
Collaborative Spatial Data Sharing Among Mobile
Lightweight Devices

Zhiyong Huang1,3, Christian S. Jensen2, Hua Lu1,2, and Beng Chin Ooi1

1 School of Computing, National University of Singapore, Singapore
2 Department of Computer Science, Aalborg University, Denmark

3 Institute for Infocomm Research, Singapore

Abstract. Mobile devices are increasingly being equipped with wireless peer-
to-peer (P2P) networking interfaces, rendering the sharing of data among mobile
devices feasible and beneficial. In comparison to the traditional client/server wire-
less channel, the P2P channels have considerably higher bandwidth. Motivated by
these observations, we propose a collaborative spatial data sharing scheme that
exploits the P2P capabilities of mobile devices. Using carefully maintained rout-
ing tables, this scheme enables mobile devices not only to use their local storage
for query processing, but also to collaborate with nearby mobile peers to exploit
their data. This scheme is capable of reducing the cost of the communication be-
tween mobile clients and the server as well as the query response time. The paper
details the design of the data sharing scheme, including its routing table mainte-
nance, query processing and update handling. An analytical cost model sensitive
to user mobility is proposed to guide the storage content replacement and routing
table maintenance. The results of extensive simulation studies based on an imple-
mentation of the scheme demonstrate that the scheme is efficient in processing
location dependent queries and is robust to data updates.

1 Introduction

In step with the continued advances in computing electronics and wireless networking
technologies, the mobile computing is gaining in prominence. In mobile computing,
users equipped with portable devices such as mobile phones and PDAs, termed mobile
clients, may issue local queries to learn about their geographic surroundings. For ex-
ample, mobile services may enable tourists to learn about near-by attractions and may
inform shoppers about near-by sales. Traditionally, the data provided by such services
are stored in a central database. By means of a point-to-point wireless communication
channel, the mobile clients may communicate with an application server that accesses
the data and is responsible for the processing of queries.

To reduce the client/server (C/S) communication cost, techniques have been pro-
posed that use client storage to cache results of previous queries and then use these
data for answering new queries either fully or, more often, partially [3, 11, 18]. These
techniques almost completely rely on the C/S architecture, with little or no direct com-
munication and collaboration among the mobile devices.

This sole reliance on the C/S architecture fails to take advantage of the new wireless
peer-to-peer (P2P) communication capabilities of modern mobile devices. The wireless

P2P channels have considerably more bandwidth than do traditional wireless C/S chan-
nels [15]. Moreover, as adjacent mobile devices are likely to issue queries whose results
overlap, it is becoming possible, and potentially attractive, for mobile devices to share
data in P2P fashion.

In Figure 1, for example, mobile devices M1 and M2 have issued queries and have
already stored locally data that correspond to the rectangles they belong to. Then a third

M
1

M
3

M
2

P
1

P
2
P
3

P
5

P
4

Fig. 1. Use Peer Storage to Answer Query

device M3 issues a query for data corresponding to its rectangle, i.e., data corresponding
to P1 to P5. Only the data pertaining to P1 and P2 are in M3’s local storage.

Using traditional techniques, M3 must access the remote wireless server to obtain
data for P3, P4, and P5. In contrast, with P2P wireless communication M3 can obtain
data for P4 and P5 from M1, and data for P3 from M2. This reduces the query response
time significantly because the P2P bandwidth is much higher than the C/S bandwidth.

With the objective of exploiting the much faster wireless P2P channels, we propose
a new collaborative data sharing scheme. An underlying grid-based structure is used
for managing the data stored on the server and those portions of the data distributed
among the mobile devices. The entire data space is partitioned by the grid, with each
cell being a basic unit of data storage. The grid information is organized as a string,
each bit of which indicates whether the corresponding grid cell contains any data or
not. By broadcasting this space-saving string, the server is able to give clients global
knowledge of its data, and to efficiently notify them of updates.

To facilitate the retrieval of peer data, each mobile device maintains a routing table.
A routing entry captures which neighbor peer to contact for data pertaining to a specific
grid cell, and how many hops to reach that peer. With routing tables, search among
peers becomes directed, which contrasts to the blind flooding. This not only speeds
up data search but also reduces communication messages. The routing table on each
device is dynamically updated when its neighboring peers’ storage contents change.
Such changes are broadcast locally.

To answer a location-based spatial query with collaborative data sharing, a mobile
device first checks its own storage, identifying those grid cells overlapping the query
for which data is not available locally. Then it checks each cell of this kind in its routing
table. If a relevant routing entry is found, a data request is sent to the corresponding peer
via the fast P2P channel. Only the data not obtained this way is subsequently requested

from the server via the C/S channel. Upon receiving data as needed, a mobile device
conducts a refinement to reach the exact query result, and places the data in its storage.

To best utilize the limited device storage, a probability-based predictive cost model
is proposed for storage replacement and routing table maintenance. Taking into consid-
eration the predicted movement of each device, this model gives priority to the data in
grid cells that have the highest probabilities of being reused in the future. By retaining
relevant data in device storage, this model reduces the communication between devices
and the remote wireless server.

To efficiently handle data updates, the server notifies clients of updates using a com-
pact data format. Upon receiving a notification, a client can easily identify and evict
invalidated data.

This paper makes the following contributions: First, it recognizes the discrepancy
between previous techniques and current mobile environments, and accordingly pro-
poses a collaborative data sharing framework for location-based spatial queries in such
environments. Second, it proposes a probability-based predictive cost model that guides
both storage replacement and routing table maintenance. Third, it proposes query pro-
cessing strategies for mobile devices within the framework. Fourth, it discusses how to
accommodate data updates within the framework. Fifth, it conducts extensive experi-
ments to confirm that the paper’s proposals are efficient and robust.

One might advocate a wireless C/S architecture based on technologies such as an
IEEE 802.11 network, as an alternative to our assumed setting. However, such alter-
native technologies are not widely deployed, but are limited to very short ranges. In
contrast, cellular networks are widely available and have very large numbers of users;
these thus provide a huge space for our assumed setting [15].

The rest of this paper is organized as follows. Section 2 reviews related work. Sec-
tion 3 presents the system framework. Section 4 details the collaborative data sharing
scheme and the cost model. Section 5 describes the relevant query and update pro-
cessing techniques. Section 6 reports the experimental study results. Finally, Section 7
concludes.

2 Related Work

To reduce the communication between client and server via low-band wireless chan-
nels and shorten the query response time, caching techniques have been proposed for
mobile environments [3]. Most such techniques are based on semantic caching [9],
where semantic descriptions of previous queries as well as their corresponding results
are cached. Subsequent queries are fully or partially answered using the cached results
by matching the semantic descriptions. Semantic-based clustering [18] and Voronoi di-
agrams [23] are employed to organize semantic contents cached on mobile devices.
However, these semantic caching schemes only support homogeneous queries. To rem-
edy this, Hu et al. [11] propose a proactive technique that stores on the mobile clients
both query results and the R-tree index nodes accessed during query processing. This
technique may result in substantial device-side space use and processing costs. Later,
Lee et al. [13] propose to cache both concrete data objects of interest and complemen-
tary regions at a coarse granularity. Inter-device collaboration is not addressed in any
of the above works. Deviating from the previously dominant C/S architecture, Liu et

al. [14] propose to cluster mobile devices via wide-band wireless links. In each cluster,
one mobile device acts as a gateway that is connected to the Internet via a narrow-band
link and forwards queries/results from/to its cluster. This work does not address device-
side cache organization, and data are not passed directly among mobile devices, but via
the gateways.

Assuming a wireless broadcast environment, Hara [10] proposes several caching
strategies that enable clients to cooperate on selecting broadcast items to cache. By
utilizing the multi-hops routing in an ad hoc network, Yin and Cao [22] propose that
a device caches either the requested data or the path information to get the data, when
it is forwarding a query result. Our work differs from those works in several ways.
First, we set our problem in a hybrid system architecture (see Section 3.1 for details),
instead of assuming a traditional wireless C/S environment or a pure ad hoc network.
Second, we are specifically interested in location dependent queries requiring spatial
data. Third, we take advantage of client movements in cache management on devices
by using a specific model. Recently, Chow et al. [8] address cooperative caching in a
mobile environment similar to our setting, whereas the authors are focused on grouping
mobile devices with similar mobility patterns in order to improve cache performance.

Next, data management in mobile ad hoc networking (MANETs) [4] or mobile
P2P environments has attracted significant research interest. Kortuem et al. [12] discuss
scenarios where encountering mobile devices may exchange information, together with
challenges faced by mobile ad hoc information systems. At a conceptual level, Xu et
al. [21] discuss extensive data management topics in mobile P2P networks, including
data modeling and data dissemination specific to mobile peers. Within a hierarchical
mobile P2P environment with wireless cells at the bottom and fixed networks at the top,
Budiarto et al. [7] discuss mobile data replication strategies in the fixed network. To
avoid message flooding and improve search hit rates, Lindemann et al. [16] propose a
distributed document search service that helps access results cached in peer devices by
locally broadcasting queries and response messages.

3 System Framework
3.1 System Architecture
In a traditional, mobile C/S environment, one or more wireless application servers store
data and process queries from mobile clients within their corresponding coverage. This
setting is being shifted as mobile devices are increasingly being equipped with wireless
ad-hoc networking capabilities such as infrared, Bluetooth, or even Wi-Fi. The ad-hoc
networking channel usually has much higher bandwidth (1-11Mbps for IEEE 802.11b,
and up to 54Mbps for IEEE 802.11a and 802.11g) than the traditional C/S channel (38.6
Kbps to 2.4 Mbps) [15]. This makes it possible and potentially attractive for the mobile
devices to share their local data with their peers. The architecture with both C/S and
P2P communication, as shown in Figure 2, we call a hybrid architecture. In this paper,
we limit our problem to the extent of a single wireless application server’s coverage.

For this as well as the traditional C/S architecture, a key objective is to reduce the
communication between client and server, as the bandwidth of the wireless C/S channel
is low. In the traditional C/S architecture, local storage is the only resource that a mobile
device can attempt to exploit. In the hybrid architecture, the high bandwidth channels

Wireless Service Server

Mobile Devices

Wireless P2P Channel

Wireless C/S Channel

Fig. 2. Hybrid Mobile System Architecture

among mobile devices are an important resource that can be utilized. By allowing mo-
bile devices to share their data via the P2P wireless channels, the communication be-
tween a mobile device and the server is expected to be reduced. We proceed to discuss
how to achieve this reduction by using an appropriate data sharing scheme.

3.2 Collaborative Data Indexing Requirements
The spatial data on the server are usually indexed by some spatial indexes in order
to facilitate efficient spatial-query processing. For the server alone, which has ample
storage space and computing power, different spatial indexes are applicable, and their
performance differences are not expected to be significant in comparison to as the con-
siderable wireless communication cost.

The situation becomes complex when we intend to store and reuse data from the
server on resource-constrained mobile devices. If a spatial query cannot be fully an-
swered by reusing data stored locally, its unanswered portion will be sent to other mo-
bile peers or to the server. This query portion can be processed in a direct way, without
any transformation or adjustment, if the organizations of data on the mobile devices
and on the server share some basic characteristics. Therefore, it will be beneficial if the
index used on server also can be used on the mobile devices.

Since mobile devices usually have limited storage space and computing power, we
must be careful to choose an appropriate spatial index that can be shared among the
devices and the server. The limited storage makes a spatial index with little storage
overhead attractive. The limited computing power renders it important that the opera-
tions to be performed on the spatial index are simple yet efficient.

3.3 Collaborative Indexing
Because the R-tree and its variants involve comparatively complex operations and con-
sume extra space for internal nodes, we do not use them on the resource-constrained
mobile devices. Rather, we use the simple yet effective grid file [17] as the spatial index
in our system. A grid file allows economically storing on each mobile device a sum-
mary of the data indexed on the sever, enabling the devices to maintain knowledge of
the server data. The entire data space is partitioned by a H (rows) by W (columns)

uniform grid, yielding a total of H · W grid cells. The server holds a grid directory,
which contains the extent (left , right , top, bottom) of the data space and a linear array
representing all grid cells in row major order. Each cell has a pointer to the disk page
storing those data points.

The summary of the server data indexed by a grid is organized in a compact format
and broadcast to all mobile devices within the server’s coverage. For each grid cell,
one bit is used to indicate if it contains any data points: 0 for an empty cell and 1
otherwise. This way, a total of d(H · W)/8e bytes are needed to represent all cells in
row major order starting from the top left. In addition, the values of H , W , and the
extent coordinates are necessary for a mobile device to perform basic grid indexing
operations.

For H and W , we use a byte to represent either of them and thus can accommodate
up to 64K grid cells, which usually is enough. For the extent coordinates we use floats,
which need 4 bytes each. Therefore, every mobile device needs d(H ·W)/8e+18 bytes
to hold the global grid summary. That information is organized into a byte string called
a grid string, which sequentially contains left , right , top, bottom , H , W and bytes for
all grid cells. The ending bits in the last byte are not used if the number of grid cells is
fewer than 8.

An example is shown in Figure 3. In the upper part of this example, the region of

1
.
0
3
4
1
0
3
.
0
1
1
 1
0
3
.
0
1
3
 1
.
0
3
5
 2
 4

(
1
0
3
.
0
1
1
,

1
.
0
3
4
)

(
1
0
3
.
0
1
3
,

1
.
0
3
5
)

0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 1
0
 1
1
 1
2
 1
3
 1
4
 1
5
 1
6
 1
7
 1
8

1
 0
 1
 1
 0
 1
 0
 1

Fig. 3. Example Grid String

interest is partitioned into 2 rows and 4 column, i.e., 8 cells. In the lower part, the grid
string is shown with 19 bytes totally. The bits in the last byte are used to indicate the
validity of each grid cell, starting from the top-left one sequentially in row major order.

4 Collaborative Data Sharing Scheme
4.1 Storage Scheme for Mobile Devices
Every mobile device receives the grid string from the data server when it enters the
coverage area of the server. This string is kept locally and used when processing spatial
queries. For a given spatial query, the values of H , W , and the extent coordinates are
used to determine which grid cells the query concerns. Then, the relevant bits in the grid
string are used to identify the cells that actually contain data points. Only those cells
are considered subsequently.

Without loss of generality, we suppose that every point has n attributes, in addition
to the spatial coordinates of float type, and that these attributes occupy An bytes in total.
Out of its total storage space, a mobile device Mi is allowed to use Si bytes for data
points. This portion is divided into Ni equal-sized contiguous slots, each of which can
contain si points. In other words, Si = Ni · si · (8 + An).

Two data structures are used for this storage portion. The first, StoredCells , is a
list of records of the format 〈index , count , slot IDs〉, where index is the index of a
cell stored, count is the count of points in that cell, and slot IDs holds the IDs of the
slots that contain the cell’s points. To facilitate search for grid cells, StoredCells is
maintained in ascending order of index . The second, FreeSlots , is a list of the IDs of
unused storage slots. Initially FreeSlots contains all storage slots and StoredCells is
empty.

As the grid parameters H and W each occupy a byte, a 2-byte short integer is
enough for index . Assume a grid cell contains at most Gm points. Then dGm/256e
bytes are needed for count . A slot ID needs dNi/256e bytes, while a grid cell needs at
most dGm/sie storage slots. As a result, a stored cell needs at most 2 + dGm/256e +
d(Gm ·Ni)/(256 · si)e bytes.

When a new grid cell is to be stored locally, the first step is to determine how many
slots are needed. Then we need to search the FreeSlots to see if enough free slots are
available. If so, free slots are selected to store the cell. FreeSlots is modified, and new
cell information is created in StoredCells accordingly. If not enough free slots exist,
some stored grid cells must be evicted to make room for the new one. We discuss this
issue in Section 4.3. Next, we address how to share storage contents among mobile
devices.

4.2 Sharing Data via Routing Table
A naive approach for a mobile device to retrieve data from peers is to send a message
to all its neighbors, each of which then either returns the requested data if it has, or
forwards the request to its own neighbors. This approach leads to blind flooding rather
and incurs a large number of messages, which may yield long response time.

To facilitate the retrieval of data from peers, we maintain a routing table on each mo-
bile device. A routing table entry on a device Mi is in the format of 〈cell id, nb, hops〉.
It tells that a neighbor peer nb of Mi has data for cell cell id in its local storage or rout-
ing table. And hops is the count of hops from Mi to the peer, via intermediate peers,
that actually stores the data for the cell.

When Mi stores a new cell or evicts a cell, it notifies its neighbors by sending out
corresponding messages. Upon receiving a message from Mi invoked by storing cell j ,
a mobile device Mk takes one of the following three actions: (1) ignores it because
cell j is in local storage; (2) creates a new routing entry for it because cell j is in neither
its storage nor routing table; (3) compares the length of the new route with the that for
cell j currently in the routing table, changing the current one if the new route involves
fewer hops. Device Mk can also forward the new route to its own neighbors, if (2)
happens. Similar actions are to be taken by subsequent neighbors. Upon receiving a
message from Mi invoked by evicting cell j , a mobile device Mk removes the relevant
entry from its routing table if it exists. If a removal occurs, Mk sends similar messages
to its own neighbors who will take similar actions.

A maximum hops value is used as a system parameter to further limit the forwarding
of maintenance messages in the last two situations described above. A message for
either a new route or for an eviction will not be forwarded any further when it has
traveled the maximum number of hops.

When a mobile device Mi detects a new neighbor Mk through wireless signaling,
Mi organizes the contents of both its storage and routing table into routing entries and
sends them to Mk. Device Mk then updates its own routing table by checking the in-
coming entries against its storage and routing table.

4.3 Management of Limited Device Storage
For storage constrained devices, we need to replace both storage contents and routing
table entries when necessary. We propose a cost model to guide the replacement.

Cost Model In our storage scheme, two factors need to be considered when choosing
one or more victims for replacement. One is that after selecting victim(s), there should
be enough free space for the new grid cell. For a stored grid cell Cj , the count of data
points it covers can be found in the StoredList , i.e., count . The other is that we should
attempt to avoid eliminating grid cells that will be accessed in the (near) future. This
can be achieved by taking into account a mobile device’s predicted movement.

We use prob(Mi, Cj ,∆t) to denote the probability that a device Mi will access cell
Cj in the time period [tc, tc + ∆t], where tc is the current time. We thus look ∆t time
units into the future and predict how likely it is that Mi will need Cj in that time period.
In Section 5.4, we discuss how to choose an appropriate value for ∆t.

Probability prob also depends on the movement of Mi and the queries it will issue.
Although it is difficult to predict the query pattern of a mobile device, we expect a
significant spatial locality for the queries issued by a mobile device. Therefore, the
distance between a device Mi and a grid cell Cj is of importance. At any single time
point, we consider the Manhattan distance between Mi’s current position and the center
of Cj . Following Tao et al. [20] and Brilingaitė and Jensen [5], we assume that each
device is aware of its own motion pattern. In contrast to Dar et al. [9], we use an integral
to represent the distance between Mi and Cj for the period [tc, tc + ∆t], as shown
in Formula 1. An integral along time has been proven to be effective in dealing with
changes covering a future time period [19].

iDistM (Mi ,Cj ,∆t) =
∫ tc+∆t

tc

distM (Mi .pos(t),Cj)dt (1)

Suppose in an n-dimensional space, ck is the middle point of a grid cell on the k-th
dimension, and pk(t) is the time-parameterized position of a mobile device on that
dimension. Formula 1 can be developed as follows.

∫ tc+∆t

tc

n∑

k=1

|pk(t)− ck|dt =
n∑

k=1

∫ tc+∆t

tc

|pk(t)− ck|dt (2)

This indicates that we can compute the integral on each individual dimension and
then sum up all those integrals to obtain the desired distance. For example, in Figure 4,

t
c

c
k

k
-
t
h

d
i
m
e
n
s
i
o
n

l
k

t
f
 t
i
m
e

v
k
>

0

t
x

h
k

Fig. 4. Integral of Distance over Time

the mobile device has a positive linear velocity (it moves upwards) on the kth dimen-
sion, where the cell Cj’s range is [lk, hk]. And tf is assumed to be a future time point
far enough from tc, while tx is the moment pk(t) passes ck. Then the integral on that
dimension can be expressed as a sum of two parts:
∫ tx

tc

(ck− pk(t))dt+
∫ tf

tx

(pk(t)− ck)dt =
1
2
· vk · (tx− tc)2 +

1
2
· vk · (tf − tx)2 (3)

Taking into account negative speeds, the appropriate integral value is:

1
2
· |vk| · ((tx − tc)2 + (tf − tx)2) (4)

Depending on the concrete values of tc and ∆t, integrating on an individual dimension
can involve one or two integral parts with corresponding ranges. Non-linear movements
may involves additional integral parts because the mobile device may pass the middle
point for more than once.

Intuitively, the closer a mobile device Mi gets to a grid cell Cj , the higher the
probability that Mi will be interested in Cj is. This means prob is inversely proportional
to iDistM for the period of consideration. Therefore, we give priority to those cells with
large iDistM values when choosing victims. These are the least likely to be reused in
the future because they are relatively far away from the mobile device Mi. When a
victim is chosen, the storage slots it occupies is released and recorded in the FreeSlots
list. The selection of a victim is repeated until FreeSlots has enough free slots for the
new cell.

Routing Table Size Control Based on its own resource availability, a mobile device
can determine how much local storage to use for its routing table. To avoid a possible
overflow caused by routing table size growth, a mobile device can choose to ignore new
route entries coming from peers, or remove existing ones from its own routing table.
The decision can be made based on the proposed cost model, by computing the access
possibilities of those grid cells in a routing table.

5 Query and Update Processing
Our scheme supports heterogenous queries. We consider the two arguably most popular
query types: range queries and kNN queries. Overall, query processing proceeds as
follows. After a location-based spatial query Q is issued on a mobile device Morg ,

termed originator of Q, the local storage contents are used to answer the query. If the
query cannot be answered fully this way, the originator asks its neighbors for possible
data with the help of its routing table. For those data portions that are unavailable in the
routing table, requests are sent to the server. For a range query, a local refinement step
is required to handle those grid cells that the query only covers partially. For a kNN
query, the search bound is adjusted dynamically during the search to reduce the number
of grid cells involved.

5.1 Range Queries
A range query Qr issued on mobile device Morg is represented by 〈pos, d〉, where pos
is Morg ’s current position and the range is the circle centered at pos with radius of d.

When a range query Qr is issued, the grid string is first used to identify the non-
empty grid cells that intersect the range specified in the query. We use C(Qr) to rep-
resent the set of indexes of all these non-empty grid cells. Then, the local storage is
checked to see if any of those involved cells are available locally. We use Cl(Qr) to
represent the set of indexes of cells stored locally. If all cells are in local storage, i.e.,
Cl(Qr) = C(Qr), the query is answered locally in full. Otherwise, the unavailable
cells are retrieved from elsewhere. We let Cp(Qr) represent the set of indexes of grid
cells that appear in Morg ’s routing table, and Cu(Qr) represents the remaining grid cell
indexes.

For the cells in Cp(Qr), requests are sent to peers according to the routing entries.
Each such request is forwarded along a routing path until the peer holding the data is
reached. This peer then sends the data to Morg . Due to the dynamic nature of wireless
mobile ad hoc networking, it is possible that a mobile device along the routing path
receives a request, but fails to find the relevant routing entry or grid cell data locally.
Or, a mobile device may get a failure message from the lower protocol level when con-
tacting a peer. When a device faces such situations, it returns a routing failure message
to Morg along the reversed path. Each mobile device on the path back removes the
relevant routing entry from its own routing table, till Morg places that cell in Cu(Qr).
Finally, a request for the cells in Cu(Qr) is sent to the server, which in turn sends back
the data to Morg .

5.2 kNN Queries
A kNN query Qk issued on mobile device Morg is represented by 〈pos, k〉, where pos
is Mi’s current location and k is the number of nearest neighbors required.

Processing a kNN query Qk is relatively complicated compared to a range query, as
we cannot directly determine C(Qk), the set of grid cells intersected by Qk. We conduct
the kNN search by starting from the cell Corg where Morg is, then spiral through all
surrounding cells from inner to outer. A search bound dbnd is maintained during the
procedure, which is the distance between the pos and the k-th nearest neighbor or max
if less than k neighbors have been found thus far. At each step, we first decide the set
of cells cellssrd on a surrounding circle that need to be searched. Two kinds of cells
are excluded from cellssrd: empty cells indicated by the grid string and those cells
outside the search bound. For cellssrd, we first search the cells in local storage; then,
for those ones not stored, we send requests to peers if they appear in the routing table, or

Algorithm kNNSearch(pos)
Input: pos is the query originator’s current position
Output: k nearest neighbors
1. dbnd = max ;
2. decide the grid cell Corg within which pos lies;
3. if (Corg is not an empty cell)
4. if (Corg in storage)
5. search Corg and adjust dbnd;
6. else
7. if (Corg in routing table)
8. send request for Corg to peer;
9. else
10. send request for Corg to server;
11. search Corg and adjust dbnd upon receiving;
12. while (TRUE)
13. decide the next cellssrd w.r.t pos and dbnd;
14. if (cellssrd == Ø) break;
15. for each cell cell i in cellssrd

16. if (cell i in storage)
17. search cell i and adjust dbnd;
18. remove cell i from cellssrd;
19. if (cellssrd 6= Ø)
20. cellsrt = cells in cellssrd and routing table;
21. send requests for cells in cellsrt to peers;
22. send request for cells in cellssrd \ cellsrt to server;
23. search cellssrd and adjust dbnd upon receipt;

Fig. 5. kNN Search Framework

otherwise to the server. The cells are searched as they are received. The loop terminates
when we obtain nothing for the next cellssrd. The framework of kNN search on the
query originator side is shown in Figure 5.

5.3 Updates
Updates to the data on the server can affect the grid cells in three different ways. First,
an empty cell may become non-empty due to one or more data points being inserted.
Second, a non-empty grid cell may become empty because all of its points are deleted.
Third, the number of data points in a non-empty cell increases or decreases but remains
non-zero, or point attributes change. This is the most likely scenario of the three in real
life.

We use a two-tuple 〈idx ,flag〉 to represent an update, where idx refers to the grid
cell of the object being updated, and flag indicates which of the above three types of
updates it is (numbered I, II, and III, respectively). The server (or its administrator) is
responsible for modify the server-side data and index when an update happens. After
that, the server notifies the clients of the update by simply broadcasting the two-tuples
to them.

Each client Mi processes an incoming update as detailed in Figure 6. If Mi has
an ongoing query q whose result so far is invalidated by the update, the query q is
discontinued. If the update is of type I or II, Mi needs to invert the corresponding bit in

the grid string. If the grid cell Cidx involved in the update resides in storage, Mi evicts
it from the storage. Otherwise, if the cell Cidx has a routing entry in the routing table,
it is removed from the table.

Algorithm update(idx ,flag)
Input: idx is the index of the grid cell updated

flag is the update type
1. if (query q is ongoing and q’s result so far covers Cidx)
2. abandon query q;
3. if (flag is I or II)
4. invert Cidx ’s bit in the local grid string;
5. if (Cidx in storage)
6. evict Cidx from storage;
7. else if (Cidx in routing table)
8. remove Cidx ’s entry from routing table;

Fig. 6. Update Processing on A Device

Our proposal is able to efficiently handle updates because the compact yet infor-
mative collaborative indexing scheme works successfully between the server and the
clients.

In the experimental evaluation (see Section 6), we assume that updates happen at
random across both space and time. We vary the update ratio, the ratio of the number
of point updates during the experiment period to the total number of points used in the
experiment, to see its impact on the performance of our proposal.

5.4 Effects of Grid Configuration and ∆t

As a grid cell is the basic unit in our storage and sharing scheme, its size has important
impact on system performance. If a cell is too large, which indicates it probably contains
more data points, it will require too much storage space while actually most of data
points within may not be used by the mobile device storing it. In contrast, if a cell is too
small, new requests may become frequent, and query performance will deteriorate. The
cell size also affects the probability estimation in Section 4.3 because the Manhattan
distance in Formula 1 is relevant to the size of cell Cj .

See the example in Figure 7. The whole region of interest is partitioned using two
different grids, a 6× 6 grid and a 3× 3 grid. Assume the existence of two devices M1

M
1
 M
2

(a) 6× 6 grid

M
1
 M
2

(b) 3× 3 grid

Fig. 7. Effects of Grid Cell Size and ∆t

and M2, whose current positions are represented as dots. The vector attached to each
device indicates its movement, and its length indicates how far the device moves during
∆t. Thus, M1 moves faster than M2 here. In the 6× 6 grid, M1 will need 3 cells within
∆t, all of which are shaded in the figure. Though in the 3 × 3 grid, M1 will only need
two cells, the number of data points to be stored is considerably increased unless many
empty cells are involved. This contrasts the situation of M2 who does not need to store
new cells in the 3× 3 grid, at the cost of storing a large cell already.

Next, parameter ∆t determines how far we will look into the future when estimat-
ing the probabilities for a cell to be reused. It also affects how many grid cells will be
involved. Refer to Figure 7(a) and let M1 and M2 have the same velocity, but M1 have
a larger ∆t than M2 (note now a vector length indicates the ∆t value). Consequently,
M1 needs to consider three cells while M2 can do with two. Because different mo-
bile devices can have different resources, computing capacities, and even movements,
each mobile device should hold its own ∆t when it computes the probabilities during
storage replacement. Furthermore, a mobile device can use different ∆t’s to estimate
probabilities at different times.

6 Experimental Evaluation
6.1 Experimental Settings
We implement our proposals using JiST-SWANS [1], a Java-based MANET simulator.
We use a dataset named NE [2] of 123,593 points in float that represent metropolitan
area postal addresses. We transform the dataset into the data space of [1000 × 1000].
For each point we generate at random four attribute values in integer. We consider four
main performance aspects: (1) the overall response time; (2) the local/peer storage hit
rate; (3) the local/peer storage use rate; (4) the number of messages used to forward
routes/queries between mobile devices. We investigate how these aspects are affected
by different storage sizes, grid configurations, mobile network scales, update ratios,
and ∆t settings. The simulation experiments are conducted on an IBM x255 server
running Linux with four Intel Xeon MP 3.0GHz/400MHz processors and 18G DDR
main memory.

Table 1 lists the parameters used in the simulation. The settings in bold are the de-

Parameter Setting
Grid configuration 50×50, 60×60, . . ., 100×100
Number of mobile devices 50, 60, . . . , 100

Storage slot size 32 (data points)
Storage slot count 50, 60, . . . , 100

∆t 50s, 100s, . . . , 300s

Data update ratio (%) 0, 10, . . . , 60

Speed range 0.1unit/s–1unit/s
Max hops to forward routes 3
Holding time 60s
Wireless routing protocol AODV

Table 1. Parameters Used in Simulation

faults, used when their corresponding parameters are not varied. Initially, all data are

stored in the simulated server, and no device stores any data in local storage. For a
two-hour simulation period, every mobile device issues 10 to 100 queries whose type,
range or kNN, are determined randomly. For a range query, the ratio of its radius to
a grid cell’s side length is randomly picked among 0.1, 0.2, . . . , 1. For a kNN query,
k is chosen at random from 1 to 5. We vary the number of mobile devices from 50 to
100, which yields a moderate-scale MANET [4]. All devices move within the spatial
domain according to the random waypoint mobility model [6]. We set the maximum
hops to forward a routing message to 3. We decided this value through some prelimi-
nary experiments, in which the value 3 achieves good cache effects but does not incur
considerably high additional costs.

6.2 Response Time

The response time is defined as the elapsed simulation time from the moment that a
query is issued at a mobile device Morg to the moment that Morg gets all answers. In the
simulation, we set the mobile P2P channel bandwidth to 11Mbps (IEEE 802.11b), and
the wireless C/S channel bandwidth to 384Kbps, which is what 3G wireless networks
are expected to offer for mobility at pedestrian speed [4]. We compare three different
strategies: no local storage, local storage only, and collaborative sharing. The average
simulation results are shown in Figure 8. If no device storage is used at all, the response
time is the longest. We also see that collaborative data sharing shortens the response
significantly. This is because collaborative data sharing uses the faster wireless P2P
channels rather than the slow wireless C/S channel.

Figure 8(a) shows that an increase in storage space favors collaborative sharing over
the local storage strategy. This is because the extra space retains more data requested
by peers via collaborative sharing. All strategies benefit from small grid cells, as shown
in Figure 8(b), because in our cell-based scheme, a smaller cell contains less data and
needs less time for transmission between devices or between devices and the server. As
the number of devices increases, the response time of the collaborative sharing strategy
decreases slightly, as shown in Figure 8(c). Increased mobility provides a higher col-
laborative sharing capacity, which, however, is countered by additional costs, including
query and result forwarding via multiple hops. Compared to the aforementioned re-
sults, all strategies degrade in the presence of updates, as shown in Figure 8(d). This is
so because updates may delay, if not invalidate, ongoing queries and evict data in local
storage. Nevertheless our collaborative sharing strategy still performs the best, since
inter-device sharing remains effective.

6.3 Storage Hit Ratios

A storage hit occurs when a desired grid cell is found without it having to be retrieved
from the server. We distinguish between two types of storage hits: hits in the local
storage of a device and hits in the storage of peers. For each device, we use the local
hit ratio to represent the percentage of requested grid cells found in its local storage,
and we use the peer hit ratio for the percentage found in peer storage. In the simula-
tion, we compare our probability-based storage replacement policy with the traditional
LRU policy. Our policy outperforms the LRU policy for almost all settings used in the
experiments, as shown by the results reported in Figure 9. Our proposal predicts the

1000

800

600

400

200

1009080706050

R
ep

on
se

 ti
m

e
in

 s
im

ul
at

io
n

(m
s)

Storage slot count

No local storage
Local storage only

Collaborative sharing

(a) Storage size

600

500

400

300

200

100

100x10090x9080x8070x7060x6050x50

R
ep

on
se

 ti
m

e
in

 s
im

ul
at

io
n

(m
s)

Grid configuration

No local storage
Local storage only

Collaborative sharing

(b) Grid cell size

1000

800

600

400

200

1009080706050

R
ep

on
se

 ti
m

e
in

 s
im

ul
at

io
n

(m
s)

Mobile device number

No local storage
Local storage only

Collaborative sharing

(c) Mobile scale

6000

5000

4000

3000

2000

1000

605040302010

R
ep

on
se

 ti
m

e
in

 s
im

ul
at

io
n

(m
s)

Update ratio (%)

No local storage
Local storage only

Collaborative sharing

(d) Update ratio

Fig. 8. Response Time in MANET Simulation

100

80

60

40

20

1009080706050

H
it

ra
te

 (
%

)

Storage slot count

Peer hit rate - Prob
Local hit rate - Prob
Peer hit rate - LRU
Local hit rate - LRU

(a) Storage size

100

80

60

40

20

100x10090x9080x8070x7060x6050x50

H
it

ra
te

 (
%

)

Grid configuration

Peer hit rate - Prob
Local hit rate - Prob
Peer hit rate - LRU
Local hit rate - LRU

(b) Grid cell size

100

80

60

40

20

1009080706050

H
it

ra
te

 (
%

)

Mobile device number

Peer hit rate - Prob
Local hit rate - Prob
Peer hit rate - LRU
Local hit rate - LRU

(c) Mobile scale

100

80

60

40

20

605040302010

H
it

ra
te

 (
%

)

Update ratio (%)

Peer hit rate - Prob
Local hit rate - Prob
Peer hit rate - LRU
Local hit rate - LRU

(d) Update ratio

Fig. 9. Storage Hit Rate in MANET Simulation

near-future movement of a device and uses this for computing probabilities when it
makes replacement decisions. In contrast, the LRU policy treats all grid cells from a
static point of view.

Referring to Figure 9(a), it is as expected that increased storage yields a higher
hit ratio, as more data can be stored on the devices. Figure 9(b) shows that a coarser
grid incurs a higher local hit ratio, but a lower peer hit ratio. Larger grid cells means
that a bigger spatial region is stored on a device; hence, the device’s future queries can
find more data points locally, as queries on the same device exhibit locality. On the
other hand, as adjacent devices are more likely to issue overlapping spatial queries than
identical ones, they do not benefit from the larger grid cells and bigger spatial regions
stored on the peers.

Nevertheless, larger grid cells imply the transfer of more data and may lead to longer
response times, which is shown in Figure 8(b). According to the experiment covered by
Figure 9(c), the peer hit ratio roughly grows proportionally with the number of device—
with more devices, there is more storage for collaborative sharing, and hence more data
can be obtained from peers instead of from the server. Referring to Figure 9(d), when
updates are allowed both policies achieve lower hit ratios, but our proposal remains best
for almost all cases. Updates tend to invalidate data in local storage, thus reducing the
hit ratios. Our collaborative data sharing scheme is able to offset this effect to some
degree.

We also consider the effect on the storage hit ratio by parameter ∆t used in the
probability-based replacement. The experimental results reported in Figure 12(a) indi-
cate that ∆t should be neither too short nor too long to ensure a high storage hit ratio.

6.4 Storage Use Ratios

It is also of interest to know how much of a device’s data is actually used in query pro-
cessing. As for the hit ratios, we distinguish between the local use ratio, the percentage
of the stored grid cells used by local queries, and the peer use ratio, the percentage used
by peer queries. Simulation results are reported in Figure 10. In addition, we study the
effect of parameter ∆t used in our probability based replacement policy on the storage

100

80

60

40

20

1009080706050

U
se

 r
at

e
(%

)

Storage slot count

Local use rate
Peer use rate

(a) Storage size

100

80

60

40

20

100x10090x9080x8070x7060x6050x50

U
se

 r
at

e
(%

)

Grid cell size

Local use rate
Peer use rate

(b) Grid cell size

100

80

60

40

20

1009080706050

U
se

 r
at

e
(%

)

Mobile device number

Local use rate
Peer use rate

(c) Mobile scale

100

80

60

40

20

605040302010

U
se

 r
at

e
(%

)

Update ratio (%)

Local use rate
Peer use rate

(d) Update ratio

Fig. 10. Storage Use Rate in MANET Simulation
400

300

200

100

1009080706050

M
es

sa
ge

 c
ou

nt

Storage slot count

Routing message
Query message

(a) Storage size

400

300

200

100

100x10090x9080x8070x7060x6050x50

M
es

sa
ge

 c
ou

nt

Grid configuration

Routing message
Query message

(b) Grid cell size

600

500

400

300

200

100

1009080706050

M
es

sa
ge

 c
ou

nt

Mobile device number

Routing message
Query message

(c) Mobile scale

200

100

605040302010

M
es

sa
ge

 c
ou

nt

Update ratio (%)

Routing message
Query message

(d) Update ratio

Fig. 11. Message Count in MANET Simulation

use ratio, as reported in Figure 12(b). Most results here are in line with their coun-
terparts as reported in Section 6.3 on the storage hit ratios. Similar reasons as for the
previous batch apply to these findings.

6.5 Message Counts

We also explore the wireless P2P message consumption of our method, distinguishing
between two kinds of messages: routing messages and query messages. The former
are used to disseminate routing table entries between peers, while the latter are used
when forwarding queries and relevant grid cell data in the MANET. Average simulation
results are reported in Figure 11. For the four sets of experiments covered, the query
message cost is consistently very small compared to the routing message cost. However,
the two are related: it is the extra routing messages that bring about the small number
of query messages and fast retrieval of data for any device issuing queries. The extra
routing messages pay off as they are utilized and amortized across the queries issued
by multiple mobile devices. This study indicates that our query processing based on
collaborative data sharing is efficient and robust.

From Figure 11(a), we see that the routing message cost of our proposal is insensi-
tive to storage size variations. In contrast, the routing message cost exhibits an increas-
ing trend as the grid becomes finer, as shown in Figure 11(b). Our storage and sharing
mechanism uses grid cells as the basic units, the number of which increases as the grid
granularity becomes finer. As a result, the increased numbers of grid cells involved in
the storage and sharing produce more routing messages between the mobile devices.
Figure 11(c) shows that the routing message cost increases almost linearly with the
number of mobile devices, which demonstrates the scalability of our method. As shown
in Figure 11(d), the message cost decreases as the update ratio increases. As updates
tend to cause less data to be shared among peers, and as evictions due to updates do not
invoke routing messages (all peers remove the relevant routing entries), the numbers
of routing messages decrease. As less data are retrieved from peers, inter-device query
messages decrease, too.

100

80

60

40

20

30025020015010050

H
it

ra
te

 (
%

)

∆t

Peer hit rate
Local hit rate

(a) HR vs. ∆t

100

80

60

40

20

30025020015010050

U
se

 r
at

e
(%

)

∆t

Local use rate
Peer use rate

(b) UR vs. ∆t

Fig. 12. Effect of ∆t

15

10

5

605040302010

T
hr

ou
gh

pu
t (

/s
ec

)

Update ratio (%)

Without updates
With updates

(a) Throughput

20

15

10

5

605040302010

A
cc

ur
ac

y
lo

ss
 r

at
io

 (
%

)

Update ratio (%)

(b) Accuracy loss

Fig. 13. Query Throughput and Accuracy

6.6 Throughput and Accuracy Under Updates
In this batch, we do not limit the number of queries each mobile device can issue and
stick to range queries only because their search ranges can be exactly determined for
accuracy concerns. We then examine the impact of updates on the system wide query
throughput, the number of queries successfully answered per second in the simulation,
and the accuracy loss ratio, the ratio of cells invalidated by co-occurring updates for an
abandoned query. Figure 13(a) shows that the presence of updates reduces the through-
put compared to the cases without updates. This is so, as updates not only invalidate
queries, but also consume resources that otherwise could be used by queries. As seen in
Figure 13(b), the accuracy loss ratio increases as more updates occur, but stays below
15%. These results indicate that our proposal is robust and reliable under updates.

7 Conclusion
Assuming a hybrid mobile environment within which mobile devices can communicate
wirelessly with not only an application server via a slow channel, but also with peer
devices via fast P2P channels, this paper proposes a collaborative and predictive data
sharing scheme that exploits the P2P capabilities of mobile devices.

Based on a uniform grid, we maintain a simple yet efficient collaborative indexing
structure on the server and each mobile device within the server’s coverage. Each de-
vice is able to issue spatial queries, and the devices request, store, and share data in
units of grid cells. In contrast to the traditional C/S mobile computing, this collabora-
tive sharing scheme exploits the high P2P bandwidth, thus shortening query response
time significantly. Special routing tables are used to direct request forwarding among
peers. A predictive cost model is proposed for storage replacement and routing table
maintenance on resource-limited devices. This model takes into account the predicted
movement of each device when assigning to its grid cells probabilities that they are to
be reused by future queries. Extensive experiments conducted on a MANET simulator,
elicit design properties of our proposals, indicating that they are efficient in answering
queries and robust to data updates.

Acknowledgments
The work of Zhiyong Huang, Hua Lu and Beng Chin Ooi was in part funded by
A*STAR under grant no. 032 101 0026. Christian S. Jensen is also an adjunct professor
at Agder University College, Norway.

References

1. JiST/SWANS. http://jist.ece.cornell.edu.

2. The R-tree Portal. http://www.rtreeportal.org.
3. D. Barbará and T. Imielinski. Sleepers and workaholics: Caching strategies in mobile envi-

ronments. In Proc. SIGMOD, pp. 1–12, 1994.
4. S. Basagni, M. Conti, S. Giordano, and I. Stojmenovic, editors. Mobile Ad Hoc Networking.

Wiley-IEEE Press, New Jersey, 2004.
5. A. Brilingaitė and C. S. Jensen. Enabling routes of road network constrained movements as

mobile service context. GeoInformatica, 2006 (to appear).
6. J. Broch, D. A. Maltz, D. B. Johnson, Y.-C. Hu, and J. Jetcheva. A performance comparison

of multi-hop wireless ad hoc network routing protocols. In Proc. MOBICOM, pp. 85–97,
1998.

7. Budiarto, S. Nishio, and M. Tsukamoto. Data management issues in mobile and peer-to-peer
environments. Data Knowl. Eng., 41(2-3): 183–204, 2002.

8. C.-Y. Chow, and H. V. Leong, and A. T. S. Chan. GroCoca: Group-based peer-to-peer coop-
erative caching in mobile environment. IEEE Journal on Selected Areas in Communications,
25(1): 179–191, 2007.

9. S. Dar, M. J. Franklin, B. T. Jónsson, D. Srivastava, and M. Tan. Semantic data caching and
replacement. In Proc. VLDB, pp. 330–341, 1996.

10. T. Hara. Cooperative caching by mobile clients in push-based information systems. In Proc.
CIKM, pp. 186–193, 2002.

11. H. Hu, W. S. Wong, D. L. Lee, B. Zheng, and J. Xu. Proactive caching for spatial queries in
mobile environments. In Proc. ICDE, pp. 403–414, 2005.

12. G. Kortuem, J. Schneider, D. Preuitt, T. G. C. Thompson, S. Fickas, and Z. Segall. When
peer-to-peer comes face-to-face: Collaborative peer-to-peer computing in mobile ad hoc net-
works. In Proc. P2P Computing, pp. 75–91, 2001.

13. K. Lee, W.-C. Lee, B. Zheng, and J. Xu. Caching Complementary Space for Location-Based
Services. In Proc. EDBT, pp. 1020–1038, 2006.

14. B. Liu, W.-C. Lee, and D. L. Lee. Distributed caching of multi-dimensional data in mobile
environments. In Proc. MDM, pp. 229–233, 2005.

15. H. Luo, R. Ramjee, P. Sinha, L. E. Li, and S. Lu. UCAN: A unified cellular and ad-hoc
network architecture. In Proc. MOBICOM, pp. 353–367, 2003.

16. C. Lindemann and O. P. Waldhorst. A distributed search service for peer-to-peer file sharing
in mobile applications. In Proc. P2P Computing, pp. 73–80, 2002.

17. J. Nievergelt and H. Hinterberger. The grid file: an adaptable, symmetric multikey file struc-
ture. ACM TODS, 9(1): 38–71, 1984.

18. Q. Ren and M. H. Dunham. Using clustering for effective management of a semantic cache
in mobile computing. In Proc. MobiDE, pp. 94–101, 1999.

19. S. Saltenis, C. S. Jensen, S. T. Leutenegger, and M. A. Lopez. Indexing the positions of
continuously moving objects. In Proc. SIGMOD, pp. 331–342, 2000.

20. Y. Tao, C. Faloutsos, D. Papadias, and B. Liu. Prediction and indexing of moving objects
with unknown motion patterns. In Proc. SIGMOD, pp. 611–622, 2004.

21. B. Xu and O. Wolfson. Data management in mobile peer-to-peer networks. In Proc.
DBISP2P, pp. 1–15, 2004.

22. L. Yin and G. Cao. Supporting cooperative caching in ad hoc networks. In Proc. INFOCOM,
2004.

23. B. Zheng and D. L. Lee. Semantic caching in location-dependent query processing. In Proc.
SSTD, pp. 97–116, 2001.

