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A Kernel Autoassociator Approach
to Pattern Classification
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Abstract—Autoassociators are a special type of neural networks
which, by learning to reproduce a given set of patterns, grasp the
underlying concept that is useful for pattern classification. In this
paper, we present a novel nonlinear model referred to as kernel
autoassociators based on kernel methods. While conventional non-
linear autoassociation models emphasize searching for the non-
linear representations of input patterns, a kernel autoassociator
takes a kernel feature space as the nonlinear manifold, and places
emphasis on the reconstruction of input patterns from the kernel
feature space. Two methods are proposed to address the recon-
struction problem, using linear and multivariate polynomial func-
tions, respectively. We apply the proposed model to novelty detec-
tion with or without novelty examples and study it on the promoter
detection and sonar target recognition problems. We also apply
the model to class classification problems including wine recog-
nition, glass recognition, handwritten digit recognition, and face
recognition. The experimental results show that, compared with
conventional autoassociators and other recognition systems, kernel
autoassociators can provide better or comparable performance for
concept learning and recognition in various domains.

Index Terms—Kernel machine, nonlinear associative memory,
pattern recognition.

I. INTRODUCTION

PATTERN classification is an important issue in a variety of
scientific and engineering disciplines. As Medin suggests,

two elements play key roles in a classification process: concept
and category [1]. Concept refers to an abstract representation of
a category, while category refers to the set of entities picked out
by the concept. The problem of concept learning is often made
difficult by the shear complexity of patterns present in practical
tasks. A well-known example is face recognition, in which facial
images can be very complicated and highly nonlinear, especially
when faces are subject to changes in view angles or lighting con-
ditions [2]. It is also known that linear approaches such as Fisher
linear discriminant and principal component analysis (PCA) [3]
are not well suited for learning the nonlinear concept.

This paper emphasizes an alternative approach to nonlinear
concept learning and pattern classification by using a special
type of artificial neural networks called autoassociators. An
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autoassociator is a brain-like distributed network that learns
from the samples in a category to reproduce each sample
at the output with a mapping [4, p. 66]

(1)

The reproduction may seem pointless, whereas through learning
the autoassociation the network may find the commonalities in
the samples and, thus, grasp the underlying concept [5, p. 72].
For instance, Kohonen has demonstrated in an early work that an
autoassociator can be used to store and retrieve face images [6].
Daunicht has also demonstrated that autoassociators are useful
for modeling neuromechanics [7].

Autoassociators are generally used as one-class learning ma-
chines. In other words, each network corresponds to a partic-
ular category, and during training, it receives only the samples
within the category. An important consequence is that the net-
work will learn to accurately reproduce positive samples (sam-
ples in the corresponding category), producing a reproduction
error surface that reflects the distribution
of the samples. Thus, autoassociators provide an alternative ap-
proach to concept learning. In particular, the higher the repro-
duction quality for an input pattern, the more likely it belongs
to the category for which the autoassociator is constructed. That
provides a basis for various autoassociator-based classifiers as
below, which depend on reproduction error surfaces to discrim-
inate between classes.

Autoassociators are well suited for addressing a special
binary classification issue called novelty detection in which
novel or abnormal patterns are expensive or difficult to obtain;
thus, only a few or even no novelty examples are available for
learning. An extensive survey in the area of novelty detection
can be found in [8], and Markou and Singh have especially
presented in [9] an excellent review on autoassociator-based
approaches. Autoassociator-based approaches rely on the fact
that, since an autoassociator only learns to give high-quality
reproductions for normal patterns, the reproduction of a novel
pattern will yield a large error which can be thresholded to
signal novelty. This classification methodology has been ap-
plied to various detection problems such as face detection [10],
motor failure detection [11], network security [12], and natural
language grammar learning [13].

Autoassociators are also useful for class classification with
a competitive scheme. The system creates a set of networks for
each class, and then a probe pattern is reproduced by each net-
work in testing phase. The respective reproduction error pro-
vides the basis for competition among the networks. The par-
ticular network with the smallest value of reproduction error is
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declared winner of the competition. This classification method-
ology has been successfully demonstrated in various applica-
tions, such as handwritten character recognition ([14], [15]) and
face recognition [16].

In the field of autoassociative networks, linear autoassocia-
tors, such as correlation-associative memories, have been ex-
tensively studied. Kohonen has pointed out that using a linear
autoassociator to store and recall patterns is equivalent to com-
puting a PCA of the cross-product matrix of the patterns and
reconstructing them as a weighted sum of eigenvectors [6]. It is
the same case with multilayer linear autoassociative networks,
according to Baldi and Hornik’s theoretical study in [17]. As the
consequence, linear autoassociators have serious limitations in
exploring high-order dependency among data. Naturally, non-
linear autoassociators are favorable.

Existing nonlinear autoassociator models are generally based
on a special type of backpropagation networks [18] called auto-
associative multilayer perceptrons. Such a network includes
nonlinear hidden units between the input and the output units.
The input-to-hidden layer connections perform the encoding
with the hidden units building for input patterns internal repre-
sentations, while the hidden-to-output layer connections do the
decoding. That is why this type of networks are often referred
to in the literature as autoencoders.

Autoencoders with one hidden layer have demonstrated their
capability for learning low-dimensional nonlinear features [19].
However, it has been claimed that in some image processing
cases [20]–[22] they are comparable to linear PCA. An existing
method to overcome this problem is by having multiple hidden
layers [23]. The consequent architecture called nonlinear prin-
cipal component analysis (NLPCA) often consists of three
hidden layers, and its capability has been demonstrated in
various domains [24], [25].

According to Moghaddam’s study on face recognition [26],
however, NLPCA could be outperformed by other methods
including independent component analysis (ICA) [27] and
even the linear method of PCA. The author suggests that the
NLPCA’s poor performance can be attributed to the general
difficulty of computing nonlinear manifolds and the complexity
of cost functions riddled with local minima. Furthermore,
Malthouse has also pointed out certain limitations of autoen-
coders [28]. For example, when the network’s solution is
used to extrapolate, or when there are training values close to
ambiguity points on principal curves, the encoding results by
the network will be incorrect.

The goal of this paper is to propose an alternative, more effi-
cient approach to modeling nonlinear autoassociations. To this
end, we emphasize a special type of nonlinear methods called
kernel methods which have been established as a context for
solving a variety of nonlinear problems [29]. In brief, kernel
methods operate a special class of functions called reproducing
kernels [30] in the input pattern space , which
amounts to casting the data into a high-dimensional kernel fea-
ture space by a possibly implicit map , and taking the dot
product there

(2)

Fig. 1. Illustration of kernel autoassociation. Input patterns are projected
through �(�) to a kernel feature space H. Then, each kernel autoassociator
learns to reconstruct [e.g., via F ()] a particular class of patterns from their
kernel features.

By virtue of this property, many linear algorithms have been
extended to the kernel feature space, with the outcomes being
nonlinear in the input space. Well-known examples include sup-
port vector machines (SVMs) [31], kernel Fisher discriminant
(KFD) [32], and kernel principal component analysis (KPCA)
[33].

The paper provides a new perspective on kernel methods by
using them to address the nonlinear autoassociation issue. In
particular, we propose a kernel autoassociator model which as-
sociates the input and the output by mapping through the kernel
feature space. Fig. 1 gives an illustration, where the autoassocia-
tion is accomplished through two phases. First, an input pattern

is cast into a kernel feature space by , and it
is then, subsequently, mapped backward to the input space via

, where is class dependent ( for class
A and for class B). The subscript denotes that the func-
tion is for reverse mapping. Unless otherwise specified, we will
omit the class label in describing reverse mapping functions
in general.

Hence, the kernel autoassociation involves two important is-
sues on the kernel mapping and the reverse mapping ,
respectively. As mentioned earlier, autoencoders involve two
comparable issues regarding the setup of nonlinear representa-
tions and the pattern reconstruction from the representations.
Unlike autoencoders, kernel autoassociators put emphasis not
on building nonlinear representations because choosing a repro-
ducing kernel will automatically establish an associated kernel
feature space. Instead, since the setup of reproducing kernel and
kernel feature space has already been elegantly studied in the lit-
erature, we would like to pay particular attention to the reverse
mapping.

Recall the two phases of kernel autoassociation as depicted
in Fig. 1. It can be seen that the first phase of kernel autoassoci-
ation through the kernel mapping is just a straightforward
process without learning the particular concept from samples.
Thus, the learning task rests on the modeling of the reverse map-
ping , which should reflect the characteristics of the category.

It is worthwhile to mention that in a relevant study [34],
Schökopf has proposed an algorithm for the reverse mapping

. However, it is not suited for modeling autoassociators
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for to two reasons. First, it does not involve the learning of
class-specific reverse mapping; second, it is only applicable to
Gaussian kernels.

This paper addresses the above problem by proposing two re-
verse mapping methods. The first method uses linear functions
in the kernel feature space, while the second one uses multi-
variate polynomial functions. The two methods are both appli-
cable to arbitrary kernel types, and, more importantly, they allow
learning particular concepts of classes.

We apply kernel autoassociators to novelty detection and
class classification problems. Two detection schemes are

developed for novelty detection with or without novelty ex-
amples, and they are tested on promoter detection and sonar
target recognition. This paper proceeds by applying kernel
autoassociators to class classification problems in the do-
mains of wine recognition, glass recognition, handwritten digit
recognition, and face recognition. The experimental results
show that kernel autoassociators provide better or comparable
performance for concept learning and recognition in various
domains than conventional autoassociators and other existing
recognition systems.

In summary, the paper presents an alternative approach to
nonlinear autoassociation. By making use of a kernel feature
space, the approach resorts to relatively simpler functions
(linear or polynomial) for learning, in contrast to conventional
autoassociation machines that use a complex class of func-
tions—such as a collection of sigmoid functions in multilayer
perceptrons. The approach appears to be more efficient and
easier to implement, and it is promising for a variety of novelty
detection and class classification applications.

The rest of the paper is organized as follows. Section II in-
troduces the kernel autoassociator model and elaborates two
methods for reverse mapping. The proposed model is evalu-
ated with simulations in Section III. Section IV applies kernel
autoassociators to novelty detection, and Section V applies the
model to class recognition. The discussions and the conclu-
sion are given in Section VI.

II. KERNEL AUTOASSOCIATORS

Kernel autoassociators produce pattern reproduction through
reproducing kernel Hilbert spaces (RKHS) [35], which provide
a unified context for solving a variety of statistical modeling
and function estimation problems. Here, we would review some
basic concepts such as positive-definite functions as below.

Let be an index set, e.g., Euclidean space . A function
, is said to be a positive-definite function

on if, for every number , every set , and every
, we have

(3)

Let be a positive-definite function on , and
a functional with respect to . When is fixed,

will be a determined function. Corresponding to , there

exists a unique collection of real valued functions on , called
a RKHS [36]

for each (4)

for any finite and (5)

The inner product in is defined by

(6)

Let an arbitrary function in be expressed in form of (5). Then
we have

(7)

and is called the reproducing kernel for .
Hence, by choosing a reproducing kernel function , one can

cast a pattern into a RKHS , and is called a
kernel feature space, with respect to .

The principle of kernel autoassociators, as mentioned ear-
lier, is to perform autoassociation mapping via the kernel fea-
ture space, i.e., reconstructing patterns from their counterparts
in . Hereafter, a reconstruction (the reverse mapping) func-
tion is denoted by

for class (8)

where represents the feature in functional form
in . As we mentioned in the Introduction, the subscript
denotes that the function is for reverse mapping. Note that unless
otherwise specified, we omit the class label in describing a
reverse mapping function hereafter.

A positive-definite function is associated with a unique
RKHS and, thus, can be used as a kernel function for kernel
methods [29]. In fact, the kernel autoassociator model does not
confine the selection of kernel function , while in the present
paper we tentatively examine two of the most popular kernel
functions, namely, Gaussian function and the polynomial func-
tion

Gaussian kernel (9)

Polynomial kernel (10)

where denotes the power of the polynomial, the bandwidth
of the Gaussian kernel.

A kernel autoassociator learns the concept of a category in
a very high-dimensional feature space , in contrast to con-
ventional methods that learn in the input space or a low-dimen-
sional feature space. This methodology may raise doubts about
whether it is good to resort to a higher dimensional feature space
for learning, since the curse of dimensionality principle asserts
that the difficulty of learning may increase drastically with the
dimensionality.
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The doubts can be resolved by the statistical learning theory
which states: not the dimensionality, but the complexity of the
function class matters [37], and learning can be simpler if one
uses a class of functions of low complexity. Another underlying
justification is in Cover’s theorem [38] on the separability of
patterns. It states that a complex classification problem cast in a
high-dimensional space nonlinearly is more likely to be linearly
separable than in a low-dimensional space, provided two condi-
tions are satisfied. First, the transformation is nonlinear. Second,
the dimensionality of the feature space is high enough. A good
example is a support vector machine that solves classification
problems with linear decision rules in a high-dimensional fea-
ture space instead of using nonlinear, complex decision rules in
the input space.

It can be seen that our kernel feature mapping sat-
isfies the above two conditions. As already shown in Fig. 1, the
kernel autoassociator model casts input patterns into a kernel
feature space, and learns the class-specific dependencies be-
tween the feature space and the input space. The aforementioned
theory suggests that we may use a simple class of functions such
as linear functions or polynomials in the kernel feature space for
concept learning.

A. Linear Functions for

Let be a linear mapping function from to the input
space . The complete autoassociator is still nonlinear even
though is linear because of the intrinsic nonlinearity of the
feature mapping . When the patterns to be reproduced are
multidimensional, will be composed of a set of functions

, each corresponding to an element of the output space:
. Consider an element function . We

will omit the element-label , hereafter, unless otherwise spec-
ified. The function in linear form is given by

(11)

Here, denotes an element of the output vector , and is
a vector in the feature space. Suppose the vector can be
spanned by the images of training samples [34]

(12)

then we can rewrite the linear function as

(13)

where is the vector of expansion coef-
ficients, and represents the
vector of kernel products. Then, the complete output vector
is given by

(14)

where denotes the collection of linear projec-
tions for each output element. Interestingly, it is the same as the
expression of a kernel associative memory (KAM) [16], which,

however, is derived in a different way as an extension of corre-
lation associative memories. This finding suggests that KAMs
can be considered as a special form of kernel autoassociators.

Given a set of samples, say, for
training, one can first compute the kernel product vectors

. The desired output of the network can then
be expressed by

or (15)

Here, is the matrix with each column an example pattern,
and represents the matrix with each column a corresponding
kernel product vector.

One way to learn the projection matrix is by finding a ma-
trix that minimizes the empirical square error .
A method to the minimization is given by

(16)

where is the pseudo-inverse of the kernel product matrix
.

B. Polynomials for

In this subsection, we will develop a polynomial model for the
reverse mapping functions. It starts with a study on polynomials
in the kernel feature space. Next, we propose an approximation
method based on kernel PCA and study a regularization method
for the polynomial functions.

Let consist of more complex functions, namely, second-
order multivariate polynomials

(17)

where , and are the polynomial coefficients. This
formulation takes the feature as a column vector
(i.e., ), and allows exploring up to
second-order nonlinearity in the reverse mapping .

The direct calculation of (17) is not feasible because generally
the kernel feature vector is given in an implicit or extremely
high-dimensional form. Thus, we need to resort to approxima-
tion techniques to solve the problem.

Suppose that can be approximated by a low-dimen-
sional representation

(18)
Here, is a matrix with each column a basis vector of
the -dimensional subspace, and denotes the projections of

onto . We then have a new expression of the second-order
polynomial (17), given by

(19)

where , , and . Clearly, it turns
out to be a polynomial function with respect to the coefficient
vector .

1) Polynomials on Kernel Principal Components: A kernel
subspace for the above representation can be set up by the KPCA
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technique [33], which essentially performs a linear PCA in the
kernel feature space

(20)

where is the average of all
over training samples. The set consists of the orthog-
onal bases of the principal subspace and . That al-
lows one to calculate the expansion coefficients using direct
projection

(21)

Now, consider the calculation of and . Given a collection
of training feature vectors , the corresponding principal
components must lie in the subspace spanned by

(22)

where the coefficient vector is a vector
of expansion coefficients. The coefficients are determined with
an eigenvector problem [33]

(23)

for nonzero eigenvalues . Here,
. It follows that

(24)

It can be seen that, due to the presence of , the expression of
in (20) is not compatible with the original polynomial formu-

lations [(18) and (19)]. Thus, we need to rewrite the polynomial
function by

(25)

This formulation will lead to a polynomial on the subspace fea-
ture vector , similar to (19), but the vector here is given by
(21) instead of (18).

Obviously, training an autoassociator amounts to estimating
the parameters , , and from a given set of samples.
Although the function (19) is nonlinear in the variable , it
can be favorably expressed as a linear function with respect to

(26)

TABLE I
POLYNOMIAL IN KPCA SUBSPACE VERSUS THAT ON KERNEL

PRODUCTS. I DENOTES THE IDENTITY MATRIX

Hence, the learning problem can be conveniently solved with
linear algebra.

In the following, we show that there exists a polynomial func-
tion on the kernel product equivalent to that on . In other
words, one can avoid computing KPCA in running autoassoci-
ators, allowing fast implementation.

Let us first study the calculation of in (24). A few terms
there depend only on the training examples while being
irrelevant to the input pattern . They can be rewritten as

(27)

It follows that

(28)

where is a -unit long vector of all 1s. Denoting
, the whole vector reads

(29)
where is an matrix consisting of all 1s.

Substituting the expression for in (19), the equation be-
comes

(30)

which is a multivariate polynomial on the kernel product vector
. Details of , , and are given in Table I, which reveals

the relationship between a polynomial function on with its
equivalence on the kernel product vector . Thus, runing autoas-
sociators will use precomputed , , and without com-
puting kernel principal analysis.

2) Regularization of Kernel Polynomials: Learning ma-
chines may have the so-called “over-fitting” problem in which
the machines specialize well to training patterns but generalize
poorly to new patterns. To enhance the generalization per-
formance, a common method is regularization which aims to
stabilize the solution by means of some auxiliary nonnegative
functional that embeds prior information about the solution
[39]. The widely used prior information involves an assumption
that the input–output mapping function is smooth, in the sense
that similar inputs correspond to similar outputs. Hence, an
objective function for training should take into account both
empirical reconstruction error and smoothness of the networks

(31)
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Fig. 2. Concept learning on spiral pattern. Results are shown as reconstruction error surfaces. KAA-1 or KAA-2 represents kernel autoassociator with linear or
polynomial reconstruction functions.

Fig. 3. Results of concept learning on multimodal pattern. The results are shown as probability density surface (by kernel density estimate) or reconstruction
error surface (by kernel autoassociators).

Here, the coefficient determines the tradeoff between the em-
pirical error and the smoothness measure . We define the
smoothness of a polynomial function by

(32)

where is the kernel features by KPCA [see (24)], and is a
first-order linear differential operator. There is

(33)

For simplicity, all the feature vectors in the regularization
are supposed to be normalized beforehand to fulfill .
It leads to an efficient way to compute the integral by

(34)

where is the th column vector of the matrix .
Training a kernel autoassociator means minimizing the objec-

tive function (31). Because the function is continuous and differ-
entiable, the minimization can be obtained at ,

, and . To solve the mini-
mization problem, we tentatively use Matlab nonliear optimiza-
tion toolbox in the implementation.

III. SIMULATIONS

We generated an artificial dataset to test the capability of the
proposed models for nonlinear concept learning. The dataset
consists of a few samples on a two-dimensional (2-D) spiral,

as plotted in the leftmost of Fig. 2. We constructed a kernel au-
toassociator with linear and another one with polynomial
(hereafter, referred to as KAA-1 and KAA-2, respectively), both
with Gaussian kernels. Besides, an autoencoder with sigmoid
transfer function was also tested for comparison. The reproduc-
tion error surfaces are displayed as images in Fig. 2, where the
error value is denoted by gray level (i.e., bright means small).
Note the results have been thresholded to be better shown in
forms of images. For the autoencoder, we tested various num-
bers (4 to 40) of hidden neurons and observed similar results.
The kernel bandwidth for kernel autoassociators was set to be
the standard deviation of samples.

The experimental results show that, in spite of the complex
structure of spiral patterns, the kernel autoassociators were able
to produce reconstruction error surfaces that correctly reflected
the data structure. But the autoencoder produced a unimodal-
Gaussian-alike error surface (often seen with linear models).

We also conducted a comparison between kernel density es-
timate [40] (a nonparametric technique for density estimation)
and kernel autoassociators, by using a set of examples gener-
ated from a three-mode 2-D random distribution. The samples
and the experimental results are plotted in Fig. 3.

The results show that every method successfully captured the
three modes by the estimated density surface or reconstruction
error surface. In particular, with the same kernel bandwidth ,
kernel autoassociators appear to produce smoother surfaces
than kernel density estimate. Thus, they tend to have better
generalization capability while maintaining good specialization
capability.

IV. APPLICATIONS TO NOVELTY DETECTION

As mentioned earlier, novelty detection is the identification of
novel patterns of which the learning system is given few sam-
ples in the training stage. This problem happens when novel or
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abnormal examples are expensive or difficult to obtain. Here, let
us consider two novelty detection problems, i.e., promoter de-
tection and sonar target recognition.

The promoter problem takes as input segments of DNA, some
subset of which represent promoters. A promoter is a sequence
that signals to the chemical processes acting on the DNA where
a gene begins. The goal of the task is to train a classifier that is
able to detect promoters—the novel patterns. The sonar target
recognition problem takes as input the signals returned by a
sonar system in the cases where mines and rocks were used as
targets. We choose mine patterns as novelty.

We acquired both the promoter database and the sonar target
database from UCI Machine Learning Repository. The pro-
moter database consists of 106 samples, 53 for promoters, while
the others for nonpromoters. Each sample is a 57-unit-long
string composed of four chars , which we convert
to { } in the experiment. The sonar target database
comprises 111 positive and 97 negative patterns (60-unit long).

The autoassociator detection system relies on the fact that an
autoassociator is designed to learn normal patterns, thus, the
network would tend to produce relatively larger reproduction
errors for novel patterns. The errors can be thresholded to signal
novelty. Fig. 4 plots the detection scheme.

The specific threshold is crucial for the system per-
formance, and should be chosen carefully. In respect to the
threshold setting, there are two different cases in novelty
detection. In one case, a small number of novel patterns are
available for training the detection system; in the other case,
one can obtain merely normal patterns for the training. For the
two cases, we propose and study two different approaches.

A. Novelty Detection With Novel Examples

With samples from both novel and normal patterns, novelty
detection can be viewed as a usual binary classification problem.
The goal is to find a rule that best separates the positive and
negative classes.

Given an unknown object , the system will produce a recon-
struction error and the probability of to be identified as
novelty is given by . Let the novel class be and
the normal class be . The probability of misclassification is

(35)

Here, is the probability
of a novel (normal) pattern classified as normal (novel). The
empirical value of the above error is given by

(36)
where is a random sample generated from the distribu-
tion , and or denotes the number of
samples of novel or normal samples.

For the given samples and an autoassociator, is fixed
and takes binary value (0 or 1) that depends on
the threshold . Thus, setting the threshold becomes equivalent

Fig. 4. Novelty detection scheme. An autoassociator learns normal examples;
when an unknown pattern is presented, the reconstruction error by the
autoassociator will be compared with a threshold to signal whether it is a novel
pattern (with larger error) or a normal pattern (with smaller error).

to seeking a that minimizes in (36). Since is a one-dimen-
sional (1-D) variable, it can be easily determined with a simple
searching program. It needs to be mentioned that the novel pat-
terns only serve for setting the threshold, not for training the
autoassociator.

We set up an autoassociator system with the above threshold
setting method, and tested it over the aforementioned two de-
tection problems. Parzen-window novelty detectors (ParzenND)
[12]—a kernel density estimation technique for novelty detec-
tion, and autoencoders, are compared using the same threshold
setting method.

The experiment was set up as follows. Each method was eval-
uated using five-fold cross validation (see [4, p. 213]): We ran-
domly partitioned the promoter/Sonar data set into five subsets
of equal size, and in each evaluation trial we selected one subset
for testing while the rest was used for training. In each trial of the
training test, the negative training set was used only to determine
the empirical threshold [see (36)], while the positive training set
was used to learn the empirical threshold and the autoassocia-
tors. Besides, we averaged the classification error rates over ten
independent cross validation to enhance the accuracy of evalu-
ation. All the compared methods were fine tuned.

Table II compares the false detection rates (FDR) (see the
table for the description of the symbols). The superscript de-
notes polynomial kernel function, while denotes Gaussian
kernel function. Numbers after each “ ” are standard devia-
tions of the detection accuracy. It indicates considerable vari-
ance among error rates in different trial. This may be due to the
cross-validation evaluation method that could produce largely
different complexity in the resulting training/test sets in dif-
ferent folds and trials, especially for the relatively small while
complex data in promoter and sonar. Nevertheless, it can be
seen that in both domain studies, KAA , KAA , and
KAA tend to produce relatively lower error rates.

In addition, we examined the systems’ sensitivities in the two
domains to small numbers of novelty examples. In this setting,
each evaluation trial used the same set of normal patterns as
above, but selected randomly only a given number of novelty
samples for training. By this, the setting can serve a simulation
for studing class imbalance problems, since in each trial we have
a positive and a negative training set with largely different size.
For example, in the promoter problem, each positive training set
has 42 samples or so, while the negative training set could have
as few as five samples.

The imbalanced setting may pose a serious problem to typ-
ical discriminant machines such as MLP classifiers and SVMs.
Our experimental results in Fig. 5 indicate that neither KAA-1
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TABLE II
NOVELTY DETECTION ERROR RATE WITH NOVEL EXAMPLES

Fig. 5. Recognition error rates over the number of novel examples in the two novelty detection problems. The number of novel examples used for training ranges
from 5 to 40. (a) Promoter detection. (b) Sonar target detection.

nor KAA-2 is sensitive to the imbalanced setting, but the perfor-
mance of MLP and SVM classifiers deteriorated along with the
decreasing number of novelty examples, i.e., more imbalanced
training data.

B. Novelty Detection Without Novel Examples

In the case without novel samples for training, the above
method for determining the novelty detection threshold is not
applicable. Instead, we adopt a method from [12] that is de-
signed to achieve a given FDR

(37)

Similar to (36), the equation can also be expressed in terms of
samples, and will become a function with respect only to .
Therefore, for a given FDR, can be easily determined with a
1-D search procedure.

The same threshold setting method is used for comparing
kernel autoassociators with autoencoders, Parzen-window de-
tectors ([12]), SOM-ND [41], and one-class SVM [42]. The
Parzen-window detector is a nonparametric density estimation
technique for novelty detection, while SOM-ND is a novelty de-
tection technique based on self-organizing maps.

We conducted experiments with five-fold cross-validation,
similar to the previous experiment of novelty detection with
novel examples. The difference is that the training program in
this experiment did not use novel examples, and only the normal
sample set was used for learning the threshold according to a
given FDR (7). We calculated the resulting error rates and aver-
aged them over ten tests (each with a five-fold cross validation).
Table III shows the results.

The standard deviations of the error rates are still promi-
nent as in the last experiment (Table II), probably reflecting the
varying complexity of training/test sets in different trials. Nev-
ertheless, the comparison suggests that KAAs tend to produce

TABLE III
FALSE NOVELTY DETECTION RATES WITHOUT NOVEL EXAMPLES

Fig. 6. Kernel autoassociators against noise for the promoter detection. Shown
here is the resulting detection accuracies (without novel examples) as functions
over the noise level (standard deviation).

smaller false detection rates with variance comparable to the
others.

C. Autoassociator-Based Novelty Detection Against Noise

To examine the robustness of the proposed method, we con-
ducted an experiment by adding Gaussian noise onto the test
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Fig. 7. Regularized networks in the promoter detection problem. Panel (a) shows the mean reconstruction errors for samples, respectively, from the training
set and the test set, and the errors are drawn as the functions over the regularization parameter � which controls the smoothness of the regularized networks.
Panel (b) shows the roughness measure of the regularized networks and their performances in terms of recognition/detection error rates.

Fig. 8. Regularized networks in the sonar target recognition domain. Please refer to Fig. 7 for the explanation. Note the detection error rate is evaluated on the
test set. (a) Reconstruction error. (b) Detection error rate versus polynomial roughness.

data in the promoter problem. The noise in each dimension is in-
dependent, with standard deviation varying from 0 to 1.5. Fig. 6
plots the results.

It needs to be mentioned that the standard deviation of the
promoter patterns is about 1.1 on each dimension, while the de-
tection accuracy remains larger than 70% under the noise up to

. The results demonstrate that the kernel machines are
not very sensitive to additive noise.

D. Performance of Regularized Networks

The two novelty detection problems are used here as test
beds to examine the proposed regularized kernel autoassocia-
tors with polynomial . We carried out three experiments using
five-fold cross-validation techniques and averaged the recogni-
tion results. A range of values for were tested to examine its ef-
fect on both the empirical reconstruction error and the roughness
of the backward mapping function. The reconstruction error, the
roughness, and the recognition performance of the regularized
networks were obtained and are plotted in Fig. 7 and Fig. 8 as
functions with respect to .

The results attest to the effectiveness of the regularization
method in controlling the smoothness of the kernel net-
works. Although smoother networks yielded larger errors on
the training set, they produced better results on the test set,
showing better generalization performance. The figures also
indicate that, with in an appropriate range, the detection
performance of kernel autoassociators can be enhanced. In
practice, the appropriate value for may be estimated em-
pirically with cross-validation techniques on the training set.

Future work is to study how to set using other automatic
methods with lower computational complexity.

In the present study, we do not apply the regularization tech-
nique to other novelty detection and later class classification
tasks. The major reason is that since regularization is also an
open issue in many other classification methods, for fair com-
parison we would like to compare the methods without consid-
ering regularization. Nonetheless, our preliminary study in the
above shows that regularization could be an important issue in
improving kernel autoassociators.

E. Discussions on Novelty Detection

This section has studied the autoassociator-based novelty de-
tection system in various situations. The results indicate that ei-
ther with or without novel examples, kernel autoassociators (es-
pecially the KAA ) could achieve slightly better results than
the others. Furthermore, the KAA systems demonstrated consis-
tent performance against a varying number of novelty examples,
in contrast to the MLP classifier that requires a large number of
novelty examples for good performance.

Comparing the autoassociators in the two detection domains,
those using Gaussian kernels seem to outperform others using
polynomial kernels. Furthermore, the experimental results also
attest to the robustness of Gaussian kernel autoassociators
against additive noise.

The architectures of kernel autoassociators can be determined
by only a few parameters. For the networks with linear backward
mapping , the user needs to choose between different types of
kernels (Gaussian, polynomial, etc.). For kernel autoassociators
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Fig. 9. mclass classification scheme based on autoassociators. Each autoassociator is trained with the examples from its associated class. When an unknown
pattern is presented, it will be processed by all the networks, respectively. The system will collect and compare the reconstruction errors and pick out the network
with the minimal error.

with polynomial , the user may need to choose an additional
parameter—the number of kernel principal components.
At present, we use a simple method to choose the value for .
First, we can select those components that account for a large
percent (e.g., 90%) of variance in the patterns. Around the value
we then simply test a few numbers and choose the optimal one.
This empirical configuration method also applies to some other
methods under comparison, such as in choosing the number of
hidden nodes for autoencoders.

However, as Markou and Singh put it [8], there is no single-
best model for novelty detection and the success depends not
only on the type of method used but also statistical properties of
data handled. Thus, a specific parameter-setting method cannot
be always suitable for different problems, and, in some cases,
we may resort to empirical methods such as cross-validation for
parameter setting ([4, p. 213]).

It is worthwhile to mention that Markou and Singh have sum-
marized important principles related to novelty detection [8].
The principle of parameter minimization states that a novelty
detection method should aim to minimize the number of pa-
rameters that are user set. Kernel autoassociators inherit an ad-
vantage of neural networks for novelty detection in that during
network training, a priori information is not very critical on
data distribution [43]. Furthermore, to define a kernel autoas-
sociator, the user only needs to select one essential parameter:
the kernel type, since the other parameters such as the number
of principal components can be learned from the training sam-
ples. Hence, the proposed model adheres more closely to this
principle than conventional autoencoders which need to define
a number of parameters including the number and the dimen-
sion of layers, and the transfer functions. Besides, the prin-
ciple of independence asserts that the novelty detection method
should show reasonable performance in the context of imbal-
anced data set, small number of samples, and noise. Our exper-
iments in Sections IV-A and IV-C indicate that the proposed
method with kernel autoassociators offers satisfactory perfor-
mance in such a context. An example is given in Fig. 5, when the
novel examples count five, in addition, since the training/run-
ning of kernel autoassociators is of low-computational com-
plexity, the networks enable online adaptation which is in ac-
cordance with the principle of adaptability and the principle of
computational complexity.

V. APPLICATIONS TO MULTICLASS CLASSIFICATION

Being one-class learning machines, kernel autoassociators
can be used for class classification tasks if each autoasso-

TABLE IV
COMPARATIVE ERROR RATES FOR WINE AND GLASS CLASSIFICATION

ciator is associated with an individual category to learn its
concept. The system would use a competitive classification
scheme shown in Fig. 9: When a test pattern is presented,
it will be reproduced by each autoassociator, the respective
reproduction results will be collected and compared, with the
best one indicating the corresponding class. In the subsections
to follow, we examine this classification scheme on various
recognition problems.

A. Wine and Glass Recognition

The Wine Recognition data [44] is acquired from UCL repos-
itory of machine learning databases. The data set contains three
types of wines, each type has 59, 71, or 48 instances. The anal-
ysis of the wines determines the quantities of 13 constituents.

The Glass Recognition data is also acquired from UCL
Repository of Machine Learning Databases. The data set con-
tains instances of six types of glasses. Each type has 70, 17, 76,
13, 9, or 27 instances. The goal is to determine the glass type
from nine attributes.

We used a two-fold cross-validation technique to test the
autoassociator-based classification scheme in both domains.
Typical classification machines such as multilayer perceptrons
and support vector machine were also tested for comparison. It
needs to be mentioned that all the data were normalized to the
range [ 1, 1] to remove the scale effect, and each network was
fine tuned. The comparative recognition results are summarized
in Table IV.

The results show that for class recognition, kernel autoas-
sociators can be comparable to SVMs in terms of recognition
accuracy, while producing lower error rates than both autoen-
coders and multilayer perceptrons. Besides, the small variances
of error rates with most methods suggested that their perfor-
mance would be consistent in the Wine/Glass domain.

B. Handwritten Digit Recognition

Here, we consider the handwritten digit recognition problem
with the US-Postal Service (USPS) handwritten digit database
that consists of 7291 training images and 2007 test images (16
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Fig. 10. Examples of handwritten digit recognition with kernel-autoassociator classifier on the USPS database. The leftmost column displays the test patterns; the
columns to the right right display the reconstructed images by each of the ten kernel autoassociators. We use frames to mark the best ones in terms of reconstruction
accuracy.

16 pixels) (the database is accessible at http://www.kernel-
machines.org/data/usps.mat.gz).

To illustrate the classification process with autoassociators,
some examples from the test set are shown in Fig. 10. The left-
most column displays the probe patterns, to the right their re-
spective reproductions by the KAA-2 networks corresponding
to 0 to 9. The first three rows in the figure show that three
patterns of 0/2/3 get best reproduction from the correct net-
works (i.e., the first/third/fourth network). There exists only a
few cases in which the correct network among all networks
cannot reproduce the best reproduction for a new pattern. An
example is given in the bottom row where a pattern of class 7 is
misclassified as 9.

Table V summarizes the classification results in comparison
with the published scores of other technologies. Here, we take

for the KAA-2 network. In addition, a newly proposed
kernel Fisher discriminant method [45] called KDDA, as well
as KPCA-NN—a 1-nearest-neighbor technique with KPCA fea-
tures (see [45]), has been implemented for comparison. The re-
sults in the table demonstrate that KAA-1 and KAA-2 could
match LeNet and SVM in terms of performance while signifi-
cantly outperforming autoencoders or kernel density baseline (a
kernel density estimate).

In the comparison, the tangent distance approach yielded the
best result. This can be explained by the fact that it is the only
one here that dedicatedly explores domain knowledge about
the invariance of image patterns. Similarly, there is a variant
of SVM referred to as virtual SVM [46] that, by incorporating
prior knowledge about image invariance, gained considerable
improvement and produced a good classification error rate of
3.0% on the USPS database. Similarity, incorportating domain
knowledge may also yield a promising extension to kernel au-
toassociators.

C. Face Recognition on UMIST Database

The UMIST face database [51] consists of 575 gray-scale im-
ages for 20 individuals, each showing a wide range of poses
from profile to frontal views. Some UMIST faces are displayed
in Fig. 11, where large variations are clearly present.

In the experiment, we divide the data into a training set
and a test set. The training set consists of six images per
person, while the remaining images form the test set. We have

TABLE V
RECOGNITION ERROR RATES ON USPS

tuned each system and use their best results for comparison
(for instance, we empirically choose ). Recognition
results in terms of error rate over (the bandwidth of Gaussian
kernel ) are compared in Fig. 12. Here, KPCA-NN denotes a
1-nearest-neighbor technique with KPCA features. In addition,
two nonkernel techniques including 1-nearest-neighbor (NN)
and an autoencoder are also compared.

The results indicate that the kernel autoassociator methods
(KAA-1 and KAA-2) can produce better results than the others
except KDDA. However, in the aforementioned OCR experi-
ment, KAAs significantly outperformed KDDA. The difference
may be due to the fact that KDDA and KAAs are based on dif-
ferent principles: KDDA aims to explore discriminating, non-
linear patterns in the training set, while KAAs would emphasize
intra-class structural patterns (class concept). And the nature of
a particular classification case would be of particular advantage
to one principle. A systematical comparison between the two
principles would go beyond the scope of this paper, while com-
bining the two principles may be a promising way to improve
the existing systems in the future.

D. Face Recognition on ORL Database

The Olivetti-Oracle Research Lab (ORL) database (available
at http://www.uk.research.att.com/facedatabase.html) involves
40 individuals, and each person has ten different facial views
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Fig. 11. Complex patterns present in multiview face recognition (examples from the UMIST database).

Fig. 12. Comparative face recognition results on the UMIST database.
Shown here are the recognition error rates as functions of the bandwidth �

of Gaussian kernels used by the kernel machines. Note that 1-NN represents
1-nearest-neighbor technique, and it serves as a baseline together with another
nonkernel machine, i.e., autoencoder.

Fig. 13. Face examples from the ORL database. Shown here are four persons,
each with two face images.

with various expressions, small occlusion, different scale
and orientations (Fig. 13). The resolution of all the images
is 112 92. The ORL database allows us to compare the
proposed method with other systems such as SOM+CN [52] (a
face recognition scheme that combines the self-organizing map
with convolutional neural networks) and Eigenfaces [3].

In the experiment, we randomly select a small number (three
or five) of faces out of ten for each subject to set up an au-
toassociator, and then record the recognition accuracy on the
remaining faces. Since there are only a few training samples
available, the deformation variances of the faces are difficult
to capture. One efficient approach for tackling the issue is to
augment the training set with some synthetically-generated face
images. In this experiment, we synthesize images by simple ge-
ometrical transformations including rotation and scaling. In the
present work, we generate ten synthetic images from each orig-
inal training image by making small, random perturbations to
the original image: rotation (up to 5 and 5) and scaling (by a
factor between 95% and 105%). Finally, the recognition results
are listed in Table VI.

TABLE VI
RECOGNITION ACCURACY FOR ORL DATABASE

The results show that kernel autoassociators outperformed
Eigenface and autoencoder techniques, while achieved compa-
rable performance to SOM+CN.

VI. DISCUSSIONS AND CONCLUSION

In this paper, we have proposed a novel nonlinear autoasso-
ciator model. By making use of the kernel feature space, the
model resorts to relatively simpler functions (linear and polyno-
mials) for autoassociation learning, in contrast to conventional
nonlinear machines using complex class of functions.

The kernel autoassociator model has been examined on nov-
elty detection with or without novelty examples. Experimental
results attest to the robustness of the model in the context of im-
balanced data sets, small numbers of samples, and noise. Fur-
thermore, the model has much less user-set parameters than con-
ventional nonlinear autoassociators.

The class recognition scheme based on autoasociators is a
detection-based approach [53]. Thus, it has an advantage over
discriminant methods in terms of adaptability. When a new sub-
ject is presented, the detection-based approach need not retrain
existing networks. Instead, only a new network is to be created,
together with the existing networks for classification.

In addition, the simulations and the extensive experiments
have demonstrated that the proposed method can capture com-
plex nonlinear features outperform conventional autoencoders.
Compared with other systems, kernel autoassociators offer
better or comparable performance, though they are generic
one-class learning machines. In conclusion, the proposed
method provides an alternative approach to nonlinear autoas-
sociation modeling, and is promising for various nonlinear
concept learning and recognition applications.
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