗ in the clo-

sure of Ω.

5 Experimental Results

Several signal classification experiments were conducted

to study the characteristics of our proposed learning algo-

rithm, and the difference in classification performances as

compared to traditional learning method. We report two sets

of experimental results here: one involves a set of synthetic

data sequences with mixture distributions and the other per-

tains to the EEG signal related to the motor imagery, well

known to the brain computer interfaces community.

In the first experiment, we individually generate two

classes of the synthetic data set from two different first-

order hidden Markov models. Each model is a left-right

model and consists of three states. Every state is modeled as

a Gaussian mixture with two components. To evaluate the

performance of our method, these two models are slightly

different so that there are very big overlap between them.

In order to evaluate our proposed learning method

(NPL), we carry out 8 runs of 10-fold cross-validation on

the data set containing 1000 samples with 15 time se-

quences. Each run performs the conventional maximum

likelihood (ML) and our proposed learning with different

size training set. Fig. 1 shows our experiments on HMM

and NPL method. The results show that our proposed

learning method outperforms traditional ML learning. Im-

portantly, our proposed method give a quite flat classifica-

tion accuracy curve after employing 60 training samples,

while ML algorithm has a less stable curve. It shows that,

compared to conventional ML method, our algorithm need

less training samples and has a good generalization perfor-

mance.

In the second experiment, We evaluate our approach on

the classification of EEG signal for motor imagery, to dis-

tinguish left and right hand movement imagination [8]. The

experiments were performed by a male subject (38 years

old).

In our experimental paradigm, the subject was instructed

to fixate on a computer screen about in 180 cm front of him.

Each trial was 6 seconds long, starting with a blank screen

which indicated a pause. At 2nd second, the blank screen

was replaced by a prompting arrow stimulus, pointing either

to the left or to the right lasting for 4 seconds. Following

the direction of the arrow, the subject performed motor im-

agery accordingly. The complete experiment consisted of
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Figure 1. Average classification performance

for HMM and our proposed method

five runs, each run consisted of 20 trials. The number of left

and right hand imaginations are balanced.

EEG signals were recorded using the Neuroscan

SynAmp2 system, sampled at 250 Hz. 28 channels of EEG

around the C3 and C4 region related to the sensorimotor

cortex were then chosen from the 64 scalp electrodes. EEG

signals between 100 ms before stimuli and 4000 ms after

stimuli were extracted for later processing. The extracted

signal is filtered using the Infinite Impulse Response (IIR)

band-pass filter with the frequency bandwidth of 8-36Hz.

All data were divided into 20 folds of 95 training and 5

test samples each. Before classification, the time sequences

are first divided into segments of 900ms length with 250ms

overlap for feature extraction. For the purpose of compari-

son, common spatial patterns (CSP) features are employed

in all classification methods. For more details about the pre-

processing and feature extraction please refer to [12]. Ad-

ditionally, both HMM and our proposed method consist of

3 states for capturing the structure of EEG data. The kernel

function used in SVM and NPL is the RBF kernel [11]. The

classification results, shown in table 1, are averages over

these 20 folds. We compare our proposed algorithm with

other two classification approaches, SVM and HMM. In this

dataset, our proposed approach gives the highest classifi-

cation accuracy of 93%, compared to the SVM (78%) and

HMM (84%). The low classification accuracy of SVM may

be due to the fact that it does not explicitly take the temporal

dynamic of the signals into account.

SVM HMM NPL

Classification accuracy (%) 78 84 93

Table 1. Average classification performance

for SVM, HMM and our proposed method.

6 Conclusion

We presented here a non-parametric learning for clas-

sifying multi-class temporal signals. The model is capa-

ble of both exploiting the temporal dynamics of the signals

and maximizing the margins between classes in an effective

way, by taking advantage of the rich language of hidden

Markov model and superior separability of the kernel tech-

niques. The most important contribution here in this article

is the proposed maximum margin discriminative learning

method. It was presented with a two-step learning algo-

rithm for constructing the classifier.

The experimental results on synthetic data and real motor

imagery EEG signal classification have shown that our pro-

posed algorithm can exploit the nature of sequential signals

and significantly outperforms the non-structural methods,

and the HMM based parametric methods.

References

[1] Y. Altun, I. Tsochantaridis, and T. Hofmann. Hidden

Markov support vector machines. In Proc. ICML, 2003.

[2] A. Ben-Yishai and D. Burshtein. A discriminative train-

ing algorithm for hidden Markov models. IEEE Trans. On

Speech and Audio Processing, 12(3):204–217, May 2004.

[3] D. Bertsekas. Nonlinear Programming. Athenas Scientific,

Belmont, MA, 1995.

[4] K. Crammer and Y. Singer. On the algorithmic implementa-

tion of multiclass kernel-based vector machines. Journal of

Machine Learning Research, 2:265–292, 2001.

[5] A. Dempster, N. Laird, and D. Rubin. Maximum-likelihood

from incomplete data via the EM algorithm. Journal of

Royal Statistical Society B, 39:1–38, 1977.

[6] B. Juang, W. Chou, and C. Lee. Minimum classification

error rate methods for speech recognition. IEEE Trans. On

Speech and Audio Processing, 5(3):257–265, May 1997.

[7] J. Lafferty, A. McCallum, and F. Pereira. Conditional ran-

dom fields: Probabilistic models for segmenting and label-

ing sequence data. In Proc. ICML, 2001.

[8] G. Pfurtscheller and C. Neuper. Motor imagery and direct

brain-computer communication. Proceedings of the IEEE,

89:1123–1134, July 2001.

[9] L. R. Rabiner. A tutorial on hidden Markov models and

selected applications in speech recognition. Proceedings of

The IEEE, 77:257–286, Feb. 1989.

[10] B. Taskar, C. Guestrin, and D. Koller. Max-margin Markov

networks. In Advances in Neural Information Processing

Systems 16, Cambridge, MA, 2004. MIT Press.

[11] V. N. Vapnik. Statistical Learning Theory. Wiley, New York,

1998.

[12] W. Xu, C. Guan, E. S. Chng, S. Ranganatha, M. Thulasidas,

and J. Wu. High accuracy classification of EEG signal. In

17-th ICPR, volume 2, pages 391–394, 2004.


