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Abstract 

Polygon mesh is among the most common data structures 
used for representing objects in computer graphics. 
Unfortunately, a polygon mesh does not capture high-level 
structures, unlike a hierarchical model. In general, high-level 
abstractions are useful for managing data in applications. In 
this paper, we present a method for decomposing an object 
represented in polygon meshes into components by means of 
critical points. The method consists of steps to define the root 
vertex of the object, define a function on the polygon meshes, 
compute the geodesic tree, compute critical points, decide the 
decomposition order, and extract components using 
backwards flooding. We have implemented the method. The 
preliminary results show that it works effectively and 
efficiently. The decomposition results can be useful for 
applications such as 3D model retrieval and morphing. 
 
1. Introduction 
 
Polygon mesh is the most widely available form of 
three-dimensional models. Geometrically, polygon 
mesh is a set of faces that share edges, or a set of 
vertices that are connected to neighbouring vertices by 
edges. The information it stores is the vertices 
geometric positions and their connectivity. The meshes 
come mostly from digitization of models or more rarely 
from real objects. They have many advantages. They 
are simple and fast for rendering. They can provide 
good approximation of real world objects. They have, 
however, no explicit higher-level structure; they exist 
simply as a collection of connected polygons – a bucket 
of polygons.  
 
One way to impose a higher-level structure on such a 
mesh is to partition it into a set of connected 
components. Psychological studies also show that 
human shape perception is partly based on 
decomposition, and any complex object can be regarded 
as an arrangement of simple primitives, or components 
[2]. Presumably, the components should represent 
something about the underlying structure of the object 
itself — the semantic meaning of the object’s parts and 
subparts. However, when no structure, other than the 
local connectedness of the polygons, is specified, any 
algorithm seeking to partition such meshes must infer 
some structure from the local shape (e.g., geometry) of 
the mesh itself. 
 
In this paper, we propose an algorithm to decompose an 
object into connected components, which accord human 
shape perception, and more importantly, are beneficial 

to interactive graphics applications such as mesh editing, 
shape interpolation, establishing corresponding points 
for morphing and animation. 
 
To decompose a polygon mesh using only the 
connectivity information of vertices, we address three 
key issues:  
 
1. What features can be used to delineate components 

reliably?  
2. How to detect these features? and 
3. How to do the decomposition based on the features 

detected? 
 

Our method consists of steps to define the root vertex 
of the object, define a function on the polygon meshes, 
compute the geodesic tree, compute critical points, 
decide the decomposition order, and extract 
components using backwards flooding. 
 
The remainder of this paper is organized as follows. 
Section 2 reviews related previous works and the 
problems that arise in these works. Section 3 discusses 
in detailed of our work. First, a notion of component is 
proposed and followed by an overview of our 
decomposition method (Subsections 3.1 and 3.2). Then, 
we describe critical points detection (Subsections 3.3 to 
3.7) and the decomposition method (Subsections 3.8 
and 3.9). In Section 4, we present the decomposition 
results. We show the results of the geodesic tree, 
critical points and components, in automatically and 
interactively selected root, respectively.  It is clear that 
the interactively selected root is more accurate. Thus, it 
gives better decomposition results. We also show the 
running time on a Pentium 4, 1.6 GHz, 256MB memory 
computer. We conclude the paper in Section 5 with a 
brief discussion of one future work on morphing. 
 
2. Related Work 
 
In this section, we will review the existing work on 
decomposing a 3D object. They can be roughly divided 
as methods based on computer vision, volume data, and 
polygon mesh representations. 

2.1 Computer Vision-Based Decomposition 
Decomposition of shape is studied extensively in the 
computer vision community.  Approaches, such as 
decompose 2D digital shapes are proposed in the 
literature. In [2], shapes are decomposed into simple 



 

components, “geometrical ions”, geons. The geons 
consist, in that article, of generalized cones. The shape 
is segmented and the obtained parts approximated with 
the best fitting geon. This can be seen as analogous to 
the usage of phonemes in the lexical access during 
speech perception. For example, only 44 phonemes are 
needed to code all the words in English. For 2D images, 
36 geons are needed. 
 
Nevatia and Binford [13] used hierarchies of cylinder-
like modeling primitives to describe natural forms. 
Pentland [14] extended the modeling primitives from 
cylinder to a family including cubes, cylinders, spheres, 
diamonds and pyramidal shapes as well as the round-
edged shapes intermediate between these standard 
shapes. He proposed the idea of super-quadric, a 
superset of the modeling primitives currently in 
common use.  
 
These works and their extensions were used in 2D 
images and range data. But it is trivial to be applied to 
3D polygon meshes.  

2.2 Volume Data Decomposition  
Decomposition of 3D volume digital shapes based on a 
hierarchical decomposition method was discussed in 
[16]. The internal cores of the parts are detected on the 
distance transform of the object and the corresponding 
parts obtained by a region growing process from them. 
As any distance transform can be used, the 
decomposition is stable under rotation.  The parts can 
be seen as nearly convex and elongated parts. The 
elongated parts are either necks or protrusions. A man-
like object was decomposed into two nearly convex 
parts, the head and the body; one neck, the neck; and 
four protrusions, the two arms and the two legs.  

2.3 Polygon Mesh Decomposition 
Falcidieno and Spagnuolo [5] proposed an algorithm to 
classify polygon surface into curvature regions. 
Chazelle et al. [3] addressed the problem of dividing 
polyhedra into collection of convex pieces. The 
individual faces are each convex, but if one considers 
the optimal partitioning (e.g., smallest number of 
pieces), the problem is NP-complete. Mangan and 
Whitaker [12] extended the 2D image segmentation 
technique, morphological watersheds, to segment 3D 
surfaces into patches, where each patch has a relatively 
consistent curvature. These methods need to compute 
third- and fourth-order derivatives, which are very 
sensitive to noise, and work well only on relatively 
high-resolution data.  
 
Gregory et al. [6] proposed decomposing the boundary 
of a polyhedron into the same number of morphing 
patches from the interactively defined feature nets. This 
approach needs user interaction and is complicated to 
implement. 
 

Tan et al. [18] achieved good results in decomposing 
objects through the use of vertex-based simplification. 
Their approach works well for the geometric or 
inorganic models such as helicopters. However, it is not 
robust in that the results are sensitive to user specified 
parameters. In particular, it is not suitable for organic 
models that have no clear boundaries among their parts 
or components, such as that between the limbs and 
torso of a human. In addition, a homogeneous part of 
the object may be undesirably partitioned into different 
components, as there is no good control provided by 
simplification models in identifying boundaries among 
components. 
 
Li et al. [11] proposed a framework for decomposing 
polygon meshes into components by treating them as 
surfaces of a volume. They adapt the idea of edge 
contraction to build skeleton of the object, then use 
space sweeping to decompose it. The skeleton 
generated by edge contraction is unconnected and 
virtual links need to be added. One of the important 
steps is the construction of skeleton. The methods to 
extract 1D skeleton from mesh object have been studied 
in [1, 12, 19]. The cost to build skeleton is high. The 
recent major progress includes [7, 15]. 
 
Our approach is mostly similar to Li et al. [11] on that 
we both use critical points information as the stop 
condition of decomposition. However, they differ in the 
following aspects: in the method of Li et al., critical 
points are detected in the process of sweeping along the 
skeleton. The sweeping plane’s orientation is adjusted during 
the sweeping; in our method, the critical points are detected 
using the mesh surface information, the geodesic distance, 
before the decomposition process. 
 
3. Our Work 
 
In this section, we will start to present our work in 
detail. First, we will define a notion of component 
followed by an overview of our decomposition method 
(Subsections 3.1 and 3.2). Then, we will describe 
critical points detection (Subsections 3.3 to 3.7). Finally, 
we will describe the decomposition method 
(Subsections 3.8 to 3.9) 
 

3.1 Definition of Component  
By decomposition, we refer to the process of breaking 
down an object to arrive at a collection of meaningful 
components. By meaningful, we mean that a component 
can be distinguished perceptually from the rest of the 
object. Li et al. [11] points out the two important 
distinguishing characteristics are geometry and 
topology. In our work, we capture the information 
using critical points of a geodesic tree.  
 



 

Notion of Component: A component C is a subset of 
the object O, such that it is bounded by borderlines 
consisting of critical (local extremum or saddle) points. 

i.e. U
e

s

l

l

vC =  for Objv ∈ , where ls and le are starting 

and ending borderlines formed by critical points (local 
extremum or saddle vertices). A function µ is defined 
on vertices of the object to derive the critical points. In 
our work, we define the function µ in this way: (1) we 
automatically compute or interactively pick a vertex as 
the root vertex r, µ (r)=0; (2) starting from the root r, 
compute the geodesic tree which covers all vertices of 
the object; (3) for any vertex v, its function value µ (v) 
is defined as the geodesic distance of shortest path to 
root vertex r. 
 
With this notion, the problem of decomposing an object 
into components is thus transformed to one that locates 
critical points and uses them to form the borderlines. 

3.2 Overview of Our Approach 
The input of our algorithm is one connected 3D object 
represented in triangle meshes and the outputs are 
several connected components represented in triangle 
meshes. The overview of our method is listed as 
follows: 
 

Given a 3D object represented in triangle meshes 
(Figure 1 (a)),  
 
1. Preprocess input data to insure even distribution of 

vertices and reasonable dense sampling rate (Figure 1 
(b)). 

 
2. Automatically or interactively select a root vertex for 

the object (Figure 1 (c)).  
 
3. Define a function µ to capture geometric information 

of the object. We use geometric distance in this work.
 
4. Start from the root vertex defined in step 2, construct 

a distance map and an oriented graph call geodesic 
tree (Figure 1 (d)) connect all vertices in the object. 
The geodesic tree is obtained by computing shortest 
paths between each vertex and the root vertex. The 
distance map is the length of these shortest paths. 

 
5. Compute the vertex sign change for each vertex in 

the mesh using geodesic distance between each 
vertex v to the root and the geodesic distance from 
v’s neighbours to root. 

 
6.  By examine the vertex sign change, detect critical 

points (local extremum and saddle points) which 
corresponding to the extreme end of components and 
joints where topology change occurs (Figure 1 (e)). 

 
7. Define the decomposition order by ordering the 

critical vertices using geodesic distance (Figure 1 
(f)). 

 
8. The decomposition is finally obtained by using a 

backwards flooding technique. Start from each local 
extremum in the order of step 7, construct a 
connected shortest path graph on the object surface 
until a saddle vertex is met. For all the vertices in the 
graph, mark them to be the vertices of one 
component (Figure 1 (g)). 

 
Table 1. Overview of our method in steps 

 

(a) Input Mesh (b) Preprocess Data 

(d) Build Geodesic tree (c) Define Root 

(e) Detect Critical Points (f) Order Critical Points 
 

(g) Decomposition Result
Figure 1.  Illustration of decomposition in steps 

3.3 The Root Vertex of an Object 
The root vertex of the geodesic tree can be any vertex 
on the object. However, its choice will influence the 
decomposition results. Intuitively, using an extremum 
vertex located at the tip of a longest branch or the polar 
extremity as the root vertex will better describe an 
object’s structure. Thus, it gives out a better 
decomposition result. In our work, we select the root 
vertex both automatically and interactively (illustrated 
in Figure 2 (a) and (b)). In the former case, we apply a 
heuristic based on an algorithm to find a diameter of a 
tree. A diameter of a tree is a pair of vertices separated 
by the largest possible distance in the tree. Intuitively, 
the two vertices of a diameter are located at the tip of a 
longest branch of the tree. Detailed description of the 
algorithm is as following: 
 
 



 

 
Procedure to Determines a Tree Diameter  
 
Step 1: Pick a vertex x at random from the pool of mesh 

vertices. 
Step 2: Build shortest-path tree root at x and find y such that 

disx(y) is maximal. 
Step 3: Build shortest-path tree root at y and find z such that 

disy(z) is maximal.  
Step 4: Output (y,z) as a diameter. z will be a suitable root 

vertex. 
Table 2. Algorithm to determine a tree diameter 

 
The comparison of the final decomposition results 
using these two ways of root allocation can be found in 
Section 4. The results are shown to be equally 
satisfactory. 
 

 
(a) (b) 

Figure 2. Automatically (a) and interactively (b) 
selected root vertex: (a) usually located at the 

tip of a longest branch and (b) at polar 
extremity 

3.4 A Function on Vertices 
The critical points we use to decompose the object are 
generated by plugging each vertex v into a function µ 
and examine the value µ (v). It is important that the 
function µ is carefully defined. Hilaga et al. [8] and 
Takahashi et al. [17] used the height function as µ, so 
that any vertex is associated its own z-coordinate in a 
suitable coordinate system. The height function turns 
out to be a successful function µ in their application 
because for terrain data, the critical vertices correspond 
to peaks, passes or pits of the terrain. Height function is 
not suitable for our approach since there is relatively 
hard to set up a base plane for arbitrary object. Another 
approach uses curvature as the function µ. It may be 
applicable for some objects; but it is still not suitable 
for our purposes. Because a stable calculation of 
curvature is difficult on a noisy surface, and small 
undulations may result in a large change of curvature, 
causing error in the detection of saddle vertices. 
 
Through experiment we find geodesic distance, the 
distance from point to point on a surface, can be a 
suitable function µ for genus-0 polygon mesh.  
 
Methods for computing an accurate geodesic distance 
have been well studied [4, 9], however, when 
computing the accurate geodesic distance using these 
methods, the computational cost is high. Considering 

the trade off between computational cost and accuracy, 
we employ a relatively simple method in which 
geodesic distance is approximated by Dijkstra’s 
algorithm based on edge length (described in 
Subsection 3.5).  

3.5 Computing the Geodesic Distance 
The construction of Shortest Path Tree is based on 
Dijkstra’s shortest path algorithm. As for the classical 
Dijkstra’s algorithm, we maintain a priority queue Q 
with respect to the shortest distance from each vertex v 
to root (dis(v)) and use a breadth-first search. This 
priority queue contains the vertices adjacent to the 
already visited vertices, whose distances have not yet 
been decided. 
Dijkstra’s Algorithm for Computing Geodesic 
Distance 
 
Step 1: Initialize dis(v) = ∞  for all vertices. 
Step 2: Select a root vertex r, set dis(r) = 0, and insert r to Q. 
Step 3: Dequeue the vertex v with smallest dis(v) from Q. 
Step 4: For each vertex vi adjacent to v, if dis(v) + length(v, 

vi) < dis(vi), update dis(vi)  = dis(v) + length(v, vi) and 
insert (or update) vi to Q. 

Step 5: Repeat Step 3 and 4 until Q is empty. 
Table 3. Computing the geodesic distance 

 
The input of the algorithm is a 3D triangulated mesh 
(set of vertices, the connectivity information of the 
vertices and a root vertex). The output will be a tree, the 
geodesic tree, storing the geodesic distance from each 
vertex to the root vertex. One example of the geodesic 
tree is shown in Figure 3. 

 
Figure 3. Example of a geodesic tree 

 
3.6 Vertex Sign Change 
Zooming into the mesh object, we can find each vertex 
has its neighbours form a closed circle around it 
(Figures 4).  
 
Knowing the adjacency between faces of the 
polyhedron, for each vertex, we can figure out its 
neighbours and organize these neighbours in a circle. 
Let v1,v2,…,vk be the k neighbours of v enumerated 
around v and dis(v1), dis(v2),…, dis(vk), dis(v) be the 
distance from root vertex to vertex v1, v2,…,vk, v. We 
consider the number of sign changes, sgc(v), in the 
sequence (dis(v1)-dis(v), dis(v2)-dis(v),…, dis(vk)-dis(v)). 



 

If dis(vi)=dis(v), we skip this ith neighbour vertex by 
assume there is no sign change. 
 

 
(a) A mesh with a small patch selected

 
 

 

 
(b) Zoom-in of the small 
patch 

 

 
(c) One vertex and its six 
neighbouring vertices 

Figure 4. The neighbours of a vertex 
 

Figure 5 shows two vertices v with sgc(v) both equal to 
4. 

          
Figure 5. Sign changes around vertex v 

 
A ‘+’ (‘-’) indicates a v neighbour, vk, such that dis(vk) 
is greater (smaller) than dis(v).  sgc(v) counts the 
number of ‘+’ and ‘-’ sequences. The sgc of v tells how 
dis is changing around v. It actually records part of the 
topology of the whole object.  

3.7 Critical Vertices and Topology Change 
There are 3 possible value for sgc(v), namely, sgc(v)=0, 
sgc(v)=2, and sgc(v)=2n, n=2,3… which corresponding 
to 3 types of vertices (Figure 6). We define a vertex v 
with sgc(v) = 2 as regular, otherwise critical. 
 

 
(a) sgc(v) = 0, v is a local extremum 

 

(b) sgc(v) =2, v is a regular 
vertex 

(c) sgc(v) =2n with n=2, v 
is a saddle vertex 

Figure 6. Counter of Sign Changes and Classification 
of Vertices 

 
Local Extremum: If all the neighbours of v are nearer 
(further) to the root than v, this vertex v is a local 
extremum. 
 
Regular Vertex: There exists a clear cutting line 
between the sign of v’s neighbours’. Half of v’s 
neighbours are nearer to root vertex than v, and the rest 
half are further away than v. We define this vertex v as 
a regular vertex. Most of the vertices in a mesh object 
are regular vertices. 
 
Saddle Vertex: A critical vertex, which is not an 
extremum, is defined to be a saddle vertex. For a saddle 
vertex v, v’s neighbours’ signs change irregularly. 
Saddle vertices are at the joints of object, where 
topology change occurs. 
 
One example is shown in Figure 7 of the local 
extremum, regular and saddle vertices. 
 

 
Figure 7. Critical vertices (red—local extrema, green—

saddle vertices, gray—regular vertices) 

3.8 Process the Mesh Data before Decomposition 
The decomposition will be accurate only when the 
sampling rate of the vertices is fine enough (especially 
around the critical vertices) to represent the distribution 
of the distance function well (detail explanation can be 
found in Subsection 3.9). It is therefore sometimes 
necessary to resample the vertices until all edge lengths 
are less than a threshold σ.  
 
We design an algorithm to do the subdivision of mesh 
as shown in Figures 8. Figure9 shows a mesh object 
before and after the subdivision process. Given an 
object represented in triangle meshes, we build up a 
priority queue EQ according to the length of the edges 
of each triangle mesh.  



 

 
Subdivision of a Mesh: 
 
Step1: For each face of a mesh, test its three edges. If 

length of the edge > threshold, insert this edge 
into the EQ. 

Step2: Dequeue the first element of EQ which has the 
longest edge e with length κ. Insert new vertices 
to divide this edge into κ/ threshold sub-edges. 

Step3: Find out the two adjacent triangles of e. Split 
them into 2κ/ threshold smaller triangles. 

Step4: Test all the edges of the newly constructed 
triangles, if the edge length is greater than 
threshold, insert it into EQ. 

Step 5: Repeat Step 2 to 4 until EQ is empty. 
Table 4. The subdivision in steps 

 
 

 
(a)  (b)  (c) 

 
(f)  (e)  (d) 

 

 
(g) The final result    

 
Figure 8. Resampling and subdivision of a mesh 

 
 

 
(a) 70 vertices, 136 

triangles 

 

(b) 916 vertices, 1828 
triangles 

 
Figure 9. Polygon mesh before and after preprocessing 

 
3.9 Decomposition and Backwards Flooding 
After the previous steps, the results we get are the 
critical points; there is no skeleton information. To 
derive the borderlines of components, we proposed a 
backwards flooding technique. The order of flooding is 
determined by the geodesic distance of a descending 
order. The process is listed in Table 5. 
 
Note that, for automatically allocated root, since the 
root is the end of the diameter tree, it is a candidate 
local maximum and we include it in the starting points 
of backwards flooding. However, the interactively 

selected root vertex, a local minimum, will not be used 
as a starting point of backwards flooding. 
 

Backwards Flooding 
 
Step 1: Initialize C(v) = -1 about all vertices. Set 

componentNo = 0. 
Step 2: Sort the local maxima to be in descending 

order using the geodesic distance from root. 
Step 3: Select local maximum m which is furthest from 

root with C(m) = -1. 
Step 4: Build a shortest path graph with root at m. The 

construction stops when meets a saddle vertex 
or a vertex q with C(q) ≠ -1. 

Step 5: Mark all the vertices in this graph to be the 
vertices of component componentNo. Increase 
componentNo by 1. 

Step 6: Repeat steps 3 to 5 until all local maxima have 
been visited.    

Table 5. The algorithm of backwards flooding 
 
The stopping condition we used for backwards flooding 
is to meet a saddle point, and then mark the vertices in 
the flooding path to be the vertices of one component. 
The vertices we are referring to are the original vertices 
in the mesh, so the resolution of flooding 
decomposition is dependent on the resolution of mesh. 
Thus we may increase the resolution. Preprocess will 
not affect the critical points detection. For the efficiency 
reason, we may delay preprocess to be carried out after 
detected the critical points. Another more efficient way 
may process only the faces nearer to the saddle vertices. 
 

916vertices 1828 faces 
 

(a) Critical points detected

70 vertices 136 faces 
 

 
(c) Critical points detected 

(b) Decomposition result (d) Decomposition result  

 
Figure 10. Decomposition results of different 
resolution meshes. With a higher resolution, 

decomposition is more accurate 



 

 
4. Implementation and Results 
 
We have implemented our method. Some of our 
decomposition results are shown in Figures 11 to 14 
(color plate). In each figure, we show the original mesh 
model. Then, three sub-figures show the results of the 
geodesic tree, critical points and components, in 
automatically and interactively selected root, 
respectively.  It is clear that the interactively selected 
root is more accurate. Thus, it gives better 
decomposition results. In table 6, we show the running 
time of some examples on a Pentium 4, 1.6 GHz, 
256MB memory computer. 
 

 
(a) Original model 

 
Automatically selected root 

 

 
(b) The geodesic tree 

 
(c) The critical points: red-extremum, green-saddle 

 
(d) Decomposition result: components shown in different 

colors 
 
 
 
 

 
 
 

Interactively selected root 
 

 
(e) The geodesic tree 

  
(f) The critical points: red-extremum, green-saddle 

  
(g) Decomposition result: components shown in different 

colors 
 

Figure 11. Result of dinosaur model 
 

 
(a) Original model 

 
Automatically selected root 

 

  
(b) The geodesic tree 



 

  
(c) The critical points: red-extremum, green-saddle 

  
(d) Decomposition result: components shown in different 

colors 
 

Interactively selected root 
 

  
(e) The geodesic tree 

  
(f) The critical points: red-extremum, green-saddle 

  
(g) Decomposition result: components shown in different 

colors 
 

Figure 12. Result of duck model 
 
 

 
(a) Original model 

 
Automatically selected root 

 

 
(b) The geodesic tree 

 
(c) The critical points: red-extremum, green-saddle 

 
(d) Decomposition result: components shown in different 

colors 
 

 
(e) The geodesic tree 



 

  
(f) The critical points: red-extremum, green-saddle 

  
(g) Decomposition result: components shown in different 

colors 
 

Figure 13. Result of an octopus model 
 

 
(a) Original model 

 
Automatically selected root 

 
(b) The geodesic tree 

 
(c) The critical points: red-extremum, green-saddle 

 
(d) Decomposition result: components shown in different 

colors 
 

  
(e) The geodesic tree 

  
(f) The critical points: red-extremum, green-saddle 

  
(g) Decomposition result: components shown in different 

colors 
 

Figure 14. Result of a fish model 
 

 Dino-
saur

Dolphin Duck Octopus

No. of vertices 1551 2101 916 1909 
No. of faces 3098 4198 1828 3814 
Decomposition 
time (second) 

 

Automatic 
allocation of root

2.00 2.00 1.00  3.00 

Interactively 
assigned root 

1.00 1.00 <1.00 2.00 

 
Table 6. Decomposition time with preprocess done 

before critical points detection on Pentium 4, 1.6 GHz, 
256MB memory computer 

 
 
 
 
 



 

5. Conclusion and Future Work 
 
We propose a method for decomposing an object 
represented in polygon meshes into components by 
means of critical points. We have implemented it and 
conducted experiments on a few 3D objects. On the 
whole, it is effective and efficient. The results are 
satisfactory. 
 
For its applications, one of them is 3D model retrieval. 
With the components of a 3D model, a component 
hierarchy is derived and the retrieval problem can be 
addressed as a tree matching. Another application is 
component-based morphing. For instance, the morphing 
system of Gregory et al. [6] could take advantage of our 
decomposition result.  
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