

Decomposing Polygon Meshes by Means of Critical Points

Yinan Zhou and Zhiyong Huang

Department of Computer Science, School of Computing
National University of Singapore, Singapore 117543

{zhouyina, huangzy}@comp.nus.edu.sg

Abstract

Polygon mesh is among the most common data structures
used for representing objects in computer graphics.
Unfortunately, a polygon mesh does not capture high-level
structures, unlike a hierarchical model. In general, high-level
abstractions are useful for managing data in applications. In
this paper, we present a method for decomposing an object
represented in polygon meshes into components by means of
critical points. The method consists of steps to define the root
vertex of the object, define a function on the polygon meshes,
compute the geodesic tree, compute critical points, decide the
decomposition order, and extract components using
backwards flooding. We have implemented the method. The
preliminary results show that it works effectively and
efficiently. The decomposition results can be useful for
applications such as 3D model retrieval and morphing.

1. Introduction

Polygon mesh is the most widely available form of
three-dimensional models. Geometrically, polygon
mesh is a set of faces that share edges, or a set of
vertices that are connected to neighbouring vertices by
edges. The information it stores is the vertices
geometric positions and their connectivity. The meshes
come mostly from digitization of models or more rarely
from real objects. They have many advantages. They
are simple and fast for rendering. They can provide
good approximation of real world objects. They have,
however, no explicit higher-level structure; they exist
simply as a collection of connected polygons – a bucket
of polygons.

One way to impose a higher-level structure on such a
mesh is to partition it into a set of connected
components. Psychological studies also show that
human shape perception is partly based on
decomposition, and any complex object can be regarded
as an arrangement of simple primitives, or components
[2]. Presumably, the components should represent
something about the underlying structure of the object
itself — the semantic meaning of the object’s parts and
subparts. However, when no structure, other than the
local connectedness of the polygons, is specified, any
algorithm seeking to partition such meshes must infer
some structure from the local shape (e.g., geometry) of
the mesh itself.

In this paper, we propose an algorithm to decompose an
object into connected components, which accord human
shape perception, and more importantly, are beneficial

to interactive graphics applications such as mesh editing,
shape interpolation, establishing corresponding points
for morphing and animation.

To decompose a polygon mesh using only the
connectivity information of vertices, we address three
key issues:

1. What features can be used to delineate components

reliably?
2. How to detect these features? and
3. How to do the decomposition based on the features

detected?

Our method consists of steps to define the root vertex
of the object, define a function on the polygon meshes,
compute the geodesic tree, compute critical points,
decide the decomposition order, and extract
components using backwards flooding.

The remainder of this paper is organized as follows.
Section 2 reviews related previous works and the
problems that arise in these works. Section 3 discusses
in detailed of our work. First, a notion of component is
proposed and followed by an overview of our
decomposition method (Subsections 3.1 and 3.2). Then,
we describe critical points detection (Subsections 3.3 to
3.7) and the decomposition method (Subsections 3.8
and 3.9). In Section 4, we present the decomposition
results. We show the results of the geodesic tree,
critical points and components, in automatically and
interactively selected root, respectively. It is clear that
the interactively selected root is more accurate. Thus, it
gives better decomposition results. We also show the
running time on a Pentium 4, 1.6 GHz, 256MB memory
computer. We conclude the paper in Section 5 with a
brief discussion of one future work on morphing.

2. Related Work

In this section, we will review the existing work on
decomposing a 3D object. They can be roughly divided
as methods based on computer vision, volume data, and
polygon mesh representations.

2.1 Computer Vision-Based Decomposition
Decomposition of shape is studied extensively in the
computer vision community. Approaches, such as
decompose 2D digital shapes are proposed in the
literature. In [2], shapes are decomposed into simple

components, “geometrical ions”, geons. The geons
consist, in that article, of generalized cones. The shape
is segmented and the obtained parts approximated with
the best fitting geon. This can be seen as analogous to
the usage of phonemes in the lexical access during
speech perception. For example, only 44 phonemes are
needed to code all the words in English. For 2D images,
36 geons are needed.

Nevatia and Binford [13] used hierarchies of cylinder-
like modeling primitives to describe natural forms.
Pentland [14] extended the modeling primitives from
cylinder to a family including cubes, cylinders, spheres,
diamonds and pyramidal shapes as well as the round-
edged shapes intermediate between these standard
shapes. He proposed the idea of super-quadric, a
superset of the modeling primitives currently in
common use.

These works and their extensions were used in 2D
images and range data. But it is trivial to be applied to
3D polygon meshes.

2.2 Volume Data Decomposition
Decomposition of 3D volume digital shapes based on a
hierarchical decomposition method was discussed in
[16]. The internal cores of the parts are detected on the
distance transform of the object and the corresponding
parts obtained by a region growing process from them.
As any distance transform can be used, the
decomposition is stable under rotation. The parts can
be seen as nearly convex and elongated parts. The
elongated parts are either necks or protrusions. A man-
like object was decomposed into two nearly convex
parts, the head and the body; one neck, the neck; and
four protrusions, the two arms and the two legs.

2.3 Polygon Mesh Decomposition
Falcidieno and Spagnuolo [5] proposed an algorithm to
classify polygon surface into curvature regions.
Chazelle et al. [3] addressed the problem of dividing
polyhedra into collection of convex pieces. The
individual faces are each convex, but if one considers
the optimal partitioning (e.g., smallest number of
pieces), the problem is NP-complete. Mangan and
Whitaker [12] extended the 2D image segmentation
technique, morphological watersheds, to segment 3D
surfaces into patches, where each patch has a relatively
consistent curvature. These methods need to compute
third- and fourth-order derivatives, which are very
sensitive to noise, and work well only on relatively
high-resolution data.

Gregory et al. [6] proposed decomposing the boundary
of a polyhedron into the same number of morphing
patches from the interactively defined feature nets. This
approach needs user interaction and is complicated to
implement.

Tan et al. [18] achieved good results in decomposing
objects through the use of vertex-based simplification.
Their approach works well for the geometric or
inorganic models such as helicopters. However, it is not
robust in that the results are sensitive to user specified
parameters. In particular, it is not suitable for organic
models that have no clear boundaries among their parts
or components, such as that between the limbs and
torso of a human. In addition, a homogeneous part of
the object may be undesirably partitioned into different
components, as there is no good control provided by
simplification models in identifying boundaries among
components.

Li et al. [11] proposed a framework for decomposing
polygon meshes into components by treating them as
surfaces of a volume. They adapt the idea of edge
contraction to build skeleton of the object, then use
space sweeping to decompose it. The skeleton
generated by edge contraction is unconnected and
virtual links need to be added. One of the important
steps is the construction of skeleton. The methods to
extract 1D skeleton from mesh object have been studied
in [1, 12, 19]. The cost to build skeleton is high. The
recent major progress includes [7, 15].

Our approach is mostly similar to Li et al. [11] on that
we both use critical points information as the stop
condition of decomposition. However, they differ in the
following aspects: in the method of Li et al., critical
points are detected in the process of sweeping along the
skeleton. The sweeping plane’s orientation is adjusted during
the sweeping; in our method, the critical points are detected
using the mesh surface information, the geodesic distance,
before the decomposition process.

3. Our Work

In this section, we will start to present our work in
detail. First, we will define a notion of component
followed by an overview of our decomposition method
(Subsections 3.1 and 3.2). Then, we will describe
critical points detection (Subsections 3.3 to 3.7). Finally,
we will describe the decomposition method
(Subsections 3.8 to 3.9)

3.1 Definition of Component
By decomposition, we refer to the process of breaking
down an object to arrive at a collection of meaningful
components. By meaningful, we mean that a component
can be distinguished perceptually from the rest of the
object. Li et al. [11] points out the two important
distinguishing characteristics are geometry and
topology. In our work, we capture the information
using critical points of a geodesic tree.

Notion of Component: A component C is a subset of
the object O, such that it is bounded by borderlines
consisting of critical (local extremum or saddle) points.

i.e. U
e

s

l

l

vC = for Objv ∈ , where ls and le are starting

and ending borderlines formed by critical points (local
extremum or saddle vertices). A function µ is defined
on vertices of the object to derive the critical points. In
our work, we define the function µ in this way: (1) we
automatically compute or interactively pick a vertex as
the root vertex r, µ (r)=0; (2) starting from the root r,
compute the geodesic tree which covers all vertices of
the object; (3) for any vertex v, its function value µ (v)
is defined as the geodesic distance of shortest path to
root vertex r.

With this notion, the problem of decomposing an object
into components is thus transformed to one that locates
critical points and uses them to form the borderlines.

3.2 Overview of Our Approach
The input of our algorithm is one connected 3D object
represented in triangle meshes and the outputs are
several connected components represented in triangle
meshes. The overview of our method is listed as
follows:

Given a 3D object represented in triangle meshes
(Figure 1 (a)),

1. Preprocess input data to insure even distribution of

vertices and reasonable dense sampling rate (Figure 1
(b)).

2. Automatically or interactively select a root vertex for

the object (Figure 1 (c)).

3. Define a function µ to capture geometric information

of the object. We use geometric distance in this work.

4. Start from the root vertex defined in step 2, construct

a distance map and an oriented graph call geodesic
tree (Figure 1 (d)) connect all vertices in the object.
The geodesic tree is obtained by computing shortest
paths between each vertex and the root vertex. The
distance map is the length of these shortest paths.

5. Compute the vertex sign change for each vertex in

the mesh using geodesic distance between each
vertex v to the root and the geodesic distance from
v’s neighbours to root.

6. By examine the vertex sign change, detect critical

points (local extremum and saddle points) which
corresponding to the extreme end of components and
joints where topology change occurs (Figure 1 (e)).

7. Define the decomposition order by ordering the

critical vertices using geodesic distance (Figure 1
(f)).

8. The decomposition is finally obtained by using a

backwards flooding technique. Start from each local
extremum in the order of step 7, construct a
connected shortest path graph on the object surface
until a saddle vertex is met. For all the vertices in the
graph, mark them to be the vertices of one
component (Figure 1 (g)).

Table 1. Overview of our method in steps

(a) Input Mesh (b) Preprocess Data

(d) Build Geodesic tree (c) Define Root

(e) Detect Critical Points (f) Order Critical Points

(g) Decomposition Result
Figure 1. Illustration of decomposition in steps

3.3 The Root Vertex of an Object
The root vertex of the geodesic tree can be any vertex
on the object. However, its choice will influence the
decomposition results. Intuitively, using an extremum
vertex located at the tip of a longest branch or the polar
extremity as the root vertex will better describe an
object’s structure. Thus, it gives out a better
decomposition result. In our work, we select the root
vertex both automatically and interactively (illustrated
in Figure 2 (a) and (b)). In the former case, we apply a
heuristic based on an algorithm to find a diameter of a
tree. A diameter of a tree is a pair of vertices separated
by the largest possible distance in the tree. Intuitively,
the two vertices of a diameter are located at the tip of a
longest branch of the tree. Detailed description of the
algorithm is as following:

Procedure to Determines a Tree Diameter

Step 1: Pick a vertex x at random from the pool of mesh

vertices.
Step 2: Build shortest-path tree root at x and find y such that

disx(y) is maximal.
Step 3: Build shortest-path tree root at y and find z such that

disy(z) is maximal.
Step 4: Output (y,z) as a diameter. z will be a suitable root

vertex.
Table 2. Algorithm to determine a tree diameter

The comparison of the final decomposition results
using these two ways of root allocation can be found in
Section 4. The results are shown to be equally
satisfactory.

(a) (b)

Figure 2. Automatically (a) and interactively (b)
selected root vertex: (a) usually located at the

tip of a longest branch and (b) at polar
extremity

3.4 A Function on Vertices
The critical points we use to decompose the object are
generated by plugging each vertex v into a function µ
and examine the value µ (v). It is important that the
function µ is carefully defined. Hilaga et al. [8] and
Takahashi et al. [17] used the height function as µ, so
that any vertex is associated its own z-coordinate in a
suitable coordinate system. The height function turns
out to be a successful function µ in their application
because for terrain data, the critical vertices correspond
to peaks, passes or pits of the terrain. Height function is
not suitable for our approach since there is relatively
hard to set up a base plane for arbitrary object. Another
approach uses curvature as the function µ. It may be
applicable for some objects; but it is still not suitable
for our purposes. Because a stable calculation of
curvature is difficult on a noisy surface, and small
undulations may result in a large change of curvature,
causing error in the detection of saddle vertices.

Through experiment we find geodesic distance, the
distance from point to point on a surface, can be a
suitable function µ for genus-0 polygon mesh.

Methods for computing an accurate geodesic distance
have been well studied [4, 9], however, when
computing the accurate geodesic distance using these
methods, the computational cost is high. Considering

the trade off between computational cost and accuracy,
we employ a relatively simple method in which
geodesic distance is approximated by Dijkstra’s
algorithm based on edge length (described in
Subsection 3.5).

3.5 Computing the Geodesic Distance
The construction of Shortest Path Tree is based on
Dijkstra’s shortest path algorithm. As for the classical
Dijkstra’s algorithm, we maintain a priority queue Q
with respect to the shortest distance from each vertex v
to root (dis(v)) and use a breadth-first search. This
priority queue contains the vertices adjacent to the
already visited vertices, whose distances have not yet
been decided.
Dijkstra’s Algorithm for Computing Geodesic
Distance

Step 1: Initialize dis(v) = ∞ for all vertices.
Step 2: Select a root vertex r, set dis(r) = 0, and insert r to Q.
Step 3: Dequeue the vertex v with smallest dis(v) from Q.
Step 4: For each vertex vi adjacent to v, if dis(v) + length(v,

vi) < dis(vi), update dis(vi) = dis(v) + length(v, vi) and
insert (or update) vi to Q.

Step 5: Repeat Step 3 and 4 until Q is empty.
Table 3. Computing the geodesic distance

The input of the algorithm is a 3D triangulated mesh
(set of vertices, the connectivity information of the
vertices and a root vertex). The output will be a tree, the
geodesic tree, storing the geodesic distance from each
vertex to the root vertex. One example of the geodesic
tree is shown in Figure 3.

Figure 3. Example of a geodesic tree

3.6 Vertex Sign Change
Zooming into the mesh object, we can find each vertex
has its neighbours form a closed circle around it
(Figures 4).

Knowing the adjacency between faces of the
polyhedron, for each vertex, we can figure out its
neighbours and organize these neighbours in a circle.
Let v1,v2,…,vk be the k neighbours of v enumerated
around v and dis(v1), dis(v2),…, dis(vk), dis(v) be the
distance from root vertex to vertex v1, v2,…,vk, v. We
consider the number of sign changes, sgc(v), in the
sequence (dis(v1)-dis(v), dis(v2)-dis(v),…, dis(vk)-dis(v)).

If dis(vi)=dis(v), we skip this ith neighbour vertex by
assume there is no sign change.

(a) A mesh with a small patch selected

(b) Zoom-in of the small
patch

(c) One vertex and its six
neighbouring vertices

Figure 4. The neighbours of a vertex

Figure 5 shows two vertices v with sgc(v) both equal to
4.

Figure 5. Sign changes around vertex v

A ‘+’ (‘-’) indicates a v neighbour, vk, such that dis(vk)
is greater (smaller) than dis(v). sgc(v) counts the
number of ‘+’ and ‘-’ sequences. The sgc of v tells how
dis is changing around v. It actually records part of the
topology of the whole object.

3.7 Critical Vertices and Topology Change
There are 3 possible value for sgc(v), namely, sgc(v)=0,
sgc(v)=2, and sgc(v)=2n, n=2,3… which corresponding
to 3 types of vertices (Figure 6). We define a vertex v
with sgc(v) = 2 as regular, otherwise critical.

(a) sgc(v) = 0, v is a local extremum

(b) sgc(v) =2, v is a regular
vertex

(c) sgc(v) =2n with n=2, v
is a saddle vertex

Figure 6. Counter of Sign Changes and Classification
of Vertices

Local Extremum: If all the neighbours of v are nearer
(further) to the root than v, this vertex v is a local
extremum.

Regular Vertex: There exists a clear cutting line
between the sign of v’s neighbours’. Half of v’s
neighbours are nearer to root vertex than v, and the rest
half are further away than v. We define this vertex v as
a regular vertex. Most of the vertices in a mesh object
are regular vertices.

Saddle Vertex: A critical vertex, which is not an
extremum, is defined to be a saddle vertex. For a saddle
vertex v, v’s neighbours’ signs change irregularly.
Saddle vertices are at the joints of object, where
topology change occurs.

One example is shown in Figure 7 of the local
extremum, regular and saddle vertices.

Figure 7. Critical vertices (red—local extrema, green—

saddle vertices, gray—regular vertices)

3.8 Process the Mesh Data before Decomposition
The decomposition will be accurate only when the
sampling rate of the vertices is fine enough (especially
around the critical vertices) to represent the distribution
of the distance function well (detail explanation can be
found in Subsection 3.9). It is therefore sometimes
necessary to resample the vertices until all edge lengths
are less than a threshold σ.

We design an algorithm to do the subdivision of mesh
as shown in Figures 8. Figure9 shows a mesh object
before and after the subdivision process. Given an
object represented in triangle meshes, we build up a
priority queue EQ according to the length of the edges
of each triangle mesh.

Subdivision of a Mesh:

Step1: For each face of a mesh, test its three edges. If

length of the edge > threshold, insert this edge
into the EQ.

Step2: Dequeue the first element of EQ which has the
longest edge e with length κ. Insert new vertices
to divide this edge into κ/ threshold sub-edges.

Step3: Find out the two adjacent triangles of e. Split
them into 2κ/ threshold smaller triangles.

Step4: Test all the edges of the newly constructed
triangles, if the edge length is greater than
threshold, insert it into EQ.

Step 5: Repeat Step 2 to 4 until EQ is empty.
Table 4. The subdivision in steps

(a) (b) (c)

(f) (e) (d)

(g) The final result

Figure 8. Resampling and subdivision of a mesh

(a) 70 vertices, 136

triangles

(b) 916 vertices, 1828
triangles

Figure 9. Polygon mesh before and after preprocessing

3.9 Decomposition and Backwards Flooding
After the previous steps, the results we get are the
critical points; there is no skeleton information. To
derive the borderlines of components, we proposed a
backwards flooding technique. The order of flooding is
determined by the geodesic distance of a descending
order. The process is listed in Table 5.

Note that, for automatically allocated root, since the
root is the end of the diameter tree, it is a candidate
local maximum and we include it in the starting points
of backwards flooding. However, the interactively

selected root vertex, a local minimum, will not be used
as a starting point of backwards flooding.

Backwards Flooding

Step 1: Initialize C(v) = -1 about all vertices. Set

componentNo = 0.
Step 2: Sort the local maxima to be in descending

order using the geodesic distance from root.
Step 3: Select local maximum m which is furthest from

root with C(m) = -1.
Step 4: Build a shortest path graph with root at m. The

construction stops when meets a saddle vertex
or a vertex q with C(q) ≠ -1.

Step 5: Mark all the vertices in this graph to be the
vertices of component componentNo. Increase
componentNo by 1.

Step 6: Repeat steps 3 to 5 until all local maxima have
been visited.

Table 5. The algorithm of backwards flooding

The stopping condition we used for backwards flooding
is to meet a saddle point, and then mark the vertices in
the flooding path to be the vertices of one component.
The vertices we are referring to are the original vertices
in the mesh, so the resolution of flooding
decomposition is dependent on the resolution of mesh.
Thus we may increase the resolution. Preprocess will
not affect the critical points detection. For the efficiency
reason, we may delay preprocess to be carried out after
detected the critical points. Another more efficient way
may process only the faces nearer to the saddle vertices.

916vertices 1828 faces

(a) Critical points detected

70 vertices 136 faces

(c) Critical points detected

(b) Decomposition result (d) Decomposition result

Figure 10. Decomposition results of different
resolution meshes. With a higher resolution,

decomposition is more accurate

4. Implementation and Results

We have implemented our method. Some of our
decomposition results are shown in Figures 11 to 14
(color plate). In each figure, we show the original mesh
model. Then, three sub-figures show the results of the
geodesic tree, critical points and components, in
automatically and interactively selected root,
respectively. It is clear that the interactively selected
root is more accurate. Thus, it gives better
decomposition results. In table 6, we show the running
time of some examples on a Pentium 4, 1.6 GHz,
256MB memory computer.

(a) Original model

Automatically selected root

(b) The geodesic tree

(c) The critical points: red-extremum, green-saddle

(d) Decomposition result: components shown in different

colors

Interactively selected root

(e) The geodesic tree

(f) The critical points: red-extremum, green-saddle

(g) Decomposition result: components shown in different

colors

Figure 11. Result of dinosaur model

(a) Original model

Automatically selected root

(b) The geodesic tree

(c) The critical points: red-extremum, green-saddle

(d) Decomposition result: components shown in different

colors

Interactively selected root

(e) The geodesic tree

(f) The critical points: red-extremum, green-saddle

(g) Decomposition result: components shown in different

colors

Figure 12. Result of duck model

(a) Original model

Automatically selected root

(b) The geodesic tree

(c) The critical points: red-extremum, green-saddle

(d) Decomposition result: components shown in different

colors

(e) The geodesic tree

(f) The critical points: red-extremum, green-saddle

(g) Decomposition result: components shown in different

colors

Figure 13. Result of an octopus model

(a) Original model

Automatically selected root

(b) The geodesic tree

(c) The critical points: red-extremum, green-saddle

(d) Decomposition result: components shown in different

colors

(e) The geodesic tree

(f) The critical points: red-extremum, green-saddle

(g) Decomposition result: components shown in different

colors

Figure 14. Result of a fish model

 Dino-
saur

Dolphin Duck Octopus

No. of vertices 1551 2101 916 1909
No. of faces 3098 4198 1828 3814
Decomposition
time (second)

Automatic
allocation of root

2.00 2.00 1.00 3.00

Interactively
assigned root

1.00 1.00 <1.00 2.00

Table 6. Decomposition time with preprocess done

before critical points detection on Pentium 4, 1.6 GHz,
256MB memory computer

5. Conclusion and Future Work

We propose a method for decomposing an object
represented in polygon meshes into components by
means of critical points. We have implemented it and
conducted experiments on a few 3D objects. On the
whole, it is effective and efficient. The results are
satisfactory.

For its applications, one of them is 3D model retrieval.
With the components of a 3D model, a component
hierarchy is derived and the retrieval problem can be
addressed as a tree matching. Another application is
component-based morphing. For instance, the morphing
system of Gregory et al. [6] could take advantage of our
decomposition result.

6. Acknowledgment

This first author is supported by NUS undergraduate
student scholarship. This work is also partly supported
by NUS grant S252-000-090-112.

References

[1] Attali D. and Montanvert A. (1997) Computing and
Simplifying 2D and 3D Continuous Skeletons.
Computer Vision and Image Understanding Vol. 67, No.
3, September, pp. 261-273,1997

[2] Biederman I. (1987) Recognition-by Components: A

Theory of Human Image Understanding. Psychological
Review, Vol. 94, No. 2, 1987, pp.115-147.

[3] Chazelle B., Dobkin D. P., Shouraboura N, and Tal A,

(1995) Strategies for Polyhedral Surface Decomposition
an Experimental Study, Proc. Symp. Computational
Geometry, 1995, pp. 297-305.

[4] Chen J. and Han Y.(1990) Shortest Paths on Polyhedron.

Proc. Symp. Theory of Computing, 1990, pp.360-369.

[5] Falcidieno B. and Spagnuolo M. (1992) Polyhedral

Surface Decomposition Based on Curvature Analysis. In
Modern Geometric Computing for Visualization Kunii T.
L. and Shinagawa Y. eds. Springer Verlag. 1992, pp. 57-
72.

[6] Gregory A., State A., Lin M., Manocha D., Livingston M.

A., (1999) Interactive Surface Decomposition for
Polyhedral Morphing, The Visual Computer, Vol. 15(9),
1999, pp. 453-470.

[7] Katz S., A. Tal A., "Hierarchical Mesh Decomposition

using Fuzzy Clustering and Cuts", SIGGRAPH 2003.

[8] Hilaga M., Shinagawa Y., Kohmura T., and Kunii T.,

Topology Matching for Fully Automatic Similarity
Estimation of 3D Shapes. Proc. SIGGRAPH 2001, pp.
203-212.

[9] Lanthier M., Maheshwari A. and Sack J. (1999)

Approximating Weighted Shortest Paths on Polyhedral

Surfaces. Proc. Symp. Computational Geometry, 1999,
pp.274-283.

[10] Lazarus F. and Verroust A.(1999) Level Set Diagrams

of Polyhedral Objects. Solid Modeling and Applications
1999. Ann Arbour, 1999, June.

[11] Li X.T., Woon T.W., Tan T.S. and Huang Z.Y. (2001)

Decomposing Polygon Meshes for Interactive
Applications. In Proceedings of ACM Symposium on
Interactive 3D Graphics, 2001. pp.35-42, pp.243.

[12] Mangan A. P. and Whitaker R. T. (1999) Partitioning 3D

Surface Meshes Using Watershed Segmentation. IEEE
Transactions on Visualization and Computer Graphics.
Vol. 5, 1999. pp. 308-321.

[13] Nevatia R. and Binford T. O. (1977) Description and

Recognition of Curved Objects. Artificial Intelligence,
Vol. 8, February, 1977, pp.77-98.

[14] Pentland A. P. (1986) Perceptual Organization and the

Representation of Natural Form. Artificial Intelligence,
Vol. 28, May, 1986, pp. 293-331.

[15] Shlafman S., Tal A., Katz S., "Metamorphosis of

Polyhedral Surfaces using Decomposition",
Eurographics 2002, Volume 21, Number 3.

[16] Svensson S. (1999) Decomposition Digital 3D Shape

Using a Multiresolution Structure. In Discrete Geometry
for Computer Imagery Conference, Springer-Verlag.
Italy, 1999, pp. 19-30.

[17] Takahashi S. , Shinagawa Y. and Kunii T. L. (1997) A

feature-based approach for smooth surfaces. In Solid
Modeling, May 1997. Atlanta, Georgia, ACM.

[18] Tan T.S., Chong K.F., and Low K.L. (1999) Computing

Bounding Volume Hierarchy using Simplified Models.
In Proceedings of ACM Symposium on Interactive 3D
Graphics, 1999. pp. 63-69.

[19] Zhou Y., Kaufman A and Toga A.W. (1998) Three-

dimensional Skeleton and Centerline Generation Based
on An Approximate Minimum Distance Field. The
Visual Computer Vol.14, 1998 pp.303-314.

