

A Minimalist Approach To Facial Reconstruction

Meherzad Gotla and Zhiyong Huang School of Computing National University of Singapore

Presentation Outline

- 1. Introduction
- 2. Overview of the Solution
- 3. Feature Extraction
- 4. Reconstruction
- 5. Results/Demo
- 6. Conclusion

IntroductionMotivation

Background
Our Solution
Caricature
Advantage
Differential
Inversion
Anatomical

Considerations

- Overview of the Solution
- Extraction
- Reconstruction
- Results
- Conclusion

Motivation - Potential Applications

- Games and Movies
- Virtual Environments
- Next Generation Interfaces
- Low-Bandwidth Video-Conferencing

Introduction Motivation Background Our Solution Caricature Advantage Differential Inversion Anatomical

Considerations

- Overview of the Solution
- Extraction
- Reconstruction
- Results
- Conclusion

1. Introduction

- Background (more than 25 years)
 - A Morphable Model for the Synthesis of 3D Faces
 - Blanz and Vetter, SIGGRAPH 99
 - Synthesizing Realistic Facial Expressions from Photographs
 - Pighin et al., and Guenter et al. SIGGRAPH 98
 - Model Based Face Reconstruction
 - Lee et al., MMM 97
 - -
 - Rendez-vous a Montreal
 - Magnenat-Thalmann and Thalmann, IEEE CGA, 87
 - -
 - Animation of Faces
 - Parke, ACM Annual Conference, 72

Introduction Motivation Background Our Solution Caricature Advantage Differential Inversion

Considerations

Anatomical

- Overview of the Solution
- Extraction
- Reconstruction
- Results
- Conclusion

1. Introduction

Our Solution

- Minimalist approach Perceptive Realistic 3D Face
 - Minimal number of input images
 - Easily available equipment
 - Low quality input
 - Minimize manual intervention
 - No camera calibration

Ideas

- Make better use of facial characteristics
- Maximize cognitive experience

Introduction Motivation Background Our Solution Caricature Advantage Differential Inversion Anatomical

Considerations

- Overview of the Solution
- Extraction
- Reconstruction
- Results
- Conclusion

1. Introduction

- Work of cognitive psychologists inspires our solution
- Cognitive Considerations
 - Stevenage 95, Johnston and Ellis 95, in Cognitive and Computational Aspects of Face Recognition: Explorations in Face Space
 - Caricature Advantage
 - Differential Inversion
- Anatomical Considerations
 - Similarities
 - Differences

Caricature

1. Introduction

Advantage

 Introduction **Motivation Background Our Solution Caricature Advantage Differential** Inversion **Anatomical**

Considerations

- Overview of the Solution
- Extraction
- Reconstruction
- Results
- Conclusion

Differential Inversion

Introduction

 Motivation
 Background
 Our Solution
 Caricature
 Advantage
 Differential
 Inversion

Considerations

Anatomical

- Overview of the Solution
- Extraction
- Reconstruction
- Results
- Conclusion

Differential Inversion

Introduction
 Motivation
 Background
 Our Solution
 Caricature
 Advantage
 Differential
 Inversion
 Anatomical

Considerations

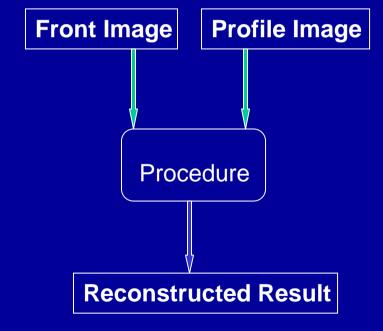
- Overview of the Solution
- Extraction
- Reconstruction
- Results
- Conclusion

Introduction
 Motivation
 Background
 Our Solution
 Caricature
 Advantage
 Differential
 Inversion
 Anatomical

Considerations

- Overview of the Solution
- Extraction
- Reconstruction
- Results
- Conclusion

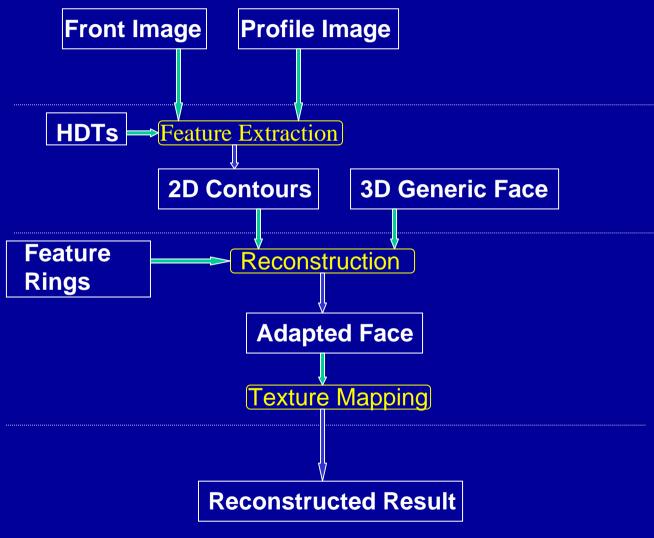
- Anatomical Considerations (Parke and Waters 96)
 - The skull and the jaw fit into an egg-like shape
 - The eyes are located halfway between the top of the head and the bottom of the chin
 - The eyes are about one eye's width apart



2. Overview of the Solution

- **Introduction**
- Overview of the Solution
- Extraction
- Reconstruction
- Results
- Conclusion

Procedural Overview



2. Overview of the Solution

Introduction

Overview of the Solution

- Extraction
- Reconstruction
- Results
- Conclusion

Overview of Extraction Component

- Introduction
 Overview of the Solution
- Extraction
- Reconstruction
- Results
- Conclusion

- Snake
- Physics-Based Snake Formulation

 Hierarchical Deformable Templates (HDTs)

- Introduction
 Overview of the Solution
- ExtractionOverviewSnakesFormulationHDTs
- Reconstruction
- Results
- Conclusion

 Overview of Extraction Component

- Input:
 - One or two images
 - Hierarchical Deformable Templates (HDTs)
- Output:
 - 2D Contours

Introduction Overview of the Solution

- ExtractionOverviewSnakesFormulationHDTs
- Reconstruction
- Results
- Conclusion

3. Feature Extraction

- Snakes (Kass, Witkin, and Terzopoulos, ICCV 87)
 - Novel way to solve contour tracing
 - Energy Minimizing Spline guided by
 - Internal Force (Hooke's Law)
 - Elasticity
 - Stiffness
 - External Forces
 - Image Gradients, etc.
 - Additional Constraining forces
 - Application dependent

- Introduction
 Overview of the Solution
- ExtractionOverviewSnakesFormulationHDTs
- Reconstruction
- Results
- Conclusion

Formulation of the Snakes

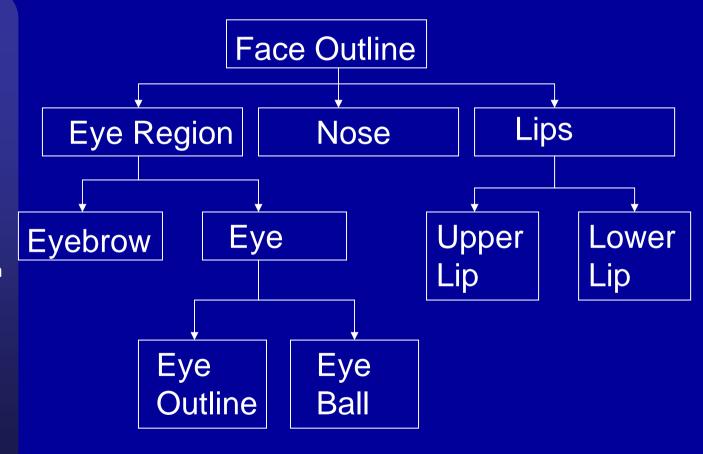
$$E_{Snake}^* = \int_0^1 E_{Snake}(v(s))ds$$

$$= \int_{0}^{1} E_{Internal}(v(s)) + E_{Image}(v(s)) + E_{Con}(v(s))ds$$

SAMPLE SNAKE BEHAVIOUR

- Introduction
 Overview of the Solution
- ExtractionOverviewSnakesFormulationHDTs
- Reconstruction
- Results
- Conclusion

- Hierarchical Deformable Templates (HDTs)
 - Motivation
 - Encode Anatomical Expertise
 - Disciplining Snakes


HDTs

Introduction
Overview of the Solution

Extraction

Overview
Snakes
Formulation
HDTs

- Reconstruction
- Results
- Conclusion

- **Introduction**
- Overview of the Solution
- **Extraction**
- Reconstruction
- Results
- Conclusion

Deformation Stage

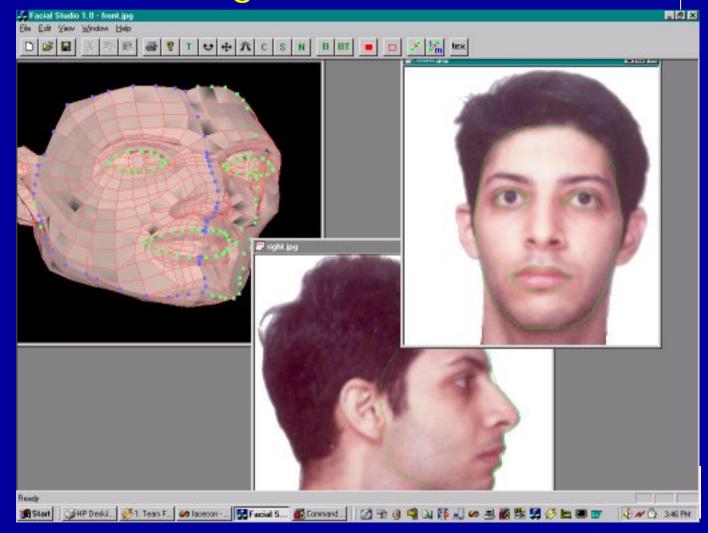
Texture Mapping Stage

- **Introduction**
- Overview of the Solution
- **Extraction**
- ReconstructionDeformationFeature RingsTexture Mapping
- Results
- Conclusion

- Deformation Stage
 - Input
 - 2D Contours from Extraction
 - 3D Generic Face
 - 3D Feature Rings
 - Output
 - Adapted Face

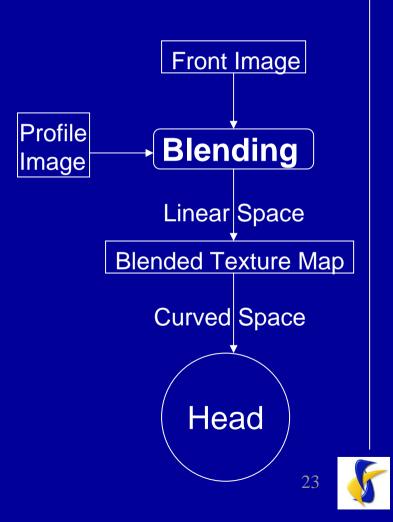
- Introduction
 Overview of the Solution
 Extraction
- •Reconstruction
 Deformation
 Feature Rings
 Texture Mapping
- Results
- Conclusion

Feature Rings


- Formed by feature vertices of a generic face (3D correspondence of HDTs)
- They are deformed first according to the 2D contours
- Non-feature Vertices
 - They are deformed according to the displacements of feature ring

- Introduction
- Overview of the Solution
- **Extraction**
- •Reconstruction
 Deformation
 Feature Rings
 Texture Mapping
- Results
- Conclusion

Feature Rings



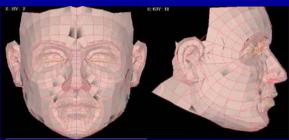
- **Introduction**
- Overview of the Solution
- **Extraction**
- Reconstruction
 Deformation
 Feature Rings
 Texture mapping
- Results
- Conclusion

Texture Mapping Process

- Producing the Blended Image
- Transform from Texture toModel Space

- **Introduction**
- Overview of the Solution
- **Extraction**
- •Reconstruction
 Deformation
 Feature Rings
 Texture mapping
- Results
- Conclusion

- Texture Mapping
 - Input/Output



5. Results/Demo

- Introduction
- Overview of the Solution
- **Extraction**
- **Reconstruction**
- Results
- Conclusion

5. Results/Demo

- Introduction
- Overview of the Solution
- **Extraction**
- Reconstruction
- Results
- Conclusion

5. Results/Demo

- **Introduction**
- Overview of the Solution
- **Extraction**
- Reconstruction
- Results
- Conclusion

Using only one portrait

6. Conclusion

- Contribution
 - We proposed a minimalist approach to facial reconstruction
 - We applied cognitive and anatomical heuristics
- Future Work
 - Further Enhancing Snakes
 - Better Texture Mapping
- Acknowledgement
 - NUS grant RP3982704

- **Introduction**
- Overview of the Solution
- **Extraction**
- Reconstruction
- **Results**
- Conclusion

Contribution Future Work

Acknowledgement

